ESP Math 179

Worksheet 9

9 February 2016

1. Squeeze theorem: For all $x \ge 4$, you are given that $x \le x \ln(x) \le e^x$. Use this identity and the squeeze theorem to find

$$\lim_{x \to \infty} \left[\frac{\ln(x)}{e^x} + 1 \right].$$

2. Intermediate value theorem:

- (a) Use the IVT to show that the function $2\sin(2x+\pi) + 10x 2$ has a root on the interval $[-\pi, \pi]$.
- (b) Consider the polynomial $f(x) = ax^3 + bx^2 + cx + d$ for positive real numbers a, b, c, d. Use the IVT to show that f has a root (that is, a point $x_0 \in \mathbf{R}$ for which $f(x_0) = 0$).

- 3. Graphs of derivatives: Given the graphs and their equations below, draw (without using a calculator, if possible) and give the equations of:
 - (a) the derivative of each function,
 - (b) a function that could have the given function as derivative.

4. Limits: Evaluate the following limits.

(a)
$$\lim_{x \to 0} \left[\frac{\sin(4x)}{2x} \right]$$
 (c) $\lim_{x \to \infty} \left[\frac{\sin^2(x) - 2x^3}{5x^3 + 2} \right]$

(b)
$$\lim_{x \to 3} \left[\sqrt[4]{\frac{7e^{3-x} + x^2}{\cos(\pi x) + 2}} \right]$$
 (d) $\lim_{x \to 1} \left[\frac{1-x}{1-\sqrt{x}} \right]$

5. **Derivatives:** Take the derivative of the following functions with respect to x. Use the limit definition of the derivative for the first one.

(a)
$$4x^2 - 2x + 5/2$$
 (c) $\frac{\sin(2x)}{3x^2 + \tan(x+1)}$

(b)
$$(e^{2x-5}-2)\left(\sqrt{6x+\sqrt{x}}-\frac{1}{x}\right)$$
 (d) $\frac{1+\frac{e^x}{\ln(x)}}{\frac{4x^2}{\cos(x)}-2x}$

6. Tangent lines:

- (a) Find the equations of the tangent lines of $g(z) = \ln(x^2)/x$ at x = -1, 2, e.
- (b) Find all the points (x, y) where the tangent lines of the function $f(x) = x^3 x^2 4x + 4$ have slope 1.