Spring 2016

Worksheet 21

 $29~{\rm March}~2016$

1.	Warm up: Fill in the blanks for the statement of the mean value theorem (MVT):
	Let f be on an interval $[a,b]$ and be on the interior (a,b) .
	Then there is such that = $f'(c)$.
2.	A car is stopped at time $t=0$. At time $t=60$ minutes, the car has traveled 100 miles from its original position. This question will show you how to apply the MVT to show there must have been a point in time when the speed of the car was 100 mph.
	(a) What does the function f , to be used in the statement of the MVT, represent? Is it continuous?
	(b) What is the interval $[a, b]$ to be used for the MVT? What are the units of a, b ?

(c) Using the MVT, write in complete sentences why there is a point in time when the speed of the car was 100 mph.

3. Show that the point c guaranteed to exist by the MVT for $f(x) = x^2$ on [a, b] is the arithmetic mean of a and b. (Hint: the arithmetic mean of a_1, \ldots, a_n is $\frac{a_1 + \cdots + a_n}{n}$)

4. Show that the point c guaranteed to exist by the MVT for $f(x) = \frac{1}{x}$ on [a, b] is the geometric mean of a and b. (*Hint: the geometric mean of* a_1, \ldots, a_n is $(a_1 \cdots a_n)^{1/n}$)

5. Let L_0 be the linear approximation of x^2 at 0, and L_k the linear approximation of x^2 at (k, k^2) . Find the point (x, y) where L_0 intersects L_k .

6. Let $L_0(x)$ be the linear approximation of $2\arctan(x)$ at x=0. Find $\lim_{x\to 0} \left[\frac{\sin(3x)}{L_0(x)}\right]$.

- 7. Suppose that f satisfies the hypotheses of the MVT on [a, b].
 - (a) Mathematically, what does the statement "f is increasing on (a, b)" mean?

(b) Assume that f' is positive on (a, b). Using the MVT, show that f is increasing on (a, b).