Worksheet 10

ESP Math 182

12 February 2015

- 1. A 100-W light bulb has resistance R = 144 ohms when attached to household current, where the voltage varies as a function of time in seconds, $V = V_0 \sin(2\pi ft)$, for $V_0 = 110$ volts and f = 60 Hz. The power supplied to the bulb is $P = V^2/R$ joules per second and the total energy expended over a time period [0, T] (in seconds) is $U = \int_0^T P(t) dt$ joules. Compute U if the bulb remains on for half an hour.
- 2. Estimate the value of $\int_0^2 \frac{dx}{x+1}$ using
 - (a) the midpoint rule with 2 intervals, and
 - (b) the trapezoidal rule with 2 intervals.
- 3. The hyperbolic cosine function $\cosh(x)$ is defined to be $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$. Find the arc length of the graph of $\cosh(x)$ on the interval $[-\ln(2), \ln(2)]$.
- 4. Show that if $n \in \mathbf{R}$ and $n \ge 2$, then

$$\int \sec^{n}(t)dt = \frac{1}{n-1}\sec^{n-2}(t)\tan(t) + \frac{n-2}{n-1}\int \sec^{n-2}(t)dt.$$

and use this to calculate $\int \sec^4(t) dt$. (Hint: note $\sec^n(x) = \sec^{n-2}(x) \sec(x)$)

5. Find $\int (\ln(x))^k dx$ for arbitrary $k \in \mathbf{N}$.

6. For what functions f, g is it the case that $\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}(f(x))\frac{d}{dx}(g(x))$?