Worksheet 20

19 March 2015

Divergence test: If $\{a_n\}$ is any sequence such that $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} [a_n] = 0$.

Limit comparison test: Suppose $\{a_n\}$ and $\{b_n\}$ are sequences such that $a_n \ge 0$ and $b_n > 0$ for all n. For $\lim_{n\to\infty} \left[\frac{a_n}{b_n}\right] = L$,

- 1. if $L \in (0, \infty)$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges;
- **2.** if L = 0, then if $\sum_{n=1}^{\infty} b_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$;
- **3.** if $L = \infty$, then if $\sum_{n=1}^{\infty} b_n$ diverges, then so does $\sum_{n=1}^{\infty} a_n$.

Ratio test: Let $a_n > 0$ and $L = \lim_{n \to \infty} \left[\frac{a_{n+1}}{a_n} \right]$. Then

- 1. if 0 < L < 1, then $\sum_{n=1}^{\infty} a_n$ converges;
- **2.** if L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges.

P-series test: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

1. Using the tests above, determine if the following series converge or diverge. Say which convergence test(s) you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2}{n^3 + 4}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{3n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$$

(h)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^3}$$

2. (a) Show that
$$\sum_{n=2}^{\infty} \left(\frac{e}{n}\right)^n$$
 converges.

(b) Show that
$$\int_1^\infty \frac{e^y}{y^y} dy$$
 converges.

(c) Determine whether or not
$$\sum_{n=3}^{\infty} \frac{1}{(\ln(n))^{\ln(n)}}$$
 converges.

3. You are given that for all x > 0, the inequalities $x - \frac{x^2}{x} < \ln(1+x) < x$ hold. Use them to answer the following questions.

(a) Prove that
$$\lim_{x\to 0^+} \left[\frac{\ln(1+x)}{x}\right] = 1$$
.

(b) Using part (a) above, prove that
$$\lim_{n\to\infty}\left[\left(1+\frac{1}{n}\right)^n\right]=e.$$

(c) Show that
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 converges for $0 < a < e$ and diverges for $a > e$.

(d) Does the series above converge if a = e?