Worksheet 13

23 February 2016

- 1. (a) Give an equation for which you need to use implicit differentiation to find the derivative.
 - (b) How many first derivatives does a function have? How many functions have it as a first derivative?
 - (c) Which of the following relations are functions of x?

i. y + 3 = x - 4 + 2 ii. $e^y = e^e + e^y$ iii. $(y - 2)^2 + (x - 1)^2 = 5$

- 2. In this question you will find the derivatives of inverse trigonometric functions.
 - (a) Given the right triangle below, find the sine, cosine, and tangent of θ .

(b) Given that $\arcsin(p) = \alpha$, construct a right triangle (give all the side lengths and angles) with one angle α and one side length p.

(c) Using the triangle you constructed above, find the following values:

$$\sin(\arcsin(p)) = \qquad \qquad \csc(\arcsin(p)) = \\ \cos(\arcsin(p)) = \qquad \qquad \sec(\arcsin(p)) = \\ \tan(\arcsin(p)) = \qquad \qquad \cot(\arcsin(p)) = \\$$

(d) Using the identity sin(arcsin(x)) = x and the chain rule, find the derivative of arcsin(x).
Hint: Construct a right triangle with one side length x and hypotenuse length 1.

3. Using the technique from Question 2, find the derivatives of the following functions.

(a)
$$\arccos(x)$$
 (d) $\arccos(x)$

(b) $\arctan(x)$ (e) $\arctan(x)$

(c) $\operatorname{arccsc}(x)$

(f) $\operatorname{arccos}(\operatorname{arccot}(x))$