Worksheet 19

ESP Math 182

 $17 \ \mathrm{March} \ 2015$

- 1. Warm up: Answer the following true / false questions. No reasons are necessary.
 - (a) If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) The converse of the above statement.
 - (c) If $\lim_{n \to \infty} [a_n] = 0$, then $\sum_{n=0}^{\infty} a_n$ converges.
 - (d) The converse of the above statement.
- 2. Use the integral test to determine whether the infinite series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} n^{-1/3}$$

(b)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n^3}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

3. **Review**: Integrating powers of $\sec x$.

4. Why is $S = \sum_{n=1}^{\infty} \frac{n^2}{5^n}$ not a geometric series? Show that it is bounded by finding a geometric series larger than S. Do you now have enough information to say that S converges?