Worksheet 16

ESP Math 182

5 March 2015

- 1. Warm up: Answer the following true / false questions. No reasons are necessary.
 - (a) The sequence $\{a_n\}_{n=1}^{\infty}$ for $a_n = \frac{1}{n}$ converges.
 - (b) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.
 - (c) If a series $\sum_{n=0}^{\infty} a_n$ converges, then a_n converges to 0 (that is, $a_n \to 0$ as $n \to \infty$).

(d) If a sequence is such that a_n converges to 0, then $\sum_{n=0}^{\infty} a_n$ converges.

- 2. Use a geometric series to show that
 - (a) $0.99999.\ldots = 1$
 - (b) 0.5555555.... = 5/9
 - (c) 1.285714285714.... = 9/7

3. Find an explicit formula for the *n*-th partial sum $S_n = \sum_{k=0}^{n} a_k$ for each of the following examples, and then evaluate the limit $\lim_{n\to\infty} [S_n]$ to find the exact value of the series, if it converges.

(a)
$$\sum_{k=0}^{\infty} (-1)^k$$

(b) $\sum_{k=1}^{\infty} \frac{1}{k+2} - \frac{1}{k+3}$

4. Let a_n, b_n be sequences. Determine, with reasons, which of the following statements are true. Give counterexamples if they are false.

(a)
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

(b)
$$\sum_{n=0}^{\infty} a_n b_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right)$$