Worksheet 11

ESP Math 182

17 February 2015

1. Let $m, n \in \mathbb{Z}$ (the set of integers). Evaluate the following expressions.

(a)
$$\int_0^\pi \sin^2(mx) \, dx$$

(b)
$$\int_0^\pi \sin(mx) \sin(nx) \, dx$$

(c)
$$\int_0^\pi \cos(mx) \cos(nx) \, dx$$

2. Show by differentiation that if $P_n(x)$ is a polynomial of degree *n* which satisfies the equation $P_n(x) + P'_n(x) = x^n$, then $\int x^n e^x dx = P_n(x)e^x + C$.

3. Let
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 for $x > 0$

- (a) Use integration by parts to show that $\Gamma(x+1) = x\Gamma(x)$ for x > 0.
- (b) Show that $\Gamma(1) = 1$.
- (c) Show that $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{N}$ (the set of natural numbers).
- 4. Find the volume of revolution obtained by revolving the graph of $y = \sin(x)$ between x = 0 and $x = \pi$ around the axis y = 1/2.