ESP Math 179

Worksheet 7

15 September 2015

- 1. Warm up: Recall the definition of a 'differentiable function'. Use it to give examples of functions of the type described below.
 - (a) not continuous and not differentiable at a point
 - (b) continuous and not differentiable at a point
 - (c) continuous and differentiable at a point
- 2. Consider the unit circle (circle of radius 1) in the first quadrant, as below.

In terms of $\sin(\theta)$ and $\cos(\theta)$:

- (a) Express the area of the triangle ABC.
- (b) Express the area of the triangle ABD.

(c) Given that the area of the sector (shaded area) ABC is $\frac{1}{2}\theta$, and the obvious inequality (area of triangle ABC) \leq (area of sector ABC) \leq (area of triangle ABD), prove the inequality

$$1 \leqslant \frac{\theta}{\sin(\theta)} \leqslant \frac{1}{\cos(\theta)}.$$

(d) Use the squeeze theorem to evaluate $\lim_{\theta \to 0} \left[\frac{\sin(\theta)}{\theta} \right]$.

- 3. (a) Graph $f(x) = \sin(x)/x$ on the interval $[-4\pi, 4\pi]$, with the help of a graphing calculator, if necessary.
 - (b) Does the limit of f as x goes to 0 exist? Why or why not?
 - (c) Is the function f continuous at x = 0? Why or why not?
- 4. (a) Write the definition of the derivative of a function f.
 - (b) Using part (2) above and the expression for $\sin(\alpha + \beta)$, find the derivative of $\sin(x)$.

5. **Bonus:** Using the definiton of derivative you learned in class, find the derivatives of the following functions.

(a)
$$f(x) = \frac{1}{x^2}$$

(b)
$$g(y) = \sqrt{y}$$

(c)
$$h(z) = \frac{2}{\sqrt{2z+1}}$$