Worksheet 22

Fall 2015

10 November 2015

- 1. Warm up: Let f be a function with an antiderivative F, and g a function with an antiderivative G. That is, F'(x) = f(x) and G'(x) = g(x). Answer the following questions with True / False.
 - (a) If f = g, then F = G.
 - (b) If F and G differ by a constant, then f = g.
 - (c) If f and g differ by a constant, then F = G.
- 2. Find antiderivatives of the following functions.

(a)
$$\frac{4x^{13} - 3x^{-4}}{x^2}$$
 (b) $\frac{\sin(\theta) - 1}{\cos^2(\theta)}$

3. (a) Let
$$k = n + 5$$
. Write $\sum_{n=0}^{50} n^2$ as a sum indexed over k

(b) Combine
$$\sum_{j=0}^{n} (j^2 + 2j) - \sum_{j=1}^{n+1} (j-1)$$
 into one sum.

(c) Simplify the double sum
$$\sum_{a=0}^{n} \sum_{b=0}^{m} (a+b)^2$$
 given that $a=b-3$.

4. Evaluate the following expressions.

(a)
$$\int x^2 dx$$

(b)
$$\int \left(\sum_{n=0}^{20} nx^n\right) dx$$

(c)
$$\frac{d}{dx} \left(\sum_{n=0}^{20} nx^n \right)$$

(d)
$$\frac{d}{dx} \left(\sin(\theta) \int \cos(\theta) \ d\theta - \cos(\theta) \int \sin(\theta) \ d\theta \right)$$

- 5. A base jumper dives off a cliff that is 200 meters high. Assume that acceleration due to gravity is 9.8 meters per second squared.
 - (a) What is the velocity of the jumper as a function of time?
 - (b) What is his position as a function of time?
 - (c) He pulls his parachute open when he is 50 meters away from the ground. What is his speed at this instant?