Worksheet 29

 $28 \ {\rm April} \ 2015$

- 1. Volumes of revolution: Calculate the following volumes using the shell method.
 - (a) The area in the fourth quadrant bounded by y = x 3 around the x-axis.
 - (b) The area in the first quadrant bounded by $y = 1 x^2$ and $y = x^2$ around the axis x = 3.
 - (c) The area bounded by $y = \sin(x)$, y = 0, $y = \pi$ and x = 0 around the axis y = -2.

Calculate the following volumes using the disk method.

- (d) The area bounded by $y = \ln(x)$, $y = -\ln(x) + 1$, $x = \frac{1}{2}$, and x = 2 around the x-axis.
- (e) The area in the second quadrant bounded by $x = -y^2$ and $y = x^2$ around the axis x = -3.
- (f) The volume of revolution of y = x(x-1)(x-2) revolved around the x-axis between x = 0 and x = 3.
- 2. Series expansions: Give the Taylor (T) or Maclaurin (M) series of the following functions.
 - (a) (T) $\frac{1}{x}$ (e) (M) $\sin(x)$

 (b) (T) $\frac{2}{x}$ (f) (M) $\cos(x)$

 (c) (T) $\ln(x)$ (g) (T) x

 (l) (T) x (l) (T) x
 - (d) (T) e^x (h) (T) x^n

Using the above, derivatives, integrals, and the sum of a geometric series, give the Maclaurin series of the following functions. Remember to give it in the form $\sum_{n=0}^{\infty} a_n x^n$.

(i) $\frac{1}{(1-x)^2}$ (j) $3\cos(3x^3)$ (k) $\frac{1}{x^2}$ (l) $\frac{x}{1-x}$ (m) $(2+x-x^2)e^x$ (n) $\frac{1}{x-1} + \frac{2}{(x-1)^3}$

Recover the function from the given Maclaurin series.

(o)
$$\sum_{n=1}^{\infty} \frac{(2x)^{n-1}}{(n-1)!}$$
 (p) $\sum_{n=0}^{\infty} \frac{2(-x^2)^{n+1}}{(2n+1)!}$

3. Parametric and polar equations: Convert the following functions from parametric form to an explicit form with y, x or vice versa, as appropriate. Give the interval where the resulting function is defined.

(a)
$$\begin{array}{l} x = 3t - 5 \\ y = t^2 + 5t - 1 \end{array}$$
 (c) $y = e^x$
(d) $y = \frac{1}{x} + \frac{2}{x^2}$
(e) $x^2 + y^2 = 4$

Convert the following equations from polar to cartesian or vice versa, as appropriate.

- (f) $3x^2 + 3y^2 = 10x$ (g) $x^2 + 7x + 5 + y^2 - 3y + 2 = 10$ (h) $r^2 = r^2 \sin^2(\theta) - 2\sin(\theta)$ (i) $5r = \frac{1}{2}\cos(\theta)$
- 4. Trigonometric substitution: Solve the following integrals.

(a)
$$\int_{2/3}^{4/5} \frac{\sqrt{25x^2 - 4}}{x} dx$$

(b) $\int \frac{1}{x^4 \sqrt{9 - x^2}} dx$
(c) $\int \frac{1}{\sqrt{2x^2 - 4x - 7}} dx$
(d) $\int e^{4x} \sqrt{1 + e^{2x}} dx$