Review

Discussion session 26 - 20 November 2014

- 1. Topic: Definite integrals, FTC, substitution
 - (a) Compute the indefinite integral $\int \cos^3(x) + \tan^2(x) dx$.
 - (b) Find the area under the curve $10x + \sin(x)$, from 0 to 2π .
 - (c) Find the area between $f(x) = x^3$ and $g(x) = (x-2)^2$ from x = -1 to x = 3.
 - (d) Compute the definite integrals below.

$$\int_{0}^{3} e^{7x} - 2x^{2} dx \qquad \qquad \int_{-2}^{3} \frac{3x^{2} - \sqrt[3]{x^{2}} + 5}{\sqrt[3]{x}} dx.$$

(e) Compute the integral $\int_0^1 \sin(e^x) e^x dx$ using substitution.

(f) If
$$F(t) = \int_{1}^{5t} 3x^2 + 4x + 1dx$$
, find $F(1)$ and $F'(1)$.
(g) If $f(x) = \int_{1/x}^{x^2} \frac{1}{t^4 + 1} dt$, find $f'(x)$.

- 2. Topic: Linear approximation, MVT, l'Hôpital's rule
 - (a) Approximate $\sqrt{24}$ and $\sqrt[4]{82}$ using linear approximation.
 - (b) Find the best linear approximation of $f(x) = xe^x$ at $a = \ln(2)$.
 - (c) Evaluate the limits $\lim_{x \to 0} \left[\frac{5^x 1}{x} \right]$ and $\lim_{x \to 0} \left[\frac{x}{2x} \right]$.
 - (d) Show that l'Hôpital's rule is useless for $\lim_{x \to \infty} \left[\frac{x + \cos(x)}{x \cos(x)} \right]$.
 - (e) Find the critical point of $f(x) = x^2$ that passes through the line y = 2x on the interval [0, 2].
 - (f) Suppose that we know that f(x) is continuous and differentiable on [6, 15]. Let's suppose that we know that f(6) = -2 and that we know that $f'(x) \leq 10$. What is the largest possible value for f(15)?

3. Topic: Graphing, optimization, related rates

(a) Sketch the graphs of

$$f(x) = \frac{e^{\cos(x^2)}}{x^2 - 4}$$
, $g(x) = \frac{x}{x^2 + 1}$.

Submitted by: Ramish A Efrain B Ben G Sofia S Matt D Chirstopher L Merna O Syed R

Submitted by: James A Griffin F Nipah O Shapla S Yasmeen A Chris J Aaron S Ammar S

Submitted by: Serina S Eduardo C Danilo N Michael C Jae Wook H Jaime L Vijay P

- (b) A rectangle is to be formed with its lower left corner at the origin and the upper right corner on the curve $y = e^{-2x+1}$. Find the maximum area of such a rectangle.
- (c) The surface area of a box with square base and no top lid is $30in^2$. What is the largest possibel volume?
- (d) Air is being pumped into a spherical balloon at a rate of $\pi \text{cm}^3/\text{min}$. Determine the rate at which the radius of the balloon is increasing when the circumfrence of the balloon is 20cm.
- (e) Find the rate of change of the volume of a balloon if its radius is 20 centimeters and it increases at a rate of $.2in^2/sec$.
- (f) A pole is leaning against a wall. What is the speed at which the upper part is falling if the speed by which the lower part is moving to the right is 3ft/sec. and its distance from the wall is 8ft? The length of the pole is 17ft.
- (g) A pole is sliding down a wall angled at 30°. The variable is the height of the ladder at time t, and x is the distance of the ladder's bottom from the wall. Suppose that the top is sliding dawn the wall at a rate of 8ft/sec. Calculate $\frac{dx}{dt}$ when the height of the ladder is 4ft.
- 4. Topic: Extrema, monotonicity, concavity
 - (a) Sketch the graph of $f(x) = \frac{1}{\sin(\ln(x)^2)}$ and find all inflection and critical points.
 - (b) Find the extrema for the functions $f(x) = x^2 3x$ on the interval [1,5] and $g(x) = \frac{V_{\text{iraj B}}}{J_{\text{Josh J}}}$ $x \sin(x)$ on [0, 10], and determine whether they are local or absolute.
 - (c) Find the intervals of monotonicity of $f(x) = \frac{x^2+1}{x^2-1}$ and $g(x) = x^4 4x$.
 - (d) Find all critical points and inflection points of $f(x) = \frac{(x^2+2)^2}{x+1}$ and $g(x) = \frac{x}{x^2-1}$.
 - (e) use the second derivative test to find the maximum and minimum of $f(x) = 3x^4 4x^3$.

5. **Topic**: Chain rule, implicit differentiation

(a) Differentiate the following expressions using the chain rule:

Submitted by: Cristophe B Azam J Nikolay P Joseph R Saif A Efrain A Fariz K Efua Q Alyssa S

)

Submitted by: Collin M

Michael W Sahara Y

$$\sin(5^x) + 3$$
 $(x + \cos(x))^9$ $e^{\tan(x)}$ $\ln(\cos^5(3x^4))$

(b) Find the derivative of the following functions using implicit differentitation:

 $5x^2y^3 + 6xy^4 = 7 \qquad \sin^2(y) + 3\cos(x) = 6 \qquad 5x + 6y = \cos(x^2)y \qquad \cos^5((3y4)^x) = y + x.$