Worksheet 11

16 February 2016

1. Warm up: Identify and correct the mistakes in the following solutions.

(a)
$$\lim_{x \to 9} \frac{\sin(x-9) - 2^{x-7}}{x^2 + 1} = \lim_{x \to 9} \frac{\sin(9-9) - 2^{9-7}}{9^2 + 1} = \lim_{x \to 9} \frac{\sin(0) - 2^{-2}}{18 + 1}, \text{ so } \lim_{x \to 9} = \frac{5}{19}$$

(b)
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{(x - 9)} = \frac{\sqrt{x} - 3}{(\sqrt{x} - 3)(\sqrt{x} + 3)} = \frac{-3}{-3(\sqrt{x} + 3)} \to \sqrt{9} + 9 \to 12$$

- 2. Recall the rules for manipulating exponentials and logarithms and the chain rule.
 - (a) Use the fact $e^{\ln(x)} = x$ to compute $\frac{d}{dx}\ln(x)$.
 - (b) Let a be a positive number. Simplify $e^{x \ln(a)}$, that is, write an equivalent expression without e in it using laws of logarithms.
 - (c) Evaluate $\frac{d}{dx}a^x$.
 - (d) Evaluate $\frac{d}{dx}x^x$.
 - (e) If we have a function f that has an inverse $f^{-1} = g$, we can write f(g(x)) = x. Use this and the chain rule to show

$$g'(x) = \frac{1}{f'(g(x))}.$$

Explain how part (a) is a special case of this equality.

- 3. Consider the function $f(x) = e^{-x^2}$.
 - (a) Find the tangent line to f(x) at x = 0.
 - (b) Find all asymptotes of f.
 - (c) Where are the slopes of the tangent lines to f(x) positive, negative, and zero?
 - (d) Sketch a graph of f(x).

- 4. Assume g(x) > 0 for all x and let a be a positive number. Find f'(x) for each of the following functions.
 - (a) f(x) = g(x)(x a)(b) f(x) = g(a)(x - a)(c) f(x) = g(x + g(x))(d) $f(x) = \frac{g(x)}{x - a}$ (e) f(x) = g(xg(a))
- 5. Use the product and chain rule to discover the quotient rule. That is, using only the product and chain rule, compute

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right).$$