Worksheet 4

 $21 \ {\rm January} \ 2016$

- 1. Warm up: Fill in the blank to the following questions with one of the answers 0, 1, 2, *finitely many*, or *infinitely many*.
 - (a) A function can have at most ______ vertical asymptotes.
 - (b) A function can have at most _____ horizontal asymptotes.
 - (c) A function can have at most _____ zeros.
- 2. Draw the graphs of the following important functions. Make sure to label your axes.

		↑
$f(x) = \sin(x)$		
$g(x) = \cos(x)$		
$h(x) = e^x$	<	<u> </u>
$k(x) = \ln(x)$		
$\ell(x) = 1/e^x$		
· · ·		\downarrow

3. Find the following limits, if they exist.

(a)
$$\lim_{x \to 0} \left[\frac{1}{x^2} \right]$$
 (c) $\lim_{t \to 2} \left[\frac{t-2}{|t-2|} \right]$ (e) $\lim_{x \to 0} \left[\frac{e^x + 1}{e^{2x} - 1} \right]$
(b) $\lim_{x \to 0} \left[\frac{1}{x^3} \right]$ (d) $\lim_{w \to 0} [\cos(w)|w|/w]$ (f) $\lim_{t \to 16} \left[\frac{\sqrt{t} - \frac{t}{4}}{t - 16} + \frac{1}{4} \right]$

4. Find constants k such that the following limits exist.

(a)
$$\lim_{x \to 5} \left[\frac{x}{x-k} \right]$$
 (d) $\lim_{z \to -10} \left[\sqrt{\ln(z+k)} \right]$

(b) $\lim_{y \to \pi} \left[\csc(2y)\sin(ky)\right]$ (e) $\lim_{x \to 0} \left[\frac{k}{x} - \frac{4}{kx}\right]$

(c)
$$\lim_{x \to 1} \left[\frac{x^2 - k}{x - 1} \right]$$
 (f) $\lim_{t \to 3} \left[\frac{4t^2 + kt + 7k - 6}{2t^2 - 5t - 3} \right]$