Worksheet 2

12 January 2017

1. Suppose f is a continuous, 2π -periodic function with $\int_0^{4\pi} f(t) dt = 7$. For any integer k, compute $\int_{k\pi}^{(k+2)\pi} f(t) dt$. Hint: 2π -periodicity implies $\int_a^b f(t) dt = \int_{b+n2\pi}^{a+n2\pi} f(t) dt$ for any integer n.

Recall the fundamental theorems of calculus. Both assume that f is continuous on [a, b]

1st FTC:
$$\int_a^b f(t) dt = F(b) - F(a)$$
 for any antiderivative F of f .

2nd FTC:
$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$
 for any $x \in (a, b]$.

Use these to answer the questions below.

- 2. (a) Show that for positive numbers a and b, $\int_1^a \frac{1}{t} dt + \int_1^b \frac{1}{t} dt = \int_1^{ab} \frac{1}{t} dt$.
 - (b) Let $g(x) = \int_a^x f(t) dt$. Using g, compute $\frac{d}{dx} \int_{\alpha(x)}^{\beta(x)} f(t) dt$ for any functions α, β .

(c) Show that if $\int_0^x f(t) dt = x \cdot f(x)$, then f is a constant function.

- 3. (a) Describe, in your own words, what is an even function and what is an odd function.
 - (b) Do functions that are neither even nor odd exist? If no, why? If yes, give an example.
 - (c) Are the two expressions below the same or not? Why?

$$\int_{-1}^{1} \frac{1}{x^2} dx \qquad 2 \int_{0}^{1} \frac{1}{x^2} dx$$

- (d) Give 3 antiderivatives of the function $f(x) = \frac{1}{x^4}$.
- 4. Answer the following True / False questions. If True, justify. If False, give a counterexample.
 - (a) True or false: A function has a unique antiderivative.
 - (b) True or false: An even function cannot be the antiderivative of an odd function.
 - (c) True or false: Even functions always have odd functions as antiderivatives.
- 5. **Bonus:** Find a function f(t) and a number a such that $6 + \int_a^x \frac{f(t)}{t^2} dt = 2\sqrt{x}$.