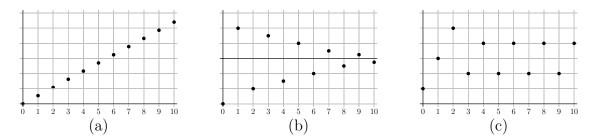
Worksheet 17

10 March 2015

1. Warm up: Consider the (first few elements of the) infinite sequences below, assuming that the displayed patterns continue. State which of the following properties are exhibited by each sequence: convergent, divergent, bounded, monotonic.



2. State whether each sequence $\{a_n\}_{n=0}^{\infty}$ converges or diverges. If it converges, find the limit as $n \to \infty$.

(a)
$$a_n = \frac{99}{2^n}$$

(b)
$$b_n = \left(1 - \frac{3}{n}\right)^n$$

(c)
$$c_n = \frac{n^3 \sin^3(n)}{n+1}$$

(d)
$$d_n = \frac{2n+3\sin\left(\frac{\pi n}{4}\right)}{3n+1}$$

(e)
$$e_n = \frac{n^{99}}{e^n}$$

3. Consider the sequences $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=2}^{\infty}$, and $\{c_n\}_{n=3}^{\infty}$, where

$$a_n = \frac{2n}{n^2 - 2}$$
 , $b_n = \cos(\pi n/2 + \pi/4)$, $c_n = a_n + b_n$.

(a) Reindex all three sequences so that they begin at n = 0.

(b) Which of the sequences converge and which diverge?

(c) What can you say about the sequence $d_n = \frac{c_n}{a_n}$? Does it converge or diverge?

- 4. Determine if the following statements are true or false. If true, provide some justification. If false, provide a counterexample.
 - (a) If $\lim_{n \to \infty} [a_n] = 0$ and $\lim_{n \to \infty} [b_n] = \infty$, then $\lim_{n \to \infty} [a_n b_n] = 0$.
 - (b) If the sequence $\{a_n\}_{n=0}^{\infty}$ converges, then $\{(-1)^n a_n\}_{n=0}^{\infty}$ also converges.