Worksheet 20

3 November 2015

1. Warm up: Fill in the blanks for the statement of the mean value theorem (MVT):

Let f be ______ on an interval [a, b] and be ______ on the interior (a, b). Then there is ______ such that _____ = f'(c).

- 2. A car is stopped at time t = 0. At time t = 60 minutes, the car has traveled 100 miles from its original position. Apply the MVT to show there must have been a point in time when the speed of the car was 100 mph.
 - (a) What does the function f, to be used in the statement of the MVT, represent?
 - (b) What is the interval [a, b] to be used in the MVT? What are the units of a, b?
 - (c) Write the complete statement of the MVT in the context of this problem.

3. Show that the point c guaranteed to exist by the MVT for $f(x) = x^2$ on [a, b] is the arithmetic mean of a and b. (*Hint: the arithmetic mean of* a_1, \ldots, a_n *is* $\frac{a_1 + \cdots + a_n}{n}$)

4. Show that the point c guaranteed to exist by the MVT for $f(x) = \frac{1}{x}$ on [a, b] is the geometric mean of a and b. (*Hint: the geometric mean of* a_1, \ldots, a_n *is* $(a_1 + \cdots + a_n)^{1/n}$)

5. Let L_0 be the linear approximation of x^2 at 0, and L_k the linear approximation of x^2 at (k, k^2) . Find the point (x, y) where L_0 intersects L_k .

- 6. Suppose that f satisfies the hypotheses of the MVT on [a, b].
 - (a) Mathematically, what does the statement "f is increasing on (a, b)" mean?

(b) Assume that f' is positive on (a, b). Using the MVT, show that f is increasing on (a, b).

7. Let $L_0(x)$ be the linear approximation of $2 \arctan(x)$ at x = 0. Find $\lim_{x \to 0} \left[\frac{\sin^2(x)}{L_0(x)} \right]$.