More differentiation

Discussion session 13 - 7 October 2014

$\tan(x) = \frac{\sin(x)}{\cos(x)}$	- CSG	$\csc(x) = \frac{1}{\sin(x)}$		$\sec(x) = \frac{1}{\cos(x)}$ $\cot(x) = \frac{1}{\tan(x)}$		$\frac{1}{\operatorname{in}(x)} = \frac{\cos(x)}{\sin(x)}$
function derivative	$\begin{array}{ c c } \sin(x) \\ \cos(x) \end{array}$	$\frac{\cos(x)}{-\sin(x)}$	$\frac{\tan(x)}{\sec^2(x)}$	$\frac{\csc(x)}{-\csc(x)\cot(x)}$	$\frac{\sec(x)}{\sec(x)\tan(x)}$	$\frac{\cot(x)}{-\csc^2(x)}$

- 1. Give, in your own words, explanations of the following sentences:
 - (a) The function f has a critical value at a.
 - (b) The function g has a maximum at b.
 - (c) The function h has a minimum at c.
 - (d) The function k has a root at d.
- 2. (a) Let $p(z) = 3^{4z}$, and find p'(z) and p''(z).

(b) Let $q(z) = ab^{cz+d}$, and find q'(z) and q''(z).

(c) Find a formula for $q^{(n)}(z)$.

3. (a) Find all the maxima and minima of $r(x) = \cos(x)$ on the interval $[-\pi, \pi]$.

(b) Find all the maxima of $s(x) = \sin(x) + x/2$ on the interval $[-5\pi, -2\pi]$.

4. Let $y = \tan^{-1}(x)$.

(a) Find $\frac{dy}{dx}$ by implicit differentiation.

(b) Using the identity $\sec^2(y) - \tan^2(y) = 1$, write $\frac{dy}{dx}$ without trigonometric functions.