Worksheet 21

ESP Math 182

31 March 2015

Root test: Let a_n be a sequence with $L = \lim_{n \to \infty} \left[\sqrt[n]{|a_n|} \right]$. Then **1.** if 0 < L < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges; **2.** if L > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

- 1. Warm up: Let $\sum_{n=1}^{\infty} a_n$ be a series. Give examples of a_n such that
 - (a) the series diverges by the divergence test;
 - (b) the series converges by the *p*-test;
 - (c) the series converges by the ratio test;
 - (d) the root test is inconclusive.
- 2. Determine if the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{99^n n^3}{100^n}$$
 (d) $\sum_{k=1}^{\infty} \frac{\tan^{-1}(3k)}{\sqrt{2k^3 + 1}}$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k^k}{3^{k^3+1}}$$
 (e) $\sum_{k=1}^{\infty} \frac{(2k)!}{5^k (k+1)! k!}$

(c)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 4n - 11}{5n^3 - 3n^2 + 2n + 4}$$
 (f) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{2n^2 + 1}}{\sqrt[4]{3n^3 + 2}}$