Worksheet 5

8 September 2015

- 1. Warm up: Give the definitions, in your own words, of the terms below, and give an example of each.
 - (a) polynomial function
 - (b) rational function
 - (c) exponential function
- 2. Create functions with the asymptotes at the given lines.
 - (a) y = 0
 - (b) y = 1 and x = 0
 - (c) y = -5, x = -3 and x = 6
 - (d) y = -1 and y = 1
 - (e) x = 2k for every integer k (that is, for all $k = \dots, -2, -1, 0, 1, 2, \dots$)
- 3. Find the following limits, if they exist.

(a)
$$\lim_{x \to \infty} \left[\frac{3x^5 - 2x}{x^5 + 3x^4} \right]$$
 (d)
$$\lim_{x \to -\infty} \left[\sqrt{\frac{2x^2 + 2}{5x^5 - 3x^3 + 2x^2 + 2}} \right]$$

(b)
$$\lim_{x \to -\infty} \left[\frac{x^5 + 7x^3 - 10}{x^7 + 14x^6} \right]$$
 (e)
$$\lim_{x \to -\infty} \left[x + \sqrt{x^2 + 3x} \right]$$

(c)
$$\lim_{x \to \infty} \left[\frac{x^2 + 3x - 2}{\sqrt{3x^4 + 5x^3 - 2x + 1}} \right]$$
 (f)
$$\lim_{x \to \infty} \left[\frac{\cos(x)}{\sqrt{x}} + 2 \right]$$

- 4. Consider the functions below. For all pairs of functions, find the limits, if they exist, as $x \to \infty$ and $x \to -\infty$ of both ratios of the pair.
 - (a) x
 - (b) $\sin(x)$
 - (c) e^x
 - (d) $\ln(x)$
 - (e) $\tan^{-1}(x)$
- 5. **Bonus:** Imagine a rope around the Earth at the equator. Add a 20 meter segment to the rope. The new rope is held in a circular shape centered at the Earth. How far off the ground is the new rope? Assume the Earth is a perfect sphere.