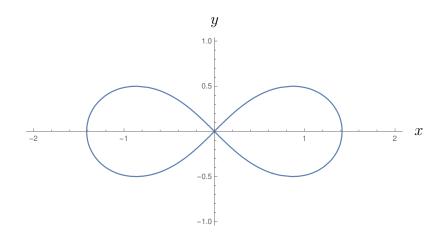
Worksheet 12

Spring 2016

18 February 2016


- 1. Warm up: Given the relation $4xy^2 + 2y 10 = \cos(x^2 + y^2)$, find:
 - (a) $\frac{dx}{dx} =$ (c) $\frac{dy}{dx} =$

(b)
$$\frac{dx}{dy} =$$
 (d) $\frac{dy}{dy} =$

- 2. Find the derivatives of f(x), f(f(x)), and f(f(f(x))) for the following functions f.
 - (a) $f(x) = x^2$ (b) $f(x) = \sqrt{x}$ (c) $f(x) = e^x$
- 3. Complete the following table, filling in yes/no in the boxes if the given function has/doesn't have the given property on the whole real line.

	e^x	$\ln(x)$	1/x	$\sin(x)$	$\tan(x)$	0	1	x^2	x^3	$\arctan(x)$	x
continuous											
differentiable											
constant											
odd											
even											
invertible											
increasing											
has VA's											
has HA's											
periodic											
rational											

3. Below is the graph of $(x^2 + y^2)^2 = 2x^2 - 2y^2$.

Just by looking at the graph, answer the following questions.

(a) How many points on the graph are there for which $\frac{dy}{dx} = 0$?

(b) Choose any real number c.

i. How many points on the graph are there for which
$$\frac{dy}{dx} = c$$
?

ii. How many points on the graph are there for which $\frac{dx}{dy} = c$?

4. Consider the function y(x) given by $y = x^2y^3 + x^3y^2$, with y(1) = 1.

(a) What is the derivative of y(x) at x = 1?

(b) What is the derivative of $e^{y(x)}$ at x = 1?