Worksheet 5

Spring 2016

26 January 2016

These are some definitions you should know:

polynomial function: A function $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, with $a_i \in \mathbf{R}$ for all *i* rational function: A function $f(x) = \frac{p(x)}{q(x)}$, where *p* and *q* are polynomials, and $q(x) \neq 0$ exponential function: A function $f(x) = ab^x$, with $a, b \in \mathbf{R}$

- 1. Warm up: Identify each function below as polynomial, rational, exponential, or neither.
 - (a) f(x) = 2x + 2 (e) $p(y) = y^y$
 - (b) $q(x) = 4x^{-2}$ (f) $q(w) = 2^w 4^w$
 - (c) h(x) = 0 (g) $r(t) = \frac{\frac{9^t(3t^2+2t-10)}{4t^2-1}}{3^{2t}}$
 - (d) $k(z) = z + z^2 + z^3 + z^4 + \cdots$ (h) $s(t) = e^{t+5}$
- 2. Find the horizontal asymptotes of the following functions.

(a)
$$f(x) = \frac{x}{2x - \sqrt{x^2 - 1}}$$
 (b) $g(x) = \frac{|2x - 1|}{x + 1}$ (c) $h(y) = \frac{\arctan(y)}{\pi} - 1$

- 3. Create functions with the asymptotes at the given lines.
 - (a) y = 0
 - (b) y = 1 and x = 0
 - (c) y = -5, x = -3 and x = 6
 - (d) y = -1 and y = 1
 - (e) x = 2k for every integer k (that is, for all $k = \dots, -2, -1, 0, 1, 2, \dots$)

4. Find the following limits, if they exist.

(a)
$$\lim_{x \to \infty} \left[\frac{3x^5 - 2x}{x^5 + 3x^4} \right]$$
 (d) $\lim_{x \to -\infty} \left[\sqrt{\frac{2x^2 + 2}{5x^5 - 3x^3 + 2x^2 + 2}} \right]$

(b)
$$\lim_{x \to -\infty} \left[\frac{x^5 + 7x^3 - 10}{x^7 + 14x^6} \right]$$
 (e) $\lim_{x \to -\infty} \left[x + \sqrt{x^2 + 3x} \right]$

(c)
$$\lim_{x \to \infty} \left[\frac{x^2 + 3x - 2}{\sqrt{3x^4 + 5x^3 - 2x + 1}} \right]$$
 (f) $\lim_{x \to \infty} \left[\frac{\cos(x)}{\sqrt{x}} + 2 \right]$

5. **Bonus:** Imagine a rope around the Earth at the equator. Add a 20 meter segment to the rope. The new rope is held in a circular shape centered at the Earth. How far off the ground is the new rope? Assume the Earth is a perfect sphere.