Worksheet 27

19 April 2016

- 1. Warm up: Answer the following questions with True / False.
 - (a) The antiderivative and indefinite integral of a function are the same thing.
 - (b) An even function cannot be an antiderivative of an odd function.
 - (c) The definite integral of an odd function must be 0.
- 2. Take the derivative and definite integral from C (some constant) to t, with respect to x, of the following functions.
 - (a) x (d) e^x
 - (b) e (e) e^e
 - (c) x^e (f) ee^{ex}
- 3. Give short answers, with justification, to the following questions.
 - (a) Why is the integral of $\sin(x)$ on $[-2\pi, 2\pi]$ equal to 0?

(b) Why is the integral of $\sin(x + \pi/2)$ on $[-5\pi/2, 3\pi/2]$ equal to 0?

(c) Why is the integral of sin(x) + 1 on [-5, 5] not equal to 0?

- 4. For every pair of type of functions below, indicate if the sum and product are even, odd, or have no symmetry. Your answer must be true for *all* examples of function types given.
 - (a) two even functions
 - i. sum
 - ii. product
 - (b) two odd functions
 - i. sum
 - ii. product
 - (c) an odd function and an even function
 - i. sum
 - ii. product
 - (d) an even function and a constant function
 - i. sum
 - ii. product
 - (e) an even function and a periodic function
 - i. sum
 - ii. product

5. What do you think $\int_{a}^{\infty} f(x) dx$ means? Come up with a reasonable definition and apply it to calculate $\int_{0}^{\infty} e^{-x} dx$.