Worksheet 15

3 March 2015

- 1. Warm up: Give an example of each of the following objects.
 - (a) non-increasing sequence
 - (b) increasing sequence
 - (c) non-decreasing sequence
 - (d) decreasing sequence
 - (e) constant sequence
 - (f) monotonic sequence
 - (g) sequence that is bounded below
 - (h) sequence that is bounded above
 - (i) bounded sequence

Bonus: What are the relations among the objects above? That is, which objects are specific cases of other objects? Write statements using the implication symbol \implies .

2. Find the limit as $n \to \infty$, or state and prove that the sequence diverges.

(a)
$$a_n = \left(\frac{1}{3}\right)^n$$

(b) $b_n = (0.1)^{-1/n}$
(c) $c_n = \frac{n}{\sqrt{n^2 + 1}}$
(d) $d_n = \frac{n+2}{\sqrt{n^3 + 1}}$
(e) $e_n = \sin(n\pi)$
(f) $f_n = \frac{3n^2 + n + 2}{2n^2 - 3}$
(g) $g_n = \frac{e^n}{2^n}$
(h) $h_n = \frac{3 - 4^n}{2 + 7(4^n)}$
(i) $i_n = n \sin\left(\frac{\pi}{n}\right)$

3. Find the limit of $a_m = \sqrt[m]{m}$ as $m \to \infty$.

- 4. Find the limit of $b_k = \left(1 + \frac{1}{k^2}\right)^k$ as $k \to \infty$.
- 5. Find the limit of $c_{\ell} = \sum_{i=1}^{\ell} \frac{1}{i} \ln(\ell)$ as $k \to \infty$.