
Introduction to Linear Algebra
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Preface

These notes were created to accompany the course Introduction to Linear Algebra for the BITL pro-
gram at RTU Riga Business School. They have been used in the Fall 2021, Spring 2022, and Spring
2023 semesters. The text may contain mistakes - please send any you find to janis.lazovskis@rbs.lv.

This course broadly follows Gilbert Strang’s Introduction to Linear Algebra. You are encouraged
to read the Preface to the textbook, available at math.mit.edu/linearalgebra before the first lecture.

Throughout the text, there are highlighted Definitions in green, Inquiries in blue, and Algo-
rithms in red. The definitions are meant as key points that should be understood, if nothing else.
The inquiries are meant as guiding questions to connect and unify ideas. The algorithms are meant
as step-by-step instructions for complicated ideas.

At the end of each lecture there are exercises, with some solutions provided at the end of the text.
Exercises which require the use of a computer are marked with the symbol ▷◁ .

Every inquiry and exercise is marked with a symbol ✠ and a number next to it, indicating the
standard that it refers to. A full list of standards is given further below.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.0 Generic License.
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Standards

This list of standards, each indicated by ✠ in the text, is a collection of the standards indicated at the
beginning of each lecture. In case of conflict between this list and the list kept on the course website,
the list on the course website will be taken to be the correct one.

Part Number Standard

I.
M
at
ri
ce
s
an

d
ro
w

re
d
u
ct
io
n

1.01 Add vectors, multiply them by scalars, take their dot products

1.02 Compute the angle between vectors

1.03 Add, multiply, and transpose matrices (including block matrices)

1.04 Multiply vectors with matrices

1.05 Construct vectors and matrices in Python and perform operations with them

1.06 Draw lines in the plane representing m× 2 matrix equations (rows and columns)

1.07 Understand row operations as matrix multiplication

1.08 Bring a matrix to (reduced) row echelon form using Gaussian elimination

1.09 Construct the inverse of a matrix A by eliminating the block matrix [A I]

1.10 Decompose matrices A and PA as the products LU and LDU

1.11
Identify when the matrix equation Ax = b has no solutions or has infinitely
many solutions

1.12 Construct the column space and nullspace of a matrix as spans

1.13 Describe solutions to Ax = b using the language of vector spaces

1.14
Construct the particular, special, and complete solutions to Ax = b, for any
m× n matrix A

1.15 Identify the row rank, column rank, and rank of a matrix

II
.
V
ec
to
r
sp
ac
es

2.01 Determine if something is a vector space or a subspace

2.02 Describe a vector space as a span of vectors

2.03 Identify linearly independent subsets in a given set of vectors

2.04 Express the same vector in different bases

2.05 Find a basis and the dimension of a vector space

2.06 Find the intersection of two planes

2.07 Describe a hyperplane as a span of vectors

2.08 Find the bases of the four fundamental subspaces of a matrix

2.09 Determine if the columns of a matrix are orthogonal

2.10 Determine if two subspaces are orthogonal

2.11 Compute the projection of a vector onto another vector

2.12 Compute the projection of a vector onto a subspace

2.13 Find the least squares solution to a matrix equation

2.14 Find the degree-d polynomial that approximates a collection of points in R2
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2.15 Apply the Gram–Schmidt process to a set of vectors

2.16 Extend a set of linearly independent vectors to a basis

2.17 Determine if something is or is not an inner product space

2.18
Compute the length, angle, projections of vectors in arbitrary inner product
spaces

2.19 Determine whether or not a function is a linear transormation

2.20 Construct a matrix for a linear transformation, knowing what it does to a basis

2.21 Construct the image and kernel of a linear transformation, as vector spaces

II
I.
E
ig
en
th
eo
ry

3.01 Compute the determinant using both the recursive and combinatorial definitions

3.02
Use the multilinearity and alternating properties to infer results for special
matrices

3.03 Compute determinants of products, inverses, transposes

3.04 Prove simple properties of the determinant

3.05 Find eigenvalues and eigenvectors of a matrix

3.06 Given only eigenvalues and eigenvectors of A, compute Ax for any x

3.07 Given only eigenvalues and eigenvectors, construct a matrix having them

3.08 Compute trace, determinant, eigensystems of matrices

3.09
Diagonalize a matrix with lin. indep. eigenvectors, and identify when it is not
possible

3.10 Given a matrix A, construct and identify matrices similar to A

3.11 Identify symmetric and positive definite matrices, directly and indirectly

3.12 Express a symmetric matrix as a sum of rank one matrices

3.13 Compute the rank r approximation to a matrix A

3.14 Decompose a non-square matrix by the SVD

3.15 Normalize and center a matrix of n samples on its mean

3.16 Identify the principal components of A, in terms of the total covariance of A

3.17 Solve the perpendicular least squares problem using SVD

IV
.
E
x
te
n
si
o
n
s

4.01 Express a complex number in one of four different ways

4.02
Translate known properties of vectors and matrices to Hermitian vectors and
matrices

4.03 Construct the four matrices associated to a graph

4.04 Find a spanning tree of a graph using row reduction on the incidence matrix
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Part I

Matrices and row reduction

Lecture 1: Vectors

Chapters 1.1 and 1.2 in Strang’s “Linear Algebra”

• Fact 1: The dot product of a vector with itself is the square of its length.

• Fact 2: A plane in R3 is defined by an equation in x, y, z.

✠ Standard 1.01: Add vectors, multiply them by scalars, take their dot products.

✠ Standard 1.02: Compute the angle between vectors.

The first week will be a review of material you have seen before, but the setting may be broader, with
different emphasis, and with different examples.

1.1 The algebra of vectors

Definition 1.1: Let n ∈ N. A vector in Rn is an ordered set of n elements, each in R.

The superscript “n” in Rn is described in full in detail in Lecture 10 (it is the “dimension” of the
“space”), but for now can be taken to be simply the number of elements in the vector. When n = 1,
the number is usually omitted, as in Definition 1.1. The elements, or components, of a vector v are
denoted by a subscript, that is,

v = (v1, v2, . . . , vn) and vi = (v1, v2, . . . , vn)i = vi,

for every i = 1, 2, . . . , n.

Example 1.2. A vector v with three elements 3, and −1, and
√
2, is denoted equivalently as 3

−1√
2

 or

[
3
−1√
2

]
or

[
3 −1

√
2
]T

or

 3
−1√
2

 or
(
3 −1

√
2
)T

or (3,−1,
√
2).

In this class, the comma “,” is used to separate elements in a list, and the point “.” is used as a
decimal separator.

The zero vector , or a trivial vector , denoted 0, is vector for which all elements are 0. Vectors that
are not the zero vector are called nontrivial . A vector is usually thought of as a column of numbers,
or a point in n-dimensional space, or the arrow to that point. All notions of a vector will be used
interchangeably.

Definition 1.3: Let c ∈ R be a real number and v ∈ Rn be a vector. The product or scalar
product cv is a vector in Rn with (cv)i = c · vi.
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Example 1.4. The vector v = [ 31 ] in R2 can also be thought of as the arrow to (3, 1) or simply the
point (3, 1) itself.

R

R

(3, 1)

v

Multiplying the vector by elements of R we get other vectors “going in the same direction” as v.

R

R

v

2v

2
3v

−1
2v

0v

Definition 1.5: The numbers v1, . . . , vn ∈ R in the vector v = (v1, . . . , vn) ∈ Rn are called the
components of the vector v. For each component vi, there is a unique function πi : R

n → R
called the projection, with πi(v) = vi.

Example 1.6. Projection and multiplication by a number can be rearranged.

v

π1(v)

π2(v)

2v

π1(2v)

π2(2v)

−1
2v

π1(−1
2v)

π2(−1
2v)

R

R

That is, πi(cv) = c · πi(v) for all real numbers c and indices i. We will consider projections in more
detail in Lecture 13.

Vectors are combined together with each other and with numbers in linear combinations.

Definition 1.7: A linear combination of vectors is a vector v ∈ Rn when it is expressed as
a sum of other vectors w1,w2, . . . ,wk ∈ Rn, and scalars a1, a2, . . . , ak ∈ R multiplying them.
That is,

v = a1w1 + a2w2 + · · ·+ akwk.

When k = 1, the linear combination of one vector a1w1 is called a multiple of the vector w1.

Multiplying vectors by a number is distributive over vector addition, as demonstrated in Inquiry
1.11. That is, for any c ∈ R and v,w ∈ Rn, we have

c(v+w) = cv+ cw.
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Example 1.8. Every vector in the plane is a linear combination of (at most) two vectors, representing
the x-direction and y-direction.

R

R

(3, 1)

(3, 0)

(0, 1)
v

w

u

v = w+ u =

[
3
0

]
+

[
0
1

]
=

[
3 + 0
0 + 1

]
=

[
3
1

]

R

R

(3, 1)

(2, 2)(−2, 2)

(1,−1)

v

r
s

−1
2s

v = r− 1
2s =

[
2
2

]
− 1

2

[
−2
2

]
=

[
2− 1

2 · (−2)
2− 1

2 · 2

]
=

[
2 + 1
2− 1

]
=

[
3
1

]

The entries of vectors, and the numbers multiplying them, do not need to be numbers - they simply
need to be elements of a field , denoted F in general. Unless otherwise noted, we will always use the
field R.

Example 1.9. Some common examples of fields are Q,R,C.

• The set N is not a field because although 1 ∈ N, there is no x ∈ N for which 1 + x = 1 (the
additive identity does not exist).

• The set Z is not a field because although 2 ∈ Z, there is no number x ∈ Z for which 2x = 1
(multiplicative inverses do not exist).

Definition 1.10: The dot product , or inner product of two vectors v = (v1, . . . , vn) and w =
(w1, . . . , wn) ∈ Rn is the real number v •w := v1w1 + · · ·+ vnwn ∈ R.

In other words, the dot product is a function Rn ×Rn → R.

Inquiry 1.11 (✠1.01): Consider the vectors v = (1, 3,−1) and w = (2, 2, 0) in R3.

1. Compute the dot products v •w,v • (2w), and v • (3w). What will be v • (cw), for any
real number c?

2. Compute the projections πi(v+w) for i = 1, 2, 3. Do there exist vectors x,y with πi(x+
y) ̸= πi(x) + πi(y)?

3. Give an alternative definition of the dot product using the projection maps πi.

1.2 The geometry of vectors

A key idea of vectors and their linear combinations that that they fill a part of the space in which
they reside. The “part” of the space is another space itself.

Definition 1.12: A plane in R3 is all the points (x, y, z) ∈ R3 that satisfy an equation ax +
by+ cz = d, for some a, b, c, d ∈ R. A line in R3 is all the points in R3 that are in two different
planes that intersect.

We are often interested in planes that go through the origin (0, 0, 0). They have d = 0 for their
defining equation.
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Example 1.13. Linear combinations can be described geometrically. For example:

• Linear combinations of (1, 1) and (0, 0) form the line y = x in the plane R2

• Multiples of (1, 1, 1) form a line in R3

• Linear combinations of (1, 1, 1) and (1, 1, 0) form the plane x− y = 0 in R3

• Linear combinations of (1, 1, 1), (1, 1, 0), and (0, 1, 1) fill all of R3. For example, 7
9
−5

 = −7

11
1

+ 14

11
0

+ 2

01
1

 .

• Linear combinations of (1, 1, 1), (1, 1, 0), (0, 1, 1), and (1, 0, 1) still fill all of R3. For example, 7
9
−5

 = −7

11
1

+ 14

11
0

+ 2

01
1

+ 0

10
1

 = −5

11
1

+ 13

11
0

+

01
1

−

10
1

 .

R

R y = x

R
R

R

(1, 1, 1)

R
R

R

x− y = 0

Inquiry 1.14 (✠1.01): Consider the vector v = (1, 1, 1) and the plane P defined by x+y+z =
3.

1. It is clear that the plane defined by 2x+2y+2z = 6 is the same as P . In general, given two
planes defined by a1x+b1y+c1z = d1 and a2x+b2y+c2z = d2, how can you tell just from
these equations that they are “different”? Use the variables ai, . . . , di when explaining.

2. The point v lies on the plane P but 0 = (0, 0, 0) does not. Can you find two different
planes that contain both (1, 1, 1) and (0, 0, 0)?

Example 1.15. Consider the following vectors in R2.

R

R

u

t

v

w x

z

Given these five different vectors u,v,w,x, z, t, there are several relationships among them:

v = u+
1

4
z, z = 2w− u, z+ v = w+ x.

These are not the only ones - there are many more. The given relationships become clearer when the

10



vectors are split into their x- and y-components:

u = 2

(
0
1

)
, v =

(
1
0

)
+2

(
0
1

)
, w = 2

(
1
0

)
+

(
0
1

)
, x = 3

(
1
0

)
+

(
0
1

)
, z = 4

(
1
0

)
, t =

(
0
1

)
.

Inquiry 1.16 (✠1.01): In Example 1.15, the relationships given were among three or four
vectors.

1. Can any two of the five given vectors be related by an equation? Try to find a counterex-
ample.

2. Explain how the equation z+ v = w+ x is actually the sum of two “smaller” equations,
with three vectors each.

3. Can any three of the five given vectors be related by an equation? Use the x- and y-
decompositions to help you out.

Definition 1.17: The dot product of a vector v with itself is the square of the norm, or length,
or distance of the vector v, denoted ∥v∥. That is,

∥v∥2 = v • v = v21 + v22 + · · ·+ v2n, or ∥v∥ :=
√
v • v.

We know the inside of the square root will be nonnegative, as we are summing squares. The norm
satisfies the following properties, for any v ∈ Rn:

• Non-negative: ∥v∥ ⩾ 0

• Positive definite: ∥v∥ = 0 if and only if v = 0

• Multiplicative: ∥cv∥ = |c|∥v∥ for any c ∈ R

These properties follow immediately from the properties of the real numbers and the definition of the
norm above.

Definition 1.18: A vector v ∈ Rn is a unit vector if ∥v∥ = 1.

Proposition 1.19. For any u,v nonzero in Rn:

1. The vector v
∥v∥ is a unit vector.

2. The angle θ between u and v is computed by the relation u•v
∥u∥∥v∥ = cos(θ)

3. The Cauchy–Schwarz inequality holds: |u • v| ⩽ ∥u∥∥v∥

4. The triangle inequality holds: ∥u+ v∥ ⩽ ∥u∥+ ∥v∥

Proof. To prove 1., we need to show that the norm of v
∥v∥ is 1. This follows aswwww v

∥v∥

wwww2

=
v

∥v∥
• v

∥v∥
=

1

∥v∥2
(v • v) = 1

∥v∥2
∥v∥2 = 1.

11



To prove 2., we use the law of cosines on the triangle formed by the origin 0, u and v:

θ

R

R

u

v

∥u− v∥2 = ∥v∥2 + ∥u∥2 − 2∥v∥∥u∥ cos(θ)
(u− v) • (u− v) = ∥v∥2 + ∥u∥2 − 2∥v∥∥u∥ cos(θ)

u • u− 2u • v+ v • v = ∥v∥2 + ∥u∥2 − 2∥v∥∥u∥ cos(θ)
−2u • v

−2∥v∥∥u∥
= cos(θ)

To prove 3., use the fact that cos(θ) ⩽ 1, then take the absolute value of the equation from part 2.
To prove 4., we can either draw a parallelogram and notice that the diagonal is u+ v, and that it is
shorter than the sum of the sides, which are u and v. Or we can use algebra and part 3.

R

R

u

v

v

u
u+ v

∥u+ v∥2 = (u+ v) • (u+ v)
= u • u+ 2u • v+ v • v
⩽ ∥u∥2 + 2|u • v|+ ∥v∥2
⩽ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2
= (∥u∥+ ∥v∥)2

As a result of part 2. of the proof above, if u is perpendicular to v, then θ = π/2, and so cos(θ) = 0.
That is, u is perpendicular to v if and only if u • v = 0.

Definition 1.20: Two non-zero vectors v, w are parallel if there exists c ∈ R̸=0 with v = cw. If
c = 1, then the two vectors are colinear . In the opposite case, when the dot product v •w = 0,
the vectors are called perpendicular , or orthogonal .

Sometimes “parallel” is used when c > 0 and “anti-parallel” for c < 0. We will see orthogonality
later in Lecture 12.

Inquiry 1.21 (✠1.02): This inquiry uses vectors in Rn for several different n.

1. Find values of c such that the vectors (1, 1, c− 2) and (1, c− 2, 1) in R3 make an angle of
π/3 with each other.

2. Two vectors u(t) = (2 cos(t), 2 sin(t)),v(t) = (cos(t), sin(−t)) are moving in R2, as t ∈ R
changes. What is the angle between them, as a function of t?

3. Let u,v ∈ Rn. Use Proposition 1.19 to show that the angle between u and v is the same
as the angle between u and 2v. Can you generalize this to any scalar multiples of u and
v?

1.3 Exercises

Exercise 1.1. (✠1.01) Consider the four vectors v =

 0
6
−1

, w =

−3
−4
−5

, z =

00
1

, y =

−5
5
−4

.
Find a, b, c ∈ R with av+ bw+ cz = y.

Exercise 1.2. (✠1.01) Check that the dot product from Definition 1.1 is distributive over vector
addition. That is, show that v • (u+w) = v • u+ v •w, for any u,v,w ∈ Rn.
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Exercise 1.3. (✠1.01) Let v = (1, 1, 1), w = (2,−2, 0) and z = (−3, 1, 2) be vectors in R3.

1. Using a linear equation in three variables, describe the plane of points R3 that are equidistant
from v and w.

2. Using two equations, describe the line of points in R3 that are equidistant from v, w, z. Hint:
A line is the intersection of two planes.

Exercise 1.4. (✠1.01) Let S be the subset [−5, 5]× [−3, 3] ⊆ R2.

1. Identify all the points in S that correspond to linear combinations a [ 30 ] + b
[−1

2

]
, for a, b ∈ Z.

2. Which of the points from part (a) lie a distance of more than 2 but less than 3 from the origin?

Exercise 1.5. The proof of Proposition 1.19 used the “law of cosines”, which itself was not proved,
so we prove it here. Consider the triangle below:

b

ca

C A

B

D

1. Find the formulas for cos(C) and sin(C) in the triangle BCD.

2. Rewrite cos(C) from above so it has the number b = AC. Use the fact that CD = AC − b.

3. Express the Pythagorean theorem of triangle ABD.

4. Replace the sides from part (c) with the formular from parts (a) and (b). Simplify to get the
law of cosines.

Exercise 1.6. (✠1.01, 1.02) Let v ∈ R3 be non-trivial, and let w, z ∈ R3 be non-trivial vectors
both perpendicular to v. Show that the halfway point between w and z is also perpendicular to v.

Exercise 1.7. (✠1.02) This question is about orthogonality of vectors in Euclidean space Rn.

1. Find u,v,w ∈ R3 nonzero for which u is perpendicular to v, v is perpendicular to w, and u is
perpendicular to w.

2. Find u,v,w ∈ R3 nonzero for which u is perpendicular to v, v is perpendicular to w, and u is
colinear to w.

3. Bonus: Explain why it is not possible to have u,v,w,x ∈ R3 nonzero with every pair of vectors
orthogonal to each other.

Exercise 1.8. (✠1.01) This question is about the Cauchy–Schwarz inequality, |v ·w| ⩽ ∥v∥ · ∥w∥.
1. Suppose that there exists c ∈ R\{0} with w = c ·v. Show that the Cauchy–Schwarz inerquality

holds with equality.

2. Suppose that the Cauchy–Schwarz inequality holds with equality. Show that there exists c ∈
R \ {0} with w = c · v.

Exercise 1.9. (✠1.01) Use the triangle inequality to show that vector v is shorter than the sum of the
lengths of the vectors u,w,x. That is, show with the triangle inequality that ∥v∥ ⩽ ∥u∥+ ∥w∥+ ∥x∥.

x

v

u

w

13



Lecture 2: Matrices

Chapter 1.3 in Strang’s “Linear Algebra”

• Fact 1: Matrix multiplication is associative and distributive, but not commutative.

• Fact 2: Not every matrix has an inverse.

• Fact 3: Conclusions may be made about matrices without knowing all their entries.

✠ Standard 1.03: Add, multiply, and transpose matrices (including block matrices)

✠ Standard 1.04: Multiply vectors with matrices

✠ Standard 1.05: Construct vectors and matrices in Python and perform operations with them

2.1 Types of matrices

Definition 2.1: Let m,n ∈ N. An m× n matrix over R is an ordered set M of m · n elements.

• The space of all m× n matrices over R is denoted Mm×n(R) or simply Mm×n, when the
field is not relevant or clear from context.

• The size, or dimensions of a matrix, is the pair (m,n). By convention, the number of rows
comes first.

The elements of a matrix are called its entries. The entry in row i, column j is called the
ij-entry.

Comparing Definition 2.1 with Definition 1.1, we see that a vector in Rn is just a n× 1 (or 1× n)
matrix. Similarly to vectors, the elements of matrices may be over other fields, not necessarily R.
Two matrices of particular importance are the zero matrix 0 (all entries are zero) and the identity
matrix I (all entries are zero except the diagonal, which is all 1’s), given by

0 :=


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , I :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The identity matrix is square, but the zero matrix does not have to be square. Sometimes to emphasize
the size of the matrix, we write 0n and In for matrices with n rows and n columns. For an m × n
matrix A, the entry in row i and column j is denoted Aij or (A)ij or A(i, j) or aij . That is,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .

Sometimes instead of given specfic numbers for constructing a matrix, you are given other matrices.

Definition 2.2: A matrix M ∈ Mm×n is a block matrix if its entries are matrices instead of
numbers

14



Example 2.3. For example, if A ∈ M2×3, B ∈ M2×5, C ∈ M3×3, and D ∈ M3×5, then[
A B
C D

]
∈ M5×8 and

[
C 0
I D

]
∈ M6×8

are both block matrices. The identity I and zero 0 matrices are used without specifying their size as
blocks in a block matrix. As before, the matrix I will always be square, but 0 can be any shape.

Finally, there are three special types of matrices (not necessarily square, though most often they
are), called triangular matrices:

∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗


upper triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


lower triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗


diagonal matrix

aij = 0 if i ̸= j

These matrices are drawn square, but they do not have to be square (though if not mentioned, thy
are assumed to be square). The symbol “∗” represents any number, and all the “∗” entries do not
have to be the same. They could even all be zero.

Inquiry 2.4 (✠1.03): LetX,Y, Z,W be matrices, and consider the block matrix A =

[
X Y
Z W

]
.

1. Suppose you know that X ∈ M2×4 and W ∈ M3×1. How many rows and columns do
each of Y, Z have?

2. If A is the identity matrix I, write out Z explicitly.

3. Suppose that each of X,Y, Z,W are upper triangular. Is A upper triangular? How many
nonzero entries can A have?

2.2 Operations on matrices

Definition 2.5: There are several common matrix operations.

• sum: the sum of A ∈ Mm×n and B ∈ Mm×n has ij-entry (A+B)ij = Aij +Bij

• product : the product of A ∈ Mm×n and C ∈ Mn×m has ij-entry (AB)ij =
∑n

k=1AikBkj

Example 2.6. Since vectors are special matrices (and numbers are special vectors), these operations
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work for multiplying matrices, vectors, and numbers. For example,

[
2 0 −2
4 −1 3

]
︸ ︷︷ ︸

A

1 −3
2 2
0 −1


︸ ︷︷ ︸

B

=

[∑3
j=1A1jBj1∑3
j=1A2jBj2

]
=

[
2 · 1 + 0 · 2 + (−2) · 0 2 · (−3) + 0 · 2 + (−2) · (−1)
4 · 1 + (−1) · 2 + 3 · 0 4 · (−3) + (−1) · 2 + 3 · (−1)

]
=

[
2 −4
2 −17

]

[
2 3 −1
8 −2 0

]
︸ ︷︷ ︸

C

 3
1
−2


︸ ︷︷ ︸

x

=

[∑2
j=1C1jx1∑2
j=1C2jx2

]
=

[
2 · 3 + 3 · 1 + (−1) · (−2)
8 · 3 + (−2) · 1 + 0 · (−2)

]
=

[
11
22

]

7︸︷︷︸
D

[
2 −1
3 −2

]
︸ ︷︷ ︸

E

=

[
7 · 2 7 · (−1)
7 · 3 7 · (−2)

]
=

[
14 −7
21 −14

]
.

Remark 2.7. Matrix addition has the following properties, for A,B,C are matrices of the appropriate
size, c ∈ R, and x a vector:

• addition is commutative: A+B = B +A

• addition is assocative: A+ (B + C) = (A+B) + C

• multiplication by a number is distributive over addition: c(A+B) = cA+ cB

• multiplication by a matrix is distributive over addition: C(A+B) = CA+CB and (A+B)C =
AC +BC

• multiplication by a matrix or vector is assocative: A(BC) = (AB)C and A(Bx) = (AB)x

Multiplication of matrices is not always commutative: AB ̸= BA.

Example 2.8. The identity (also called the multiplicative identity) and zero (also called the additive
identity) matrices have special properties with addition and multiplication. For any A ∈ Mm×n:

• the product of A with I is A itself: AI = IA = I

• the product of A with 0 is is 0: A0 = 0A = 0

• the sum of A and 0 is A itself: A+ 0 = 0 +A = A

In the second property, the zero matrix 0 does not have the same size every time it is used.

Inquiry 2.9 (✠1.03, 1.05): This inquiry is about the observations from Example 2.8.

1. Suppose that there is a 2× 2 matrix J for which AJ = A for every 2× 2 matrix A. Show
that J must be the identity matrix!
Hint: write out the elements of J explicitly, and use special matrices A to create four
equations from AJ = A.

2. In Python, construct a random 5×3 matrix A using the np.random.randint function and
the identity matrix using the np.eye function. Using the function np.matmul, compute
the products IA and AI. What do you get? Is I the same both times?

Remark 2.10. When multiplying block matrices, extra care has to be taken with non-commutativity.
For example, if A,B,C are matrices, then[

A I
B C

] [
I C
D D

]
=

[
A+D AD +D
B + CD BC + CD

]
.

The lower right entry cannot be simplified as C(B+D), because it is not always true that BC = CB.
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Definition 2.11: Let A be an m×n matrix. The transpose of A is written AT , and has ij-entry
(AT )ij = Aji.

The transpose plays well with matrix operations:

(A+B)T = AT +BT ,

(Ax)T = xTAT ,

(AB)T = BTAT .

These results follow from how the sum and product were defined in Definition 2.5.

Definition 2.12: Let A be an n × n matrix. The inverse of A is a matrix B for which AB =
BA = I.

Note that the inverse of a matrix A does not always exist. When it does, it is usually denoted
A−1. As a result of the first property from Example 2.8, the inverse of the identity matrix is itself:
II = I, so I−1 = I.

Example 2.13. If A ∈ Mn×n is a diagonal matrix with nonzero entries on its diagonal, then its
inverse is the same, but with reciprocals on the diagonal:

A =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 , A−1 =


1

a11
0 0 · · · 0

0 1
a22

0 · · · 0

0 0 1
a33

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ann

 .

Inquiry 2.14 (✠1.03): Consider the diagonal matrix and its inverse from Example 2.13.

1. If A =
[
3 d
0 −2

]
, compute the product

[
3 d
0 −2

] [ 1
3

0

0 −1
2

]
. This is not quite the identity matrix

I. What should change for this product to be the identity? This, what is A−1?

2. Let B =
[
3 0 0
0 −5 d
0 0 −1

]
, with d ̸= 0. Find B−1.

Hint: (B−1)ij = 0 precisely when Bij = 0.

3. Let C =

[
3 0 0 0
0 −5 d 0
0 0 −1 0
0 0 0 3

]
with d ̸= 0. Find C−1.

4. Generalize the above example with Cij = d ̸= 0 instead of C23, with the condition that
i < j (that is, Cij is above the diagonal). What if Cij is below the diagonal?

If A ∈ Mm×n and m ̸= n, then there may be a matrix B ∈ Mn×m for which AB = I, but not
necessarily BA = I, in which case B is called a right inverse of A. We will later see algorithms that
compute the inverse, for now we just look at some examples.

Example 2.15. The inverse of the difference matrix is a sum matrix . That is, for

A =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , B =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ,
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we have AB = I. Both of these matrices are triangular, or more specifically, lower triangular. These
matrices get their names from what they do to a vector x = (x1, x2, x3, x4):

Ax =


x1

x2 − x1
x3 − x2
x4 − x3

 , Bx =


x1

x2 + x1
x3 + x2 + x1

x4 + x3 + x2 + x1

 .

Definition 2.16: Let A ∈ Mm×n be a matrix, and x ∈ Rn, b ∈ Rm be vectors. The equation
Ax = b is a matrix equation, and consists of m individual equations:

Ax = b ⇐⇒

a11x1 + a12x2 + · · · a1nxn = b1
a21x1 + a22x2 + · · · a2nxn = b2

...
am1x1 + am2x2 + · · · amnxn = bm.

Finding the inverse of a matrix A is related to finding the solution x to a matrix equation Ax = b.
Indeed, if A has an inverse, then we immediately see that

A−1(Ax) = A−1b ⇐⇒ A−1Ax = A−1b ⇐⇒ Ix = A−1b ⇐⇒ x = A−1b.

Inquiry 2.17 (✠1.04): Let A be a matrix.

1. Suppose you know that A [ 24 ] = [ 20 ] and A
[−1
−4

]
= [ 02 ]. What is the inverse matrix A−1?

Hint: If Ax = b, then putting x as the first column of a 2 × 2 matrix [ x ∗ ], we get
A [ x ∗ ] = [ b ∗ ].

2. In general for A ∈ Mm×n, suppose that for any vector b ∈ Rm, you are able to find
x ∈ Rn, which depends on b, such that Ax = b. Explain which vectors b you would
choose to construct the inverse of the matrix A.

3. Is the collection of vectors b from the previous part unique? Is there a minimum number
of vectors? Give two different collections of vectors b that would work.

Example 2.18. The cyclic matrix C does not have an inverse. That is, there is no vector x for which

Cx =

 1 0 −1
−1 1 0
0 −1 1

x1x2
x3

 =

x1 − x3
x2 − x1
x3 − x2

 =

a1a2
a3

 = a,

for any chosen a. It is immediate that a = 0 has a solution, when x1 = x2 = x3. But it is also
immediate that a = (1, 2, 3) is not a solution, because adding the three equations

x1 − x3 = 1, x2 − x1 = 2, x3 − x2 = 3,

gives 0 on the left side and 6 on the left. In this situation, we say:

• when a1 + a2 + a3 = 0, there is a solution to Cx = a, or equivalently,

• all linear combinations x1c1 + x2c2 + x3c3 lie on the plane given by a1 + a2 + a3 = 0,

where C = [c1 c2 c3]. If we consider a1, a2, a3 as changing along the x, y, z axes,respectively, we see
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the collection of linear combinations x1c1 + x2c2 + x3c3 is indeed a plane:

a1
a2

a3

(1, 0,−1)

2.3 Vectors and matrices in Python

The operations you have seen so far can be replicated in Python using the NumPy packcage (which
may be taken to stand for “Numerical Python”). To begin, the NumPy package is loaded by executing
the following code:

import numpy as np

To input matrices and multiply them, such as in Exmaple 2.6, the following three lines are executed,
which produces the given result:

A = np.array([[2,0,-2],[4,-1,3]])
B = np.array([[1,-3],[2,2],[0,-1]])
np.matmul(A,B)

array([[ 2, -4],
[ 2, -17]])

Matrices full of ones or zeros can be created with the ones or zeros command:

np.ones((3,6),dtype=int)

array([[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1]])

Generating “random” matrices with integer entries is straightforawrd, as is taking their upper (or
lower triangular parts), with triu (or tril, respectively).

A = np.random.randint(low=-9,high=10,size=(4,7))
np.triu(A)

array([[-2, 3, 0, -1, 3, -5, 9],
[ 0, -5, 2, -1, -4, -8, -1],
[ 0, 0, 4, -6, 9, 6, 4],
[ 0, 0, 0, -7, 8, -3, -5]])

2.4 Exercises

Exercise 2.1. (✠1.03) A non-square matrix A may have (non-square) matrices B,C for which
AB = I and CA = I, in which case we call B a right inverse and C a left inverse for A. Let
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A =
[
1 0 −2
3 −1 1

]
.

1. Construct a right inverse for A, that is, a 3 × 2 matrix B for which AB = I. Make it so that
BA ̸= I.

2. Try to construct a left inverse for A, that is, a 3× 2 matrix C for which CA = I. Is it possible?

Exercise 2.2. (✠1.03) Let A,B,C,D be n × n matrices that are invertible. Find the inverses of
the following block matrices.

1.

[
I 0
0 D

]
2.

[
I B
0 D

]
3.

[
A 0
I D

]
Exercise 2.3. (✠1.03) Recall the definition of the inverse of a matrix A, which is a matrix B for
which AB = BA = I. Show that B is unique. That is, show that if there exists a matrix C with
AC = CA = I, then C = B.

Exercise 2.4. (✠1.03) This question is about triangular matrices.

1. Show that the product of two lower triangular matrices is lower triangular.

2. Show that the product of two upper triangular matrices is upper triangular. The concept of a
transpose, introduced in the next lecture, will make this computation easier, given your work
from part (a).

3. What form will the product of a lower triangular with an upper triangular matrix have? Can
you come up with an example where the result is a diagonal matrix, but the original matrices
are not diagonal?

Exercise 2.5. (✠1.04) Let A ∈ M2×3 and v =
[

2
−1

]
∈ R2,w =

[−1
1
2

]
∈ R3.

1. Suppose you know that Aw =
[−2

3

]
and vTA = [−1 1 3 ]. What could the entries of A be to

satisfy these relations?

2. Only referencing the sizes of A,v,w (not the numbers within them), explain why A cannot be
uniquely determined just by knowing Aw and vTA.

Exercise 2.6. (✠1.05) For each part of this question, construct a Python function with the given
name.

1. Make a function ones counter(matrix) that takes in a matrix, in the form of a numpy array,
and returns the number of entries that are 1.

2. Make a function thick diagonal(rownum, colnum) that takes in two positive integers and
returns a matrix, in the form of a numpy array, having rownum rows and colnum columns,
and zero everywhere except on the diagonal and just above and just below it. For example,
thick diagonal(5, 10) should return the following matrix:

array([[1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 1, 0, 0, 0, 0]])
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Lecture 3: Elimination

Chapters 2.1, 2.2 in Strang’s “Linear Algebra”

• Fact 1: Row operations are matrix multiplications.

• Fact 2: Solving a matrix equation can be understood in terms of the rows or the columns.

✠ Standard 1.06: Draw lines in the plane representing m×2 matrix equations (rows and columns).

✠ Standard 1.07: Understand row operations as matrix multiplication.

This lecture reviews how to solve linear systems, and goes into more detail. Recall the three elementary
row operations, which will be here presented as matrix multiplication:

multiply a row by a nonzero number:

swap two rows:

add a multiple of one row to another row:

 1 0 0
0 2 0
0 0 1

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 1 7 3 4
0 4 −2 6
−1 2 5 2


 1 0 0

0 0 1
0 1 0

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 1 7 3 4
−1 2 5 2
0 2 −1 3


 1 0 1

0 1 0
0 0 1

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 0 9 8 6
0 4 −2 6
−1 2 5 2


The reason for interpreting these as matrix operations is to formalize the algorithm that row reduces
a matrix and to build the inverse of a matrix.

3.1 The column and row pictures

The main object of study for this lecture is the matrix equation Ax = b, where A ∈ Mm×n, b ∈ Rn

and x is a column of n variables x1, . . . , xn. You should understand this equation in two ways:

• by the columns of A: a linear combination of the n columns of A produces the vector b

• by the rows of A: the m equations from the m rows of A describe m planes meeting at the point
x ∈ Rn

Note that the word plane comes from a flat surface living in space (that is, R3)1.

Example 3.1. Let A =
[
3 2
1 −2

]
= [ a1 a2 ] and b = [ 111 ], with x = [ xy ]. As columns of A, we have a

linear combination

xa1 + ya2 = b, or x

[
3
1

]
+ y

[
2
−2

]
=

[
11
1

]
.

The solution to the matrix equation is the pair of coefficients x, y that satisfy the matrix equation.
That is, we want to find how far along a1 we need to go, so that going a certain distance along a2 will

1It is more precise to say hyperplane to describe all the points in Rn satisfying a single equation. See Definition 3.5.
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lead us to b. We find a solution [ xy ] = [ 31 ]:

R

R

a1

a2

b

3a1

1a2

As rows of A, we have two equations 3x + 2y = 11 and x − 2y = 1, which we may interpret as lines
in R2. This looks like the following picture (note that these are not the same lines as in the previous
picture):

R

R

x− 2y = 1

3x+ 2y = 11

The two lines intersect at (x, y) = (3, 1), which is the solution x that solves the given matrix equation
Ax = b. Both the column and row pictures give the same answer! This is good.

Inquiry 3.2 (More than two rows ✠1.06): Suppose that we added another row to the matrix
A and another row to the vector b. Note that we do not add another row to the variable vector
x.

1. Where do the lines meet? Evaluate the matrix equation Ax = b at these points.

2. Is there a solution?

3. Draw a picture for which there is a solution.

4. What does this say about the third line? (Must be a linear combination of first two)

Remark 3.3. For the previous example, in the row picture:

• If the two lines were parallel and not colinear, there would be no solutions, because the lines
would not intersect. For example, if instead of 3x+ 2y = 11 we had x− 2y = −1.

• If the lines were parallel and colinear, there would be infinitely many solutions, because the lines
would intersect at all points. For example, if instead of 3x+ 2y = 11 we had 2x− 4y = 2.

Inquiry 3.4 (✠1.06): Follow the set up for drawing Ax = b from Example 3.1 for this inquiry.

1. Draw the row and column pictures for [ 1 0
0 1 ]x =

[
3
−4

]
. What is the solution x?

2. Draw the row and column pictures for
[−1 1

2 −4

]
x = [ 00 ]. What is the solution x?
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3. What if A =
[−1 1

2 −2

]
for the previous point? Is there more than one solution?

4. Interpret Ax = 0 having more than one solution, as a relationship between the columns
(or rows) of A.

We now set up a specific algorithm (this will be the Gaussian elimination algorithm you may have
seen earlier) for finding the solution vector x to a matrix equation Ax = b.

Definition 3.5: Let Ax = b be a matrix equation with A ∈ Mm×n and b ∈ Rm. The
augmented matrix associated to this equation is the m× (n+ 1) matrix

[
A b

]
=


a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
...

...
...

. . .
...

...
am1 am2 am3 · · · amn bm

 .

Sometimes the line separating the last two columns is not drawn. Each line i = 1, . . . ,m of the
augmented matrix represents an equation

ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = bi

in n variables x1, . . . , xn and defines a hyperplane in Rn.

As you saw in Inquiry 3.4, having A = I in your matrix equation makes it very easy to solve. That
will be our goal now - to modify the matrix equation so that we get I instead of A. Firest, we need
to make sure that this does not change the solution to the equation.

Example 3.6. Consider the augmented matrix
[
3 2 11
1 −2 1

]
from Example 3.1. To get the first two

columsn to be [ 1 0
0 1 ], we first will make the (2, 1)-entry equal to zero. In the row picture, this means

we are making the second equation flat (it will not change as x changes). The intersection of the two
lines stays the same:

R

R

x− 2y = 1

3x+ 2y = 11

R

R

y = 1

3x+ 2y = 11

Here we added −1
3 of the first line to the second line:[

1 0
−1
3 1

]
·
[
3 2 11
1 −2 1

]
=

[
3 2 11
0 −2− 2

3 1− 11
3

]
=

[
3 2 11
0 −8

3
−8
3

]
,

so technically the second equation is −8
3y = −8

3 . Multiplying the second row by −3
8 gives the equation

as we would like it to be: [
1 0
0 −3

8

]
·
[
3 2 11
0 −8

3
−8
3

]
=

[
3 2 11
0 1 1

]
.

Adding −2 of the second line to the first line makes the (2, 1)-entry 0, and makes the two lines
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perpendicular:

R

R

y = 1

x = 3

The matrix multiplication corresponding to this will give us 3x = 9, so we simplify as well:

−2 times second row plus first row:

[
1 −2
0 1

]
·
[
3 2 11
0 1 1

]
=

[
3 0 9
0 1 1

]
1

3
times first row:

[
1
3 0
0 1

]
·
[
3 0 9
0 1 1

]
=

[
1 0 3
0 1 1

]
We put all the matrices together from tall the steps:[

1
3 0
0 1

] [
1 −2
0 1

] [
1 0
0 −3

8

] [
1 0
−1

3 1

]
︸ ︷︷ ︸

row operations

[
3 2 11
1 −2 1

]
︸ ︷︷ ︸

[A | b]

=

[
1 0 3
0 1 1

]
︸ ︷︷ ︸

[I | c]

.

Inquiry 3.7 (✠1.06): This inquiry is about extending Example 3.6.

1. Multiply together the row operation matrices to get a matrix B. Compute BA and AB.
What do you get? What can you conclude about B?

2. Repeat the steps and draw the pictures for the example, but use the column perspective
instead of the row perspective.

3.2 The matrices doing the work

The above steps to change a given A matrix to the identity matrix (or to something as close as possible
to it) are called Gaussian elimination.

Definition 3.8: Let Ax = b be a matrix equation. For each row i of the augmented matrix
[A | b], before any operations are done with row i,

• if Aii ̸= 0, then Aii is the ith pivot ; if Aii = 0, then the ith pivot does not exist,

• if Aii ̸= 0, for each k > i, the ratio −Aki
Aii

is the ki-multiplier ℓki.
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Definition 3.9: Each step of Gaussian elimination is performed by an elementary matrix , which
is one of:

P13 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



swaps rows 1 and 3

permutation matrix

E31 =


1 0 0 0
0 1 0 0
−2

5 0 1 0
0 0 0 1



subtracts ℓ31 =
2
5 times

row 1 from row 3

elimination matrix

D4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10



multiplies row 4 by 1
10

diagonal matrix

Shorthand notation for these matrices is given next to them above. When performed on a matrix
A, these steps are equivalent to notation you may have seen before:

P13A is R1 ↔ R3 E31A is R3 → R3 − 2
5R1 D4A is R4 → 1

10R4

In general, any n × n matrix that is just I with the rows rearranged is a permuation matrix .
The steps of Gaussian elimination performed in the reverse order, starting from the bottom left and
clearing zeros above each pivot is called Gauss–Jordan elimination, which is usually used to compute
the inverse A−1. Together the two are simply called elimination.

3.3 Exercises

Exercise 3.1. (✠1.03) This question is about the three permutation matrix examples given in
Definition 3.9.

1. Is the product of all three a permutation matrix?

2. Are the inverses of each still permutation matrices?

Exercise 3.2. (✠1.03) Suppose that Ai ∈ Mn×n has an inverse A−1
i , for i = 1, . . . , k. What is the

inverse of the k-fold product A1A2 · · ·Ak?

Exercise 3.3. (✠1.07) Let a, b, c ∈ R be nonzero numbers, and consider the matrix A =
[
a b c
a 2b 3c
a 3b 6c

]
.

1. Give the elementary matrices which, when they are multiplied on the left of A, leave A with
zeros below the diagonal (not above).

2. Let E be the product of the elementary matrices you computed in the first part of this question,

and suppose that you began with an equation Ax = b. If Eb =
[
47
4
7

]
, what is b? What are

a, b, c?
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Lecture 4: The Gaussian algorithm

Chapters 2.3, 2.4 in Strang’s “Linear Algebra”

• Fact 1: There is an algorithm to row reduce a matrix

• Fact 2: Irrespective of the steps taken to row reduce a matrix, the result will always be the same.

✠ Standard 1.08: Bring a matrix to (reduced) row echelon form using Gaussian elimination

✠ Standard 1.09: Construct the inverse of a matrix A by eliminating the block matrix [A I]

This lecture is about the Gaussian algorithm and Gauss–Jordan elimination, to solve systems of linear
equations and to find the inverse of a matrix.

4.1 Gaussian elimination to clear entries below the diagonal

We now formalize Example 3.6 into a proper algorithm that transforms the augmented matrix [A | b]
into the augmented matrix [I | c], or at least as close as possible (it may be that some elements on
the diagonal of I may be zero instead of 1):

Algorithm 1 (The Gaussian algorithm to row reduce a matrix):

1. Look at the (1, 1)-entry A11.

(a) If A11 ̸= 0: Make all entries below A11 zero.

i. Add −A21
A11

of row 1 to row 2.

ii. Add −A31
A11

of row 1 to row 3, and keep going until everything below A11 is zero.

(b) If A11 = 0:

i. If A21 ̸= 0, swap row 1 and row 2 so that the new (1, 1)-entry is not zero. Go
back to Step 1.

ii. Else if A21 = 0 and A31 ̸= 0, swap row 1 with row 3, so that the new (1, 1)-entry
is not zero. Go back to Step 1.

iii. Else if A21 = A31 = 0 and A41 ̸= 0, swap row 1 with row 4.

iv.
...

v. If the 1st column is all zeros, go to Step 2.

2. Look at the (2, 2)-entry A22.

(a) Repeat steps (a) and (b) above, increasing all the row and column indices by 1. That
is, get zeros below A22.

3. Repeating this for every, the matrix A is now upper triangular. That is, the (i, j)-entry
should be 0 for i > j.

4. Multiply each row by the reciprocal of its first nonzero term.

This algorithm brings the augmented matrix [A | b] to row echelon form.

Example 4.1. Let Ax = b be a matrix equation with A =
[ 0 6 −2

4 8 −4
−2 2 7

]
and b =

[
2
8
12

]
. This represents

the intersection of three planes in R3. For the associated augmented matrix, the first pivot seems to

26



be zero, but we cannot have that, so we swap the second row with the first row. Elementary matrices
are given on the right. 0 6 −2 2

4 8 −4 8
−2 2 7 12

 0 can not be a pivot

 4 8 −4 8
0 6 −2 2
−2 2 7 12

 swap first two rows, 4 is first pivot previous matrix multiplied by

0 1 0
1 0 0
0 0 1


4 8 −4 8
0 6 −2 2
0 6 5 16

 −1

2
is multiplier ℓ31, 6 is second pivot previous matrix multiplied by

1 0 0
0 1 0
1
2 0 1


4 8 −4 8
0 6 −2 2
0 0 7 14

 1 is multiplier ℓ32, 7 is third pivot previous matrix multiplied by

1 0 0
0 1 0
0 −1 1



This is now a system Ux = c, for U =
[
4 8 −4
0 6 −2
0 0 7

]
and c =

[
8
2
14

]
. The letter “U” is used for “upper

triangular”. We then have three equations:

4x+ 8y − 4z = 8,

6y − 2z = 2,

7z = 14.

To find the vector x which solves this system, we can use back substitution from the bottom row up
to find z = 2, y = 1, x = 2.

Inquiry 4.2 (✠1.08): So far we have seen nice matrix equations with unique solutions.

1. Use Gaussian elimination to solve
[

2 0 −1
4 −2 5
−2 2 −6

]
x =

[
2
0
2

]
. Interpret the result as a statement

about planes intersecting in R3.

2. Use Gaussian elimination to solve
[−3 1

1 1
6 2

]
x =

[
0
−3
−4

]
. Interpret the result as a statement

about lines intersecting in R2.

Note that x in part 1. has three components, while in part 2. it has two components.

4.2 Gauss–Jordan elimination to find the inverse

In this case, we use the block matrix [A I], and clear both above and below the diagonal. Performing
Gauss–Jordan elimination on [A I] will result in the matrix [I A−1].

Algorithm 2 (The Gauss–Jordan algorithm to find the inverse of a square matrix):

1. Perform Gaussian elimination on the block matrix [A I].

2. Do the same steps as in Algorithm 1, but start from the bottom right and move upwards
(as opposed to starting from the top right and moving downwards).

(a) If the result is [I ∗]: The matrix A has an inverse, it is on the right of [I ∗].
(b) If the result is not [I ∗] : The matrix A does not have an inverse.
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Remark 4.3. As observed in Inquiry 3.7, the elementary matrices together form the inverse. Below
are some common inverses.

• The inverse of a 2× 2 matrix exists if and only if ad− bc ̸= 0:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
• The inverse of a diagonal matrix exists iff the entries on the diagonal are nonzero:

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn


−1

=


1/d1 0 0 · · · 0
0 1/d2 0 · · · 0
0 0 1/d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/dn


• Similarly, the inverse of an upper triangular matrix exists iff the entries on the diagonal are
nonzero. If some are zero, it immediately means we are missing some pivots (as everything
below the diagonal is zero).

Taking the inverse of a product of matrices reverses their order: (AB)−1 = B−1A−1. This follows as

AB(B−1A−1) = A(BB−1)A−1 (commutativity of multiplication)

= AIA−1 (definition of inverse)

= (AI)A−1 (commutativity of multiplication)

= AA−1 (property of identity matrix)

= I (definition of inverse)

Example 4.4. Let A =
[ 4 8 −4

0 6 −2
−2 2 1

]
, for which we want to find the inverse. To do this, we work with the

block matrix [A I], and on it we do not only Gaussian elimination on the matrix, as in Example 4.1,
but also Gauss–Jordan elimination, which clears the matrix above the pivots. Elementary matrices
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are given on the left. 4 8 −4 1 0 0
0 6 −2 0 1 0
−2 2 1 0 0 1

 4 is first pivot

4 8 −4 1 0 0
0 6 −2 0 1 0
0 6 −1 1/2 0 1

 −1

2
is multiplier ℓ31, 6 is second pivot

 1 0 0
0 1 0

1/2 0 1


4 8 −4 1 0 0
0 6 −2 0 1 0
0 0 1 1/2 −1 1

 1 is multiplier ℓ32, 1 is third pivot

1 0 0
0 1 0
0 −1 1


4 8 −4 1 0 0
0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 0
0 1 2
0 0 1


4 8 0 3 −4 4
0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 4
0 1 0
0 0 1


4 0 0 13/3 −8/3 20/3
0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above second pivot

1 −8/6 0
0 1 0
0 0 1


1 0 0 13/12 −2/3 5/3
0 1 0 −1/6 −1/6 −1/3
0 0 1 1/2 −1 1

 multiply by the pivot reciprocals

1/4 0 0
0 1/6 0
0 0 1


We have now reached the matrix [I A−1]. To see the submatrix on the right is really the inverse, first
multiply the elementary matrices together to get E. Above we showed that

E[A I] = [I B]

for some matrix B (which we are trying to show is the inverse of A). Block multiplication tells us that

E[A I] = [EA EI] = [EA E] =⇒ EA = I and E = B.

It follows that BA = I, which means that B is the inverse of A.

Remark 4.5. We now have a new, equivalent definition of A ∈ Mn×n not having an inverse: If
elimination of [A I] results in [J B], where J is almost I, but has some zeros on the diagonal, then A
has no inverse.

Inquiry 4.6 (✠1.09): This inquiry is about elimination using block matrices. Let A,B ∈ M2×2

have inverses.

1. Let C =
[
A 0
0 I2

]
be a block matrix. Find the inverse 4× 4 matrix C−1.

2. Let D =
[
A 0
0 B

]
be a block matrix. Find the inverse matrix D−1.

3. Will
[
A B
0 B

]
have an inverse? How do you know? What about

[
A I2
I2 B

]
?

4.3 Exercises

Exercise 4.1. (✠1.08) Consider the matrix equation Ax = b, given by
[ 3 −1 2
9 −3 2
1 −1 −1

] [
x
y
z

]
=
[

5
5
−3

]
. Use

Gaussian elimination on the augmented matrix [A | b] to solve for x, y, z.

Exercise 4.2. (✠1.07, 1.08) Construct a 3× 3 matrix A which has:
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1. pivots 1,2,3

2. pivots 1,2,3 and multipliers ℓ32 = 4, ℓ31 = 5 and ℓ21 = 6

3. only two pivots 1 and 2, but no zeros in any positions

Exercise 4.3. (✠1.08) Let A be a 3× 3 matrix.

1. Find the pivots when A has each of the following forms. The numbers a, . . . , i are all nonzero.a b c
d e f
g h i


all pivots

0 b c
0 e f
0 h i


no first pivot

a b c
d bd/a f
d bd/a i


no second pivot

0 b c
0 e ce/b
0 e ce/b


no first or third pivot

2.▷◁ Write a function that takes in such a matrix and returns a list of the three pivots. You may
assume that all of the pivots exist.

3.▷◁ Run your function on 1000 random 3× 3 matrices with entries in the range [−1, 1]. What is the
range and the average of all the pivots? How often do you get a zero?

In Python, you may use consider A as a list of lists [[a,b,c],[d,e,f],[g,h,i]].

Exercise 4.4. (✠1.09) Using Gauss–Jordan elimination, find the inverse matrix of A =
[
0 2 −1
1 0 −4
2 2 2

]
.
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Lecture 5: Factorization

Chapters 2.5-2.7 in Strang’s “Linear Algebra”

• Fact 1: Every matrix A can be decomposed as A = LU into lower and upper triangular factors.

• Fact 2: Inverses of elementary matrices are elementary matrices.

✠ Standard 1.10: Decompose the matrices A and PA as the products LU and LDU .

✠ Standard 1.11: Identify when the matrix equation Ax = b has no solutions or infinitely many
solutions.

This lecture is about factorization, or decomposition, for a square matrix A ∈ Mn×n. Similarly to
factoring an integer as the product of two factors (such as 12 = 3 · 4), we will factor A as the product
of two triangular matrices. We will do this in four ways:

A = LU, A = LDU, PA = LU, PA = LDU.

The matrix L is lower triangular, U is upper triangular, D is diagonal, and P is a permutation matrix.
The first two ways are for matrices that do not require row swaps when doing elimination, otherwise
row swaps are caputred in the permutation matrix P .

5.1 Lower and upper factors

To get the lower factor L and the upper factor U , we apply the Gaussian and Gauss–Jordan algorithms
from Section 4.1. First we make an observation about the inverse of elementary matrices.

Remark 5.1. The elementary matrix Eki from Gaussian elimination representing the row operation
that substracts ℓki times row i from row k is just the identity with −ℓki in the (ki)-position. Its inverse
is similarly the identity, but with ℓki in the same (ki)-position:

E31 =


1 0 0 0
0 1 0 0
−2

5 0 1 0
0 0 0 1

 , E−1
31 =


1 0 0 0
0 1 0 0
2
5 0 1 0
0 0 0 1

 , E31E
−1
31 = E−1

31 E31 = I.

The same works if −ℓki is above the diagonal for Gauss–Jordan elimination (that is, k < i).

Inquiry 5.2 (✠1.10): Consider Remark 5.1 about the inverses of elementary matrices. Let
A ∈ M4×4.

1. Let E be an elementary matrix with the number −2 in its (3, 2)-position. What row
reduction (elimination) step does the multiplication EA represent?

2. Give an example of A so that (EA)32 = 0.

3. Does the inverse matrix E−1 represent a row operation? If yes, which one?

Example 5.3. Let A =
[
3 0 −1
0 2 0
0 4 1

]
, which is eliminated as: 1 0 0

0 1 0
0 −2 1


︸ ︷︷ ︸

E32

3 0 −1
0 2 0
0 4 1


︸ ︷︷ ︸

A

=

3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

A1︸ ︷︷ ︸
Gaussian elimination

,

 1 0 1
0 1 0
0 0 1


︸ ︷︷ ︸

E13

3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

A1

=

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

A2

.

︸ ︷︷ ︸
Gauss–Jordan elimination
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This is the end of elimination, because we have a diagonal matrix. The first multiplier was ℓ32 = 2 and
the second multiplier was ℓ13 = −1. The decomposition comes from putting these two steps together
and taking inverses:

E13E32A = A2

E32A = E−1
13 A2

A = E−1
32 E

−1
13 A2

3 0 −1
0 2 0
0 4 1


︸ ︷︷ ︸

A

=

1 0 0
0 1 0
0 2 1


︸ ︷︷ ︸

E−1
32︸ ︷︷ ︸
L

1 0 −1
0 1 0
0 0 1


︸ ︷︷ ︸

E−1
13

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

A2︸ ︷︷ ︸
U

=

 1 0 0
0 1 0
0 2 1


︸ ︷︷ ︸

L

 3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

U

Remark 5.4. We make several observations about the A = LU decomposition:

• The lower triangular matrix L represents the steps of Gaussian elimination, and has 1’s on the
diagonal.

• The upper triangular matrix U represents the steps of Gauss–Jordan elimination, and has the
pivots of A on the diagonal.

Inquiry 5.5 (✠1.10): This is about extending A = LU into A = LDU .

1. In the A = LU factorization from Example 5.3, the upper triangular matrix U has numbers
that are not 1’s on the diagonal. Do the row reduction steps on U that make all ements
on the diagonal be 1. What are the corresponding elementary matrices?

2. Express U from the previous point as U = DU ′, where D is diagonal and U ′ is upper
triangular with 1’s on the diagonal.

3. Generalize the above point: If U =
[ u11 u12 u13

0 u22 u23
0 0 u33

]
with nonzero diagonal elements, decom-

pose it as U = DU ′.

Remark 5.6. Elimination is the same for a matrix A or an augmented matrix [A b], but the lack of
pivots for the augmented matrix indicates one of two situations: if elimination produces a row with

• all zeros except the last entry: then there are no solutions, because it implies an equation such
as 0x+ 0y + 0z = 1, or 0 = 1.

• all zeros: then there are inifinitely many solutions, because we then only have n − 1 equations
but still n unknowns, so one of the unknowns can be freely chosen.

The implication is that if we applied the elimination algorithm to just the matrix A, then we would
get a row of zeros in both cases.

Definition 5.7: A matrix A ∈ Mm×n is singular if elimination returns at least one row of zeros.
If there are no zero rows after elimination, then A is non-singular .

Example 5.8. Consider the matrix equation from Ax = b from Example 3.1, but change it slightly:[
3 2
−3 −2

]
[ xy ] = [ 111 ]. For elimination we subtract −1 times the first row from the second row:[

1 0
1 1

] [
3 2 11
−3 −2 1

]
=

[
3 2 11
0 0 12

]
.

In the row picture, we are looking for the intersection of 3x + 2y = 11 and 0x + 0y = 12, or 0 = 12.
Since 0 = 12 is a contradiction, no solution exists. Alternatively, if we changed both A and b to the
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equation
[

3 2
−3 −2

]
[ xy ] =

[
11
−11

]
, then the same step of Guassian elimination would give a full row of

zeros: [
1 0
1 1

] [
3 2 11
−3 −2 −11

]
=

[
3 2 11
0 0 0

]
.

The row picture asks for the intersection of 3x+ 2y = 11 and 0x+ 0y = 0. We quickly see that every

vector x =
[

x
1
2
(11−3x)

]
, for any x ∈ R, will satisfy the equation Ax = b. Hence we have infintely many

solutions.

Inquiry 5.9 (✠1.11): Under the row picture, as described in Example 3.1, the solution to the
matrix equation

[
3 2
−3 −2

]
[ xy ] =

[
11
−11

]
from the above example asks for the intersection of the

lines 3x+ 2y = 11 and −3x− 2y = −11.

1. The given equation is the same as
[
3 2
c −2

]
[ xy ] =

[
11
−11

]
for c = −3. What happens if

c ̸= −3? How many solutions does the system have?

2. The given equation is the same as
[

3 2
−3 −2

]
[ xy ] =

[
11
d

]
for d = −11. What happens if

d ̸= −11? How many solutions does the system have?

3. Following the variants in the two previous points, replace some of the number(s) in the
given equation to a variable so that the equation still has infinitely many solutions, even
when the variable is changed.

The elimination algorithm from Section 4.1 was made more complicated by the fact that not all
pivots may exist, in which case we need to swap rows so that we do not divide by zero. We now
consider this type of elimination.

5.2 Row swaps and permutation matrices

The algorithm in Section 4.1 indicated to swap rows when there are zeros in the pivot positions when
we reach them. However, to get tp the desired decomposition PA = LU , we need to put all the
matrices representing row swaps together - so every time we get to a pivot that doesn’t exist (is zero),
we swap rows for the original matrix, and start from the beginning.

Example 5.10. Let A =
[
3 2 −1
6 4 0
0 4 1

]
, for which Gaussian elimination begins as: 1 0 0

−2 1 0
0 0 1


︸ ︷︷ ︸

E21

3 2 −1
6 4 0
0 4 1


︸ ︷︷ ︸

A

=

 3 2 −1
0 0 2
0 4 1


︸ ︷︷ ︸

A1

,

 1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P23

3 2 −1
0 0 2
0 4 1


︸ ︷︷ ︸

A1

=

 3 2 −1
0 4 1
0 0 2


︸ ︷︷ ︸

A2

.

The numbers to be used for pivots are highlighted - note the problem in A1, which we resolve by a
row swap. Continuing elimination from here, we would end up with something like EPE′A = An,
where E and E′ are elementary matrices and P is the row swap matrix. Rearranging for A is not as
nice in this case, so we apply the row swap P23 at the very beginning, 1 0 0

0 0 1
0 1 0


︸ ︷︷ ︸

P23

3 2 −1
6 4 0
0 4 1


︸ ︷︷ ︸

A

=

3 2 −1
0 4 1
6 4 0


︸ ︷︷ ︸

PA

,

and now apply the usual elimination steps.
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Inquiry 5.11 (✠1.10): Note that at the end of Gaussian elimination, you have a diagonal
matrix on the left side, and you know inverses of diagonal matrices. This inquiry explores the
elimination steps from Example 5.10.

1. Continue the elimination algorithm from A2 until you get a diagonal matrix. Multiply its
inverse to get an inverse for A (this will be the product of the elementary matrices).

2. Begin with PA instead of A, and apply the elimination algorithm to it, until you get a
diagonal matrix. As before, multiply the diagonal by its inverse to get an inverse for A.

3. Compare the two inverse you got for A - are they the same? Are the elementary matrices
involved in construction of the inverse the same? What are the similarities?

Remark 5.12. If swapping rows does not give you enough pivots, it may be that you will get a row of
zeros, as described in Example 5.8. In this case elimination will still give you the LU -decomposition,
but the difference will be that you have to stop elimination before you get a diagonal matrix. 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

E21

 3 2 −1
6 4 0
−3 −2 2


︸ ︷︷ ︸

A

=

 3 2 −1
0 0 2
−3 −2 2


︸ ︷︷ ︸

A1

,

 1 0 0
0 1 0
1 0 1


︸ ︷︷ ︸

E31

 3 2 −1
0 0 2
−3 −2 2


︸ ︷︷ ︸

A1

=

 3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

A2

,

and swapping the second and third rows gives us
[
3 2 −1
0 0 3
0 0 2

]
, which still does not have enough piv-

ots. However, multiplying by the inverses of the elementary matrices we applied still gives an LU -
decomposition: 3 2 −1

6 4 0
−3 −2 2


︸ ︷︷ ︸

A

=

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸

E−1
31

1 0 0
2 1 0
0 0 1


︸ ︷︷ ︸

E−1
21︸ ︷︷ ︸

L

3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

A2︸ ︷︷ ︸
U

=

 1 0 0
2 1 0
−1 0 1


︸ ︷︷ ︸

L

 3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

U

.

You now have all the tools you need to decompose the matrices A and PA as LU or LDU . We
finish off the lecture with some useful types of matrices.

Definition 5.13: Let A be an n×m matrix.

• The matrix A is symmetric if m = n and Aij = Aji for all i, j.

• The matrix A is skew-symmetric if m = n and Aij = −Aji for all i, j.

Observe that another way to express that A is symmetric is to say that A = AT , and another way to
express that A is skew-symmetric is to say A = −AT . Note that if A ∈ Mn×n is symmetric and all
its pivots exist, then its decomposition into A = LDU has L = UT .

Remark 5.14. The transpose can be thought of as a function Mm×n → Mn×m. As noted in
Definition 2.11, if plays nicely with the addition, multiplication, and inverse functions. Moreover, the
dot product of two vectors from Definition 1.1 can be thought of as matrix multiplication, if we use
the transpose:

v •w = vT ·w

∈ Rn ∈ Rn ∈ M1×n ∈ Mn×1

(1)
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This is why we need to be careful with the multiplication symbol ·, always being aware of the sizes of
objects we are working with. That is because multiplying the other way w ·vT gives an n×n matrix,
which is called the outer product :

v =


1
2
3
4

 ∈ R4, vTw =
[
1 2 3 4

] 
1
−1
2
−2

 = 1 · 1 + 2 · (−1) + 3 · 2 + 4 · (−2) = −3 ∈ R = M1×1

w =


1
−1
2
−2

 ∈ R4, wvT =


1
2
3
4

 [1 −1 2 −2
]
=


1 −1 2 −2
2 −2 4 −4
3 −3 6 −6
4 −4 8 −8

 ∈ M4×4

Example 5.15. Taking the transpose of a product of a matrix with a vector is just like taking the
tranpose of two matrices. Using the property from Equation (1) and the observations in Remark 5.14,
we see some interesting results. For A ∈ Mm×n and x,y ∈ Rn, we have

Ax • y = (Ax)Ty = xTATy = xT (ATy) = x • (ATy).

5.3 Row reduction in Python

This section is about using the SciPy package (meaning “Scientific Python”), specifically the library
imported in scipy.linalg. Since Gaussian elimination is just an algorithm, it has been implemented
to make life easier for us. One particular implementation (though not the only one) is with the lu

function from scipy.linalg.

import numpy as np
import scipy.linalg as lu
A = np.array([[1,2,-1],[10,5,-1],[-1,-3,1]]
P,L,U = la.lu(A)

This function takes in a matrix A, and outputs a triple P,L, U , so that A = PLU . This is almost
the same as the PA = LU decomposition we saw earlier, but the permutation matrix has been inverted
and is on the other side of the equation.

P
array([[0., 0., 1.],

[1., 0., 0.],
[0., 1., 0.]])

L
array([[ 1. , 0. , 0. ],

[-0.1, 1. , 0. ],
[ 0.1, -0.6, 1. ]])

U
array([[10. , 5. , -1. ],

[ 0. , -2.5 , 0.9 ],
[ 0. , 0. , -0.36]])
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5.4 Exercises

Exercise 5.1. (✠1.10) Consider the matrix factorization 6 0 −2
1 3 4
−3 −8 2


︸ ︷︷ ︸

A

=

1 0 0
a 1 0
b c 1


︸ ︷︷ ︸

L

6 0 −2
0 2 13/3
0 0 113/9


︸ ︷︷ ︸

U

.

The values a, b, c are determined by the multipliers from row operations to clear the entries below the
pivots. What are these values?

Exercise 5.2. (✠1.10) Decompose A =

2 1 1
2 1 2
1 1 2

 into PA = LDU factorization.

Exercise 5.3. (✠1.10) Decompose the matrix A from Example 4.1 as PA = LDU .

Exercise 5.4. (✠1.10) Suppose that A ∈ Mn×n is a product of elementary matrices, that is,
A = E1 ·E2 · · ·Ek, where Ei is one of the three types of elementary matrices given in Definition 3.7 .
Explain why A is invertible.

Exercise 5.5. (✠1.10) Consider the symmetric matrix A =
[

5 −6 −3
−6 10 2
−3 2 3

]
. Find a 3× 3 matrix B for

which BTB = A.
Hint: Row recduce A to the form A = LDU . How are L and U related to each other?

Exercise 5.6. (✠1.06, 1.11) Consider three points u = (1, 5),v = (2,−1),w = (8, 3) in R2. Let ℓ1
be the line through u and v, ℓ2 be the line through u,w, and ℓ3 be the line through v,w, as in the
diagram below.

u

v

w
ℓ1

ℓ2

ℓ3

1. Give the matrix equation for which the lines in the diagram above are the row picture.

2. Without solving this matrix equation, explain why the the equation has no solutions.

3. Now suppose that u = (5, 1). Give the new matrix equation (the lines ℓ1, ℓ2, ℓ3 are constructed
in the same way), and again, without solving it, explain why it has infinitely many solutions.
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Lecture 6: Vector spaces and spans

Chapter 3.1 in Strang’s “Linear Algebra”

• Fact 1: A vector space is something like Rn.

• Fact 2: Every vector space may be described as a span of vectors, in many different ways.

✠ Standard 2.01: Determine if something is a vector space or a subspace.

✠ Standard 2.02: Describe a vector space as a span of vectors.

This lecture introduces the very powerful topic of vector spaces and focuses on their presentation as
a span of vectors.

6.1 Conditions to be a vector space

Recall from Lecture 2 that a field is a set with nice properties, such as R,Q,C. Fields have addition
and multiplication built into them. We now define a set that has new properties. Any field can be
used here, but we use R for simplicity.

Definition 6.1: Let V be a set. The elements of R are called scalars. The set V is a vector
space if there are two operations

• addition +: V × V → V ,

• scalar multiplication · : R× V → V ,

that satisfy the following properties, for every u,v,w ∈ V and a, b ∈ R:

1. addition has an identity element: there exists 0 ∈ V with 0 + v = v
This is called the additive identity .

2. addition has inverse elements: there exists −v ∈ V with v+ (−v) = 0
This is called the additive inverse.

3. scalar multiplication has an identity element: there exists 1 ∈ R with 1v = v
This is called the multiplicative identity .

4. addition is commutative: u+ v = v+ u

5. addition is associative: u+ (v+w) = (u+ v) +w

6. scalar multiplication is distributive over addition: a(u+ v) = au+ av

7. scalar multiplication is distributive over field addition: (a+ b)v = av+ bv

8. field multiplication is compatible with scalar multiplication: (ab)v = a(bv)

If V is a vector space and W ⊆ V is a subset of V and is a vector space on its own, with the same
two operations satisfying the same properties, then W is a subspace of V . It is immediate that every
vector space is a subspace of itself, so whenever W ⊆ V is a subspace and W ̸= V , we say W is a
proper subspace of V .

Example 6.2. We consider some basic examples of vector spaces.

• The empty set ∅ is not a vector space, because vector space must contain the zero vector.
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• The set V = {0} is a vector space, called the trivial or zero vector space.

• The space M2×2 is a vector space, with addition being matrix addition, and scalar multiplication
the usual scalar multiplication over R. This space is 4-dimensional, though we will see the notion
of dimension next lecture.

• For V = R2, the set W = {c(2, 1) : c ∈ R} ⊆ V , which is all the multiples of v = (2, 1), is a
subspace of R2. The set U = {c(2, 1)+(0, 1) : c ∈ R} ⊆ V , which is the same as W but shifted
up by 1 unit, is not a vector space with the same rules as W , as (0, 0) ̸∈ U .

R

R

(0, 0)

W

U

• The set P = {ax2 + bx + c : a, b, c ∈ R} is a vector space, with addition and multiplication
defined as expected. This is called a function space.

Inquiry 6.3 (✠2.01): This inquiry generalizes the notion of a vector space, continuing with
the fourth example in Example 6.2. The set U there looked like it should be a vector space,
since we can move along the line of U just like we moved along the line of V .

R

R

(0, 0)

W

U

w

2w

u

“2u”

To formalize this, note that every element of U can be expressed as u = c(2, 1) + (0, 1). Define
vector addition and scalar multiplication on U by

U × U → U,
(u1,u2) 7→ (c1 + c2)(2, 1) + (0, 1),

R× U → U,
(a,u1) 7→ ac1(2, 1) + (0, 1),

where u1 = c1(2, 1) + (0, 1) and u2 = c2(2, 1) + (0, 1).

1. Check that multiplication distributes over addition. That is, check that property 7. is
satisfied.

2. Find the additive identity, additive inverse, multiplicative identity on U so that properties
1.-3. are satisfied.

3. Explain why U , with this vector space structure, is not a subspace of R2.
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4. Instead of (0, 1) at the beginning, put (−2, 0) in its place. What changes? Can any vector
be chosen here? Which vector would you choose?

This type of structure is called an affine space.

Remark 6.4. We make some observations about vector spaces and subspaces.

• Every vector space and subspace must contain the zero vector.

• Any line through the origin is a subspace of Rn.

• A subspace containing u and v must contain every linear combination au+ bv.

Example 6.5. Combining the above remark, Example 6.2, and checking for the existence of an
additive identity, multiplicative identity, and additive inverse, we see that:

• U = {all upper triangular matrices
[
a b
0 d

]
} ⊆ M2×2 is a subspace of M2×2

• D = {all diagonal matrices
[
a 0
0 d

]
} ⊆ M2×2 is also a subspace of M2×2, and is a subspace of U

6.2 The span of a set of vectors

Definition 6.6: Let V be any vector space, such as Rn, and X = {v1, . . . ,vk} ⊆ V any
collection of elements of V . Then the space of all linear combinations of elements of X, written

span(X) =

{
n∑

i=1

civi : ci ∈ F

}
.

This space is called the span of the vectors in X.

Due to laziness, sometimes the curly braces {. . . } are ommited, and we write span({v1,v2}) and
span(v1,v2) to mean the same thing. With the span, we can describe a very large vector space by
using a small number of vectors. Finding the smallest number of vectors will play an important role
in future lectures.

Proposition 6.7. For V a vector space and X = {v1, . . . ,vk} ⊆ V , the span of X is a vector space
and a subspace of V .

Proof. To see span(X) is a vector space, note that every element in span(X) is a vector in V . Adding
two elements in span(X) keeps us in the span:

a+ b =
n∑

i=1

aivi +
n∑

i=1

bivi =
n∑

i=1

(ai + bi)vi ∈ span(X).

Scalar multiplication works similarly. The identity and inverse elements are the same as in V , and
clearly the zero element is in span(X), by choosing all the coefficients ci = 0. Hence span(X) ⊆ V is
a subspace.

Note that the above result follows immediately from Example 6.2, which said that all multiples
of a single vector is a vector space, and by repeated application of Definition 6.9, which will say that
V +W is a vector space, for any vector spaces V , W .

Example 6.8. Two dimensional Euclidean space R2 can be described in several ways as a span:

• R2 = span
(
[ 11 ] ,

[
1
−1

]
,
[−1
−1

])
because [ xy ] =

x−y
2 [ 11 ] +

x−y
2

[
1
−1

]
− y

[−1
−1

]
• R2 = span ([ 33 ] , [

0
4 ]) because [ xy ] =

x
3 [

3
3 ] +

3y−x
12 [ 04 ].
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Definition 6.9: Let V,W be two vector spaces. Their direct sum, or simply sum, is the vector
space

V ⊕W := {(v,w) : v ∈ V,w ∈ W},

with vector addition and scalar multiplication defined component-wise. That is, (v1,w1) +
(v2,w2) = (v1 + v2,w1 + w2) and c(v,w) = (cv, cw). If there exists a vector space U with
V,W ⊆ U , then we have the vector space

V +W := {v+w : v ∈ V,v ∈ W}.

In this case, we have all linear combinations of vectors from both spaces. This is called the
subspace generated by U and V . It is the smallest subspace containing the set U ∪ V (though
U ∪ V is not necessarily a subspace).

Note that V ⊕W and V +W are vector spaces, but V ∪W is not. These three spaces are not the
same, in fact V ⊕W is never equal to V +W (though there may be a nice function between the two.

Example 6.10. We note some common examples of vector spaces generated by other spaces:

• The vector space generated by V and any of its subspaces W is the original space: V +W = V

• The vector space generated by two spans is the span of the union:

span({v1,v2}) + span({w1,w2}) = span({v1,v2} ∪ {w1,w2}) = span({v1,v2,w1,w2})

See Exercise 6.4 for more details on why the union of two vector spaces V ∪W is not the same as +.

Inquiry 6.11 (✠2.02): Let V = M2×2 and X =
{
[ 1 1
0 1 ] , [

0 1
1 0 ] ,

[−1 0
0 1

]}
⊆ V . Let S be the span

of X.

1. Show that S ̸= V by finding an element in V \ S.

2. Explain why X ⊆ S.

3. Explain why V is as least as big as S (that is, if M ∈ S, then M ∈ V ).

4. How would you change X to make S = V ?

When S = V , we say that V is spanned by X.

6.3 Exercises

Exercise 6.1. (✠2.01) Check that the subspace W ⊆ V from in the fourth example in Example
6.2 satisfies the conditions of being a vector space from Definition 6.1.

Exercise 6.2. (✠2.02) Let u,v,w be three different vectors in a vector space V . Consider the
three spans S1 = span({u− v}), S2 = span({u,v,w}) and S3 = span({u+ v,v+w}).

1. Show that S1 ⊆ S2.

2. Show that S3 ⊆ S2.

3. For V = R3, given an example of u,v,w for which S2 = S3.

4. For V = R3, given an example of u,v,w for which all of S1, S2, S3 are different.

Exercise 6.3. (✠2.01) Consider the set X of all functions f : R → R.
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1. If addition on X is defined as (f +g)(x) = f(x)+g(x) and multiplication is defined as (cf)(x) =
f(cx), show that X can not be a vector space.

2. If multiplication is instead defined as (cf)(x) = cf(x), and addition is instead defined as (f +
g)(x) = f(g(x)) show that X still can not be a vector space.

Hint: Show X is not a vector space with examples!

Exercise 6.4. (✠2.01) Consider the following vector spaces:

V = span


11
0

 ,

01
1

 , W = span


10
1

 ,

 0
−1
0

 .

1. Show that R3 is a subspace of V +W by describing an arbitrary vector (x, y, z) ∈ R3 as a linear
combination of the elements of V and W .

2. Show that V ∪W ̸= V +W by finding a vector in V +W that is not in V ∪W .

41



Lecture 7: The column space and the nullspace

Chapter 3.2 in Strang’s “Linear Algebra”

• Fact 1: The column space and nullspace of any matrix are vector spaces.

• Fact 2: The nullspace of a matrix A contains all the vectors x for which Ax = 0.

✠ Standard 1.12: Construct the column space and nullspace of a matrix as spans.

✠ Standard 1.13: Describe solutions to Ax = b using the language of vector spaces.

This lecture provides two concrete examples of vector spaces, which were introudced in the pevious
lecture: the column space, coming from the columns of a matrix, and the nullspace, representing all
the “zero solutions” to a matrix equation Ax = b.

7.1 The column space of a matrix

A big reason we are talking about vector spaces is that the matrix product Ax from the matrix
equation Ax = b, over all possibilities x, describes a vector space. This space has a particular name.

Definition 7.1: For an m × n matrix A, the column space of A, denoted col(A), is the set of
all vectors v ∈ Rm that are linear combinations of the columns of A. That is,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , col(A) =

c1


a11
a12
...

am1

+ c2


a12
a22
...

am2

+ · · ·+ cn


a1n
a2n
...

amn

 : ci ∈ R

 .

Since every element in col(A) is a linear combination of vectors, col(A) is a subspace of Rm.

Example 7.2. Consider A =
[
3 −1 −2 4
0 2 −2 1

]
, for which

col(A) =

{
c1

[
1
0

]
+ c2

[
−1
2

]
+ c2

[
−2
−2

]
+ c2

[
4
1

]
: ci ∈ R

}
.

Note that [ 56 ] ∈ col(A), as [
5
6

]
= −5

[
1
0

]
+ 0

[
−1
2

]
− 3

[
−2
−2

]
+ 0

[
4
1

]
.

Inquiry 7.3 (✠1.12, 1.13): Let A ∈ Mm×n.

1. Show that [ 34 ] ∈ col
([

2 −1 1
0 1 1

])
.

2. Suppose that v = c1v1 + · · ·+ cnvn ∈ col(A). Explain why Ax = v has a solution. What
is it?

3. Suppose that x = (x1, . . . , xn) solves the equation Ax = b. Explain why b ∈ col(A).

4. Explain why 0 ∈ col(A). Hint: What is a solution to Ax = 0?
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Example 7.4. Consider the following matrices:

I =

[
1 0
0 1

]
A =

1 2 3
2 4 6
3 6 9


The column space col(I) is all of R2, since any vector (a, b) ∈ R2 can be described as a [ 10 ] + b [ 01 ],
which is a linear combination of the columns of I. The column space of A is all multiples of the vector[
1
2
3

]
, since the second and third rows are multiples of the first row.

7.2 The nullspace of a matrix

Another big reason we are talking about vector spaces is another link to the matrix equation Ax = b,
in the special case that b = 0. All the vectors x satisfying this equation form a vector space. Note
that all the vectors satisfying Ax = b did not form a vector space for arbitrary b - the column space
was the space of all vectors Ax, not just x.

Definition 7.5: For an m× n matrix A, the nullspace of A is the set

null(A) = {x ∈ Rn : Ax = 0}.

The nullspace is a vector space. The nullspace lives inside Rn, but the column space lives in Rm.
To find the nullspace of A, we use Gaussian and Gauss–Jordan elimination on A. We may perform
row swaps at the beginning or in the middle of elimination, it will not change the result.

Example 7.6. The nullspace of the matrix A =
[
2 −1
4 −2

]
consists of the vectors in x ∈ R2 for which

Ax = 0. The second row is a multiple of the first (and the second column is a multiple of the first) ,
so the nullspace is all pairs (x1, x2) for which 2x1 − x2 = 0, or x1 = x2/2. Choosing x2 = 1 (though
we could choose any other value) we get x1 = 1/2, so the nullspace is

null

([
2 −1
4 −2

])
=

{[
x2/2
x2

]
: x2 ∈ R

}
= span

([
1/2
1

])
.

The choice (1/2, 1) was a special solution, but there are many other solutions.

Remark 7.7. Elimination on a matrix does not change its nullspace. We can see this by considering
the original equation Ax = 0 and the elminiated equation EAx = 0. Since E is an elmentary matrix,
it has an inverse, so Ax = E−10 = 0. Hence x satisfies the first equation iff it satisfies the second
equation.

Example 7.8. We describe how to compute the nullspace by way of an example, onA =
[ 2 −2 2 4 8
1 5 −3 0 1
3 3 −1 −5 6

]
.

We begin with Gaussian elmination to get zeros below the first pivot. The multipliers are given below,
and zeros of pivot columns are highlighted:

ℓ21 =
1

2
, ℓ31 =

3

2
:

 2 −2 2 4 8
0 6 −4 −2 −3
0 6 −4 −11 −6

 .

We continue to get a zero below the second pivot:

ℓ32 = 1 :

 2 −2 2 4 8
0 6 −4 −2 −3
0 0 0 −9 −3

 .
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The third pivot is −9. Now we move upward and clear the entries above the third pivot: 2 −2 2 0 20/3
0 6 −4 0 −7/3
0 0 0 −9 −3

 .

Next, get a zero above the second pivot: 2 0 2/3 0 53/9
0 6 −4 0 −7/3
0 0 0 −9 −3

 .

Finally, multiply through by the pivot reciprocals to get pivots that are 1: 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3

 .

We pause this example for a few comments.

Definition 7.9: The form of A in the example above is called the reduced row echelon form, or
RREF , of A. More specifically:

• columns 1,2,4 are the pivot columns,

• columns 3,5 are the free columns.

In the equation Ax = 0, for x = (x1, x2, x3, x4, x5), the variables x1, x2, x4 are the pivot variables
and x3, x5 are the free variables.

We continue solving for the nullspace null(A) from Example 7.8. It is defined as a linear combina-
tion of as many vectors as there are free columns. Each free column gives a nonzero x that will be in
the nullspace, by setting that free variable to 1, all other free variables to 0, and choosing the earlier
pivot variables to be the negative entries in those rows:

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3




−1/3
2/3
1
0
0


︸ ︷︷ ︸

s1

=

00
0

 ,

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3




−53/18
7/18
0

−1/3
1


︸ ︷︷ ︸

s2

=

00
0

 .

The two vectors s2, s2 are the special solutions for the nullspace of A. Hence the nullspace is

null(A) = {c1s1 + c2s2 : c1, c2 ∈ R} =

c1


−1/3
2/3
1
0
0

+ c2


−53/18
7/18
0

−1/3
1

 : c1, c2 ∈ R

 ,

so for example, something like 
−108
18
6

−13
36

 = 6


−1/3
2/3
1
0
0

+ 36


−53/18
7/18
0

−1/3
1
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is in the nullspace.

Algorithm 3 (Computing the nullspace): To compute the nullspace of A ∈ Mm×n, we do
Gaussian and Gauss–Jordan elimination so that all columns with pivots have 1’s as the only
entry.

1. Perform Gauss–Jordan elimination on A to clear all entries below the pivots. The matrix
is now A′.

2. Perform Gaussian elimination on A′ to clear all above below the pivots. The matrix is
now A′′.

3. Multiply A′′ by diagonal matrices to make all the pivots 1’s.

4. Suppose columns c1, . . . , ck are pivot columns, and columns f1, . . . , fℓ are free columns.

(a) The nullspace will be a span (v1, . . . ,vℓ) of as many vectors as free columns. The
vector vi ∈ Rk+ℓ has:

(b) entry 1 in row fi and entry 0 in all other rows fj ̸=i

(c) entry in row cj the same, but negative, as the entry in column fi and row j of A′′

Remark 7.10. Note that the pivot columns create an identity matrix in RREF of A, which were
highlighted in green and yellow in the main example above. Similarly, the free variable rows in the
special solutions create an identity matrix.

Inquiry 7.11 (✠1.12): Consider the matrix A =
[
3 6 −1 0 1
9 18 −3 2 0
0 0 −5 1 1

]
.

1. Compute null(A) as the span of vectors.

2. Construct a matrix B for which null(A) = col(B).

3. Compute col(A) as the span of vectors.

4. Do you have to use all the columns of A? That is, are some columns linear combinations
of others? Try to use as few columns of A as possible to express col(A) as a span.

7.3 Exercises

Exercise 7.1. (✠1.12) Consider the matrix A =

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1

.
1. Construct the column space of A as a span of three vectors.

2. Construct the nullspace of A as a span of vectors.

Exercise 7.2. (✠1.12) Let V be a vector space.

1. Explain why span(V ) = V and span({0}) = {0}.

2. For V = R3, give an example of A,B ∈ M3×3 with col(A) = V and null(B) = V . Explain why
A and B can not be the same matrix.

Exercise 7.3. (✠1.13) Let A ∈ M2×2, and let v = [ ab ] ∈ R2 with a, b ̸= 0. For the following
questions, do not choose numbers for a and b, simply leave them as variables.

1. Suppose that Av = v.
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(a) Can v ∈ null(A)? Why or why not?

(b) Give two different examples of a 2× 2 matrix A that satisfy the given condition.

2. Suppose that v is the first column of A and that null(A) = span(v). Give an example of a 2× 2
matrix A that satisfies this setting.

Exercise 7.4. (✠1.12) Create a matrix with no zero columns that has:

1. size 3×3 and column space the xy-plane (that is, all linear combinations of (1, 0, 0) and (0, 1, 0))

2. size 3× 4 and column space the xy-plane

3. size 2 × 2, column space all of R2, not a multiple of I2, and no zero entries. Describe [ 10 ] and
[ 01 ] as linear combinations of the columns.

Exercise 7.5. (✠1.12) Let I be the 2× 2 identity matrix. For each of the following matrices, bring
it to RREF and drescribe its nullspace as a span of vectors.

A =
[
I I

]
B =

[
I I
0 I

]
C =

[
I I
I I

]
Exercise 7.6. (✠1.13) Let X be a set of 2× 2 matrices defined in the following way:

• [ 1 1
0 1 ] ∈ X

• if M ∈ X, then MMT ∈ X

• if M,N ∈ X, then aM + bN ∈ X, for any a, b ∈ R

Using scalar multiplication and matrix addition as in M2×2, show that X is a vector subspace of
M2×2.
Hint: Using the given facts, try to construct the four special matrices that generate M2×2.
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Lecture 8: Completely solving Ax = b

Chapter 3.3 in Strang’s “Linear Algebra”

• Fact 1: The complete solution to Ax = b consists of the particular solution and linear combina-
tions of the special solutions.

• Fact 2: The rank of a matrix is the number of pivots. It can not be larger than the number of
rows or columns.

✠ Standard 1.14: Construct the particular, special, and complete solutions to Ax = b, for any
matrix A ∈ Mm×n.

✠ Standard 1.15: Identify the row rank, column rank, rank of a matrix.

Previously we saw how to solve Ax = 0, by doing elimination until we get an upper triangular matrix
Rx = 0, whose solutions x are the same solutions that solve the first equation. In this lecture we
generalize to finding soluetions to Ax = b, where b is not necessarily the zero vector.

8.1 Rank and the particular solution

We begin with the example from the previous lecture,

A =

2 −2 2 4 8
1 5 −3 0 1
3 3 −1 −5 6

 ,

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3

 , EA = R

for some product of elimination matrices E. The columns 1,2,4 are the pivot columns and the columns
3,5 are the free columns (this is true for both R and A). It is immediate that columns 1,2,4 of R can
not be written one as a linear combination of the others - that is, these three columns are linearly
independent . Again, this is true for both R and A.

Definition 8.1: The rank of a matrix A ∈ Mm×n is denoted rank(A), and is equivalently

• the number of pivots of A, or

• the largest number of columns in A that are not linear combinations of each other.

This number is denoted rank(A). Often column rank or row rank are used, when specifically
referencing the largest number of columns or rows that are not linear combinations of each other.

If the rank of A is equal to the largest number of rows of A that are not linear combinations of
each other, then A is said to have full rank . Equivalently, rank(A) = min(m,n).

Reducing the matrix A to RREF reveals which columns are combinations of others. Since only
row operations were performed, any linear relationships among the columns are preserved.

Example 8.2. When a matrix has rank 1, all the columns are multiples of the first one. For example,

A =

1 2 3
1 2 3
1 2 3

 RREF−−−−−→

 1 2 3
0 0 0
0 0 0
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has rank one, and its column space is all the multiples of (1, 1, 1). To find its nullspace, we look at its
RREF, which has special solutions 1 2 3

0 0 0
0 0 0

 −2
1
0

 =

00
0

 ,

 1 2 3
0 0 0
0 0 0

 −3
0
1

 =

00
0

 ,

hence the nullspace of A is the span of
[−2

1
0

]
and

[−3
0
1

]
.

Remark 8.3. A rank 1 square n× n matrix may be expressed as a product of a n× 1 vector with a
1× n vector, since all the columns are multiples of the first column. For example,

A =

1 2 3
1 2 3
1 2 3

 =

11
1

 [1 2 3
]
= vwT .

Example 8.4. The identity matrix I has full rank. The zero matrix 0 has rank 0.

Inquiry 8.5 (✠1.15): Consider the matrix A =
[
a b c
b c b
c a a

]
.

1. Find values of a, b, c for which A has rank 0, 1, 2, 3.

2. Suppose another column was added at the end of A to make
[
a b c 0
b c b 0
c a a 0

]
. Explain why your

answers to the first part above would not change using this matrix.

Definition 8.6: The number of special solutions to Ax = 0 is called the nullity of A.

The nullity is the number of free columns of A, and the smallest number of vectors that can be
used to define null(A) as a span. For A ∈ Mm×n, using the fact that the rank is the number of pivot
columns, we immediately get that

rank(A) + nullity(A) = n, (2)

a very powerful equation, more of which we will see later. This is called the rank-nullity theorem.

Example 8.7. Recall Example 7.8 from Lecture 7. Suppose that instead of Ax = 0, we considered
Ax = b, which, after elimination, would become Rx = d = [d1 d2 d3]

T . The vector x = 0 is not a
solution anymore, but we can find a quick solution by setting the variables corresponding to the free
columns equal to 0:

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3




x1
x2
0
x4
0

 =

d1d2
d3

 is solved by
x1 = d1,
x2 = d2,
x3 = d3.

The vector (d1, d2, 0, d3, 0) is called a particular solution to Ax = b. This particular solution solves
not only Rx = d, but also Ax = b, because if A = ER, for some elimination matrix E, then d = Eb.

Remark 8.8. What we have done so far can be summarized as follows:

• The special solutions x = s1, s2 solve Ax = 0

• The particular solution x = p solves Ax = b
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Finally, the complete solution to the system Ax = b is the sum of the particular and special solutions.
That is, x = p+ c1s1 + c2s2 solves the system, for any c1, c2 ∈ R, because

A(p+ c1s1 + c2s2) = Ap+ c1As1 + c2As2 = b+ c1 · 0 + c2 · 0 = b.

Algorithm 4 (Finding the complete solution): Consider the matrix equation Ax = b.

1. Compute the nullspace of [A | b]. That is, find the special solutions s1, . . . , sk by doing
elimination on the augmented matrix [A | b].

2. Elimination on [A | b] produces the matrix [R | d]. Construct the particular solution p
from d as in Example 8.7.

3. The complete solution to Ax = b is x = p+ c1s1 + · · ·+ cksk, for all ci ∈ R.

Example 8.9. Consider the matrix equation Ax = b, in the form

[
4 −8 2

−10 12 1

]
︸ ︷︷ ︸

A

x1x2
x3


︸ ︷︷ ︸

x

=

[
6

−16

]
︸ ︷︷ ︸

b

RREF−−−−−→
[
1 0 −1
0 1 −3/4

] x1
x2
x3

 =

[
7/4
1/8

]
.

The complete solution to this equation is x =

7/41/8
0

+ c1

 1
3/4
1

, for any c1 ∈ R.

plane 4x− 8y + 2z = 6

plane −10x+ 12y + z = −16

special solution s1

particular solution p

vectors x that solve Ax = b

This equation represents two planes intersecting in space, as in the picture above. The particular
solution is a point on the line of intersection and the special solution is a vector in the direction of
the line. The line of intersection is all the vectors x that make Ax = b true. In other words, it the
nullspace shifted by the vector p, hence it is an affine space.

In the example above, the two planes are defined by the initial equation. After row reduction, we
have two different planes which still have same intersection. Compare this with the 2-dimensional row
picture presented in Example 3.6.

Inquiry 8.10 (✠1.14): Consider the nullspace null(A) from Example 8.9.

1. Write the nullspace null(A) as the span of a single vector.

2. Let x̂ be a solution to Ax = b. Explain why 2x̂ is not a solution to Ax = b.

49



3. Using Inquiry 6.3, explain why the collection of all solutions still has some vector space
structure (even though “multiplying” vectors in the usual sense does not work, as shown
in the previous point). This type of space is an space.

8.2 Different types of complete solutions

Now we consider the implications for the complete solution given the rank of the matrix. Recall from
Definition 8.1 that A ∈ Mm×n has full rank if it has A has min(m,n) pivots.

Definition 8.11: Let A ∈ Mm×n.

• If each row of A has a pivot (so A has m pivots), then A has full row rank .

• If each column of A has a pivot (so A has n pivots), then A has full column rank .

Example 8.12. Consider the following types of common situations for rank, for A ∈ Mm×n. If A
has more rows than columns (so m > n) and has full column rank, then in row reduced echelon form
A looks like the block matrix

[
I
0

]
, where I is of size n×n and the zero matrix 0 has size (m−n)×n.

Then:

• all columns of A are pivot columns,

• there are no free variables, so there are no special solutions,

• the nullspace contains only the zero vector null(A) = {0},
• if Ax = b has a solution, there is one unique solution.



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



Analogously, If A has more columns than rows (so n > m) and has full row rank, then in row reduced
echelon form A looks like the block matrix [I 0], where I is of size m×m and the zero matrix 0 has
size m× (n−m). Then:

• all rows of A have pivots, so there are no zero rows,

• there are n−m special solutions,

• the column space is all of Rm,

• Ax = b has a solution for any vector b


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



Example 8.13. The equation Ax = b with A an m × 3 matrix with full column rank represents
m planes intersecting in 3-dimensional space R3. If the planes all intersect in one point, there is a
solution to this equation.

• For 1 ⩽ m < 3 and m randomly chosen planes, it is impossible for them to intersect in one point.

• For m = 3 and three randomly chosen planes, they will almost always intersect in one point.

• For m > 3 and m randomly chosen planes, they will almost never intersect in one point.

The general theory behind these claims has to do with general position of points in R3, and the fact
that three points are necessary to define a plane.

Inquiry 8.14 (✠1.14): Let A ∈ Mm×n and b ∈ Rm. Find an example of A and b so that
Ax = b has:

1. exactly one solution, with m = n = 2;

2. no solutions, with m = n = 2;
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3. exactly one solution, with m = 3, n = 2;

4. no solutions, with m = 3, n = 2;

5. infinitely many solutions, with m = 2, n = 3.

6. Explain why Ax = b can not have exactly one solution if n > m. That is, show that if it
has one solution, it has infinitely many.

Remark 8.15. We can summarize every matrix A ∈ Mm×n as one of the following four situations.

• rank(A) = m, rank(A) = n: Then A is square and invertible, and Ax = b has exactly 1 solution.

• rank(A) = m, rank(A) < n: Then A is wider than it is taller, and Ax = b has infinitely many
solutions.

• rank(A) < m, rank(A) = n: Then A is taller than it is wider, and Ax = b has 0 or 1 solution,
depending on what the bottom row(s) of [A | b] look like in RREF.

• rank(A) < m and rank(A) < n: Then A can have any shape, but it is not full rank, and Ax = b
has either 0 or infintely many solutions.

8.3 Exercises

Exercise 8.1. (✠1.15) Consider the two vectors v = [a a a a]T and w = [1 1 1 1]T . What will be
the rank of the 4× 4 matrix vwT ? Your answer should depend on a.

Exercise 8.2. (✠1.14) Find the complete solution to Ax = b, for

A =

3 0 −9 −3 0
6 0 −21 0 2
0 0 0 0 0

 , x =


x1
x2
x3
x4
x5

 , b =

 9
−1
0

 .

Exercise 8.3. (✠1.14) Suppose you know that the solution to a matrix equation Ax = b, where
A ∈ M2×3, is the vector

x =

 7
4
−2

+ c

−3
1
0

 ,

for any c ∈ R.

1. Construct one possible matrix A and vector b for which this could be the solution.

2. Do the same as above, but make it so that A has no zero entries.

Exercise 8.4. (✠1.15) For the following matrices A,B, find the ranks of ATA, AAT , BTA, BBT :

A =

[
2 0 3
−1 1 3

]
, B =


−1 3
9 0
7 0
−3 1

 .

Exercise 8.5. (✠1.15) Consider the vectors a =


a
a
a
a

, b =


b
b
b
b

, u =


1
1
1
1

, v =


1
0
1
0

, for a, b ∈ R.

1. What will be the rank of the following 4× 4 matrices:

51



(a) auT (b) bvT (c) auT + bvT

Your answers should depend on a and b.

2. Explain why the rank of xyT , for any x,y ∈ Rn, can never be greater than 1.
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Lecture 9: Complex numbers

Chapters 9.1 and 9.2 in Strang

• Fact 1: All the math we have done so far can be considered over C instead of R

• Fact 2: Complex number adition and multiplication have geometric meaning

✠ Standard 4.01: Express a complex number in one of four different ways

✠ Standard 4.02: Translate known properties of vectors and matrices to Hermitian vectors and
matrices

In this lecture we will take some time to introduce fully the topic of coplex numbers. Fortunately,
almost all the results we have seen so far with matrices over R apply to matrices over C as well.

9.1 The space of complex numbers

Definition 9.1: The complex numbers are elements of the set C = {x + iy : x, y ∈ R}. The
symbol i is the imaginary number , having the property that i2 = −1. For every z = x+ iy ∈ C:

• the standard form of z is x+ iy.

• in Cartesian, or rectangular coordinates, the number z is written (x, y).

The real part of z is x and its imaginary part is y. If x = 0, then z is a purely imaginary number .

Let z = x + iy and w = a + ib be complex numbers and c ∈ R. Complex number addition and
multiplication, and real number multiplication are defined in the following way:

z + w = (a+ x) + i(y + b)

zw = xa+ ixb+ iya+ i2tb = (xa− yb) + i(xb+ ya)

cz = cx+ icy

Inquiry 9.2 (✠4.02): The set C along with complex number addition and scalar multiplication
as above form a vector space.

1. Show that the function f : C → R2, given by f(x+ iy) = (x, y) is a bijection.

2. With the bijection from above, the complex number z = 1 + i could be considered as the
vector v = [ 11 ] ∈ R2. Compute the square z · z and the dot product v • v. Why do you
get two dfferent results?

3. For any z ∈ C, will z ·z always be a real number? Give an example when it is and another
example when it isn’t.

4. Describe a surjective function C → R that takes in a complex number, and outputs a real
number.

Example 9.3. What does the complex number (1 + i)−2 look like in standard form? Observe that

1

(1 + i)2
=

1

1 + 2i+ i2
=

1

1 + 2i− 1
=

1

2i
=

1

2i

i

i
=

i

−2i
=

−1

2
i.
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Definition 9.4: Let z = x + yi ∈ C. The (complex ) conjugate of z is z = z∗ = x − iy. The
absolute value, or modulus of z is

|z| =
√
zz =

√
(x+ iy)(x− iy) =

√
x2 + y2.

Taking the conjugate twice returns back the original number: (z∗)∗ = z.

Proposition 9.5. Let z = x+ iy, w = a+ ib ∈ C. Then the conjugate satisfies:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z ̸= 0

And the absolute value satisfies:

1. |z| = 0 iff z = 0

2. |z| = |z|

3. |zw| = |z||w|

4. |z + w| ⩽ |z|+ |w|

Definition 9.6: The third way to express z = x+ iy ∈ C is with polar coordinates (r, θ), where
r = |z| and θ is the angle from the positive x axis to the vector (x, y). Note that

x+ iy = r cos(θ) + ir sin(θ) = reiθ,

where the second equality is known as Euler’s formula. This last expression is in exponential
form.

Remark 9.7. All that we have seen so far about the complex numbers, and a new observation about
multiplying complex numbers, can be drawn together in a picture.

R

R

|z|

z

z

zw

w

z + w

x

y

=

=

=

=

zw rzrwe
i(θz+θw)

z + w rw cos(θw) + irw sin(θw)

z x+ iy = rz cos(θz) + irz sin(θz)

z x− iy = rz cos(θz)− irz sin(θz)

Remark 9.8. Putting complex numbers into polar coordinates makes computations in standard form
much easier. For z = reiθ and n ∈ N, we have:

• (De Moivre’s theorem) zn = (reiθ)n = rneinθ

• (complex roots) the nth roots of z are r1/nei(θ+2kπ)/n, for every k = 0, 1, . . . , n− 1.

For the second point, when z = 1 + 0i, then the kth root of z is called the kth root of unity .

Inquiry 9.9 (✠4.01): This inquiry is about the different forms of complex numbers.

1. Express z = 5 cos(π/4) + 5i sin(π/4) in standard form.

2. Express w = −
√
3− i in polar form.
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3. Find the 4th roots of p = 1 + i in Cartesian coordinates.

4. Explain why finding nth roots of unity is much easier in polar coordinates than in rectan-
gular coordinates.

Example 9.10. Below are given the 5th roots of z = −1 + 9i and the 5th roots of z = e0 = 1, or
unity. For some 5th roots ω of z, the complex numbers ω, ω2, ω3, ω4, ω5 = z are also shown. The circle
with radius 5

√
|z| is given to emphasize that all 5th roots are the same distance from 0.

R

R

−1 + 9i

R

R

e0

e2π/5

e4π/5

e6π/5

e8π/5

1 1 1

Remark 9.11. The space of complex numbers is a 2-dimensional vector space over R via the identi-
fication of Cartesian coordinates. However, it is a 1-dimensional vector space over C.

9.2 Complex vectors and complex matrices

Just like we generalized numbers to vectors, we generalize complex numbers to complex matrices. We
now talk about the vector space Cn, of vectors having n components, and the matrix space Mm×n(C),
of m× n matrices with complex number entries.

Remark 9.12. Multiplication of complex numbers may be viewed as matrix multiplication. Making
a correspondence between z = x+ iy ∈ C and [ xy ] ∈ R2, as in Inquiry 25.2, reveals a correspondence
for multiplication:

(a+ ib)(x+ iy) ↔
[
a −b
b a

] [
x
y

]
.

Definition 9.13: Let z = [z1 · · · zn]T ∈ Cn be a vector. The (complex ) conjugate is the vector
z = [ z1 ··· zn ]T .

Often we talk about not just the conjugate, but the conjugate transpose. The reason for taking both
the conjugate of each element and the transpose, when n = 2 and z = [ xy ] = x+ iy = z, is to get that

zT z = z∗z = ∥z∥2 = |z|2 = zz,

so the previous notion of length of a vector corresponds with the new notion of absolute value of a
complex number. The notation z∗ = zT is also used for matrices, with A∗ ∈ Mn×m(C) whenever
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A ∈ Mm×n(C) defined by (A∗)ij = Aji.

Definition 9.14: The square matrix A ∈ Mn×n(C) is is Hermitian if A = A∗.

We will see nice properties of Hermitian matrices later in the course. For now we consider some
of their properties.

Proposition 9.15. Let A,B ∈ Mn×n(C) be Hermitian. Then:

• the entries on the diagonal of A are real numbers

• the identity (AB)∗ = B∗A∗ holds

Inquiry 9.16 (✠4.02): Let A ∈ Mn×n(C) be Hermitian, and let v ∈ Cn.

1. Expand the product (v∗Av)∗ to show that it is Hermitian. How many rows and columns
does the product have, and in what space must it be?

2. Find the complete solution to
[

0 3+i
3−i 0

]
z =

[
i

2−i

]
, for z ∈ C2.

9.3 Exercises

Exercise 9.1. (✠4.02) Show that every complex number z = x+ iy for which at least one of x and
y are not zero has an inverse. That is, find w ∈ C for which zw = 1.

Exercise 9.2. (✠4.02) Prove all the claims of Proposition 9.5, for z = x+ yi, w = a+ bi ∈ C:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z ̸= 0

7. |z| = 0 iff z = 0

8. |z| = |z|

9. |zw| = |z||w|

10. |z + w| ⩽ |z|+ |w|

Exercise 9.3. (✠4.01) This question is about proving Euler’s formula cos(θ) + i sin(θ) = eiθ.

1. Take the derivative of f(θ) = (cos(θ) + i sin(θ))e−iθ with respect to θ.

2. Explain why the result of the previous step means that f(θ) is constant.

3. Evaluate f at θ = 0 to find this constant from the previous step.

4. Rearrange to get Euler’s formula.
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Part II

Vector spaces

Lecture 10: Independence, basis, dimension

Chapter 3.4 in Strang’s “Linear Algebra”

• Fact 1: A basis of a vector space V is a smalest possible set of vectors that spans V

• Fact 2: Bases of V are not unique. The size of a basis is unique - it is the dimension of V .

✠ Standard 2.03: Identify linearly independent subsets in a given set of vectors.

✠ Standard 2.04: Express the same vector in different bases.

✠ Standard 2.05: Find a basis the dimension of a vector space.

We have now arrived at the next big theme of this course: dimension.

10.1 Linear independence

Recall that the rank of a matrix A was the number of pivots A had, or the number of columns of A
that are not linear combinations of the other columns. A more precise way to say the second approach
is with linear independence.

Definition 10.1: Let {v1,v2, . . . ,vn} ⊆ Rm be the columns of a matrix A ∈ Mm×n. These
vectors are linearly independent if, equivalently,

• the only solution to Ax = 0 is x = 0, or

• x1v1 + x2v2 + · · ·+ xnvn = 0 implies xi = 0 for all i, or

• the nullspace of A is only the zero vector, that is, null(A) = {0}.

If a set of vectors is not linearly independent, then the set is linearly dependent .

Every set of vectors is either linearly independent or linearly dependent, there is no in-between. We
often say “the vectors are linearly independent” instead of “the set of vectors is linearly independet”,
but both are correct uses of the term.

Example 10.2. Slight changes in the matrix entries can lead to big differences:

• The vectors [ 11 ] and [ 22 ] are linearly dependent, because [ 1 2
1 2 ]

[−2
1

]
= [ 00 ].

• The vectors [ 11 ] and [ 2
2.001 ] are linearly independent, because attempting to solve Ax = 0 will

lead to x = 0.

Inquiry 10.3 (✠2.03): Recall the three different ways to express linear independence.

1. Pick any 3 vectors in R2. Explain why they must be linearly dependent. Hint: put them
as columns in a matrix and say something about its nullspace.

2. Does the above work for any 4, 5, . . . vectors in R2? What about any 2 vectors?

3. Try to generalize the above points into a statement like: “Any set of more than vectors
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in will be linearly .”

Recall the span of a collection of vectors from Definition 6.6 and Inquiry 6.11, and the columns of a
matrix spanning its column space, as well as the vectors from special solutions spanning the nullspace.

Definition 10.4: Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . If V = span(S), then S
is called a spanning set of V .

Example 10.5. Spanning sets are many and can be easily constructed.

• The vector space R3 has a spanning set in
[
1
0
0

]
,
[
0
1
1

]
,
[
0
0
1

]
, as well as

[
1
0
0

]
,
[
1
1
0

]
,
[
0
1
1

]
,
[
0
0
1

]
.

• The pivot columns of a matrix form a spanning set for its column space.

Some spanning sets are more special than others. In particular, when talking about the size of the
spanning set (number of vectors that it has, the number k from Definition 10.4), a minimal spanning
set of V is one that is never larger than any other spanning set of V .

Definition 10.6: Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . The set S is a basis for
V if, equivalently,

• S is a minimal spanning set for V , or

• S spans V , and S is linearly independent, or

• every v ∈ V can be written uniquely as v = a1v1 + · · ·+ anvn, for ai ∈ R.

Example 10.7. The standard basis for R3 consists of the vectors
[
1
0
0

]
,
[
0
1
1

]
,
[
0
0
1

]
. In general, the

standard basis for Rn consists of the n column vectors of the n×n identity matrix, and they are often
denoted e1, . . . , en: 

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 =

 | | | |
e1 e2 e3 · · · en
| | | |

 .

The standard basis is not the only basis for Rn, and the columns of every full rank n× n matrix will
give a basis for Rn.

Example 10.8. Let A ∈ Mm×n.

• A basis for the nullspace null(A) is the set of special solutions to Ax = 0.

• A basis for the column space col(A) is the pivot columns of A - this is not necessarily all the
columns of A.

Algorithm 5 (Find linearly independent vectors in a set): Given a set of vectors in Rn,
we can find which of them are linearly independent by either:

• making them columns of a matrix, doing elimination (with row swaps), and taking the
positions of the pivot columns, or,

• making them rows of a matrix, doing elimination (without row swaps), and taking the
positions of pivots rows.
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Inquiry 10.9 (✠2.03): Consider the vectors u1 =
[
1
0
1

]
,u2 =

[
0
1
1

]
,u3 =

[−1
1
1

]
,v =

[
1
2
4

]
in R3.

1. Show that {u1,u2,u3} is a linearly independent set.

2. Show that {u1,u2,u3,v} is a linearly dependent set.

3. Find two different pairs of numbers a, b, c, d ∈ R with au1 + bu2 + cu3 + dv = 0.

Example 10.10. Consider the following three vectors in R4:

u =


3
2
7
1

 , v =


1
−1
2
3

 , w =


5
5
12
5

 .

As columns of a matrix, we quickly eliminate entries below the diagonal to identify the the first two
as pivot columns and the last as a free column:

3 1 5
2 −1 5
7 2 12
1 3 5

 G.E.−−−−→


3 1 5
0 −5/3 13/3
0 0 0
0 0 0

 .

So u,v are indepdent, and w is a linear combination of u and v. Alternatively, we can make them
rows of a matrix, and the perform Gaussian elimination (without row swaps). That will give us zero
rows, which will correspond to linearly dependent vectors:3 2 7 1

1 −1 2 3
5 5 12 5

 G.E.−−−−→

3 2 7 1
0 −5/3 −1/3 8/3
0 0 0 0

 .

As in the first approach, we get that w depends on u and v. Hence {u,v} is a basis for the vector
space V = span(u,v,w).

10.2 Dimension and extending to a basis

The key idea from the first part of this lecture is that the word basis is another name for minimal
spanning set . It is often difficult to consider all possible spanning sets, so we use the word basis much
more often. Keep in mind three important things:

• bases are not unique,

• every basis of a vector space must have the same number of vectors, and

• every vector space has a basis.

The last conclusion is based on a fundamental (and unproven!) cornerstone of mathematics called the
axiom of choice. A special case is investigated in Inquiry 10.18.

Definition 10.11: Let V be a vector space. The dimension of V is the number of vectors in
any basis of V . It is denoted dim(V ).

Example 10.12. We have already seen dimension, but under different names.

• The dimension of Rn is n.

• The dimension of the column space of A is the rank of A.
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• The dimension of the nullspace is the nullity of A.

Inquiry 10.13 (✠2.05): For v = [ 11 ] ∈ R2, let V be the vector space of vectors in R2 perpen-
dicular to v.

1. Express V as a set, like V = {. . . | . . .}. That is, express V using set builder notation.

2. What is the dimension of V ?

3. Express V in another way, as the setof all scalar multiples of a particular vector.

Recall the definition of U ⊕ V and U + V from Definiton 6.9. There we saw that if U = span(B) and
V = span(B′), then U + V = span(B ∪B′). A similar statement holds for dimension.

Remark 10.14. Let V be a vector space with subspaces U,W .

• The intersection U ∩W is a subspace of V

• The sum + of vector spaces satisfies dim(U +W ) = dim(U) + dim(W )− dim(U ∩W )

• The sum ⊕ of vector spaces satisfies dim(U ⊕W ) = dim(U) + dim(W )

The third statement does not need that U,W be subspaces of the same space. Statements like this do
not exist for the union of vector spaces spaces, because that is not necessarily a vector space.

Remark 10.15. Let V be a vector space and U ⊆ V . If dim(U) = dim(V ), then U = V . This
follows by taking the basis u1, . . . , un of U , and asking if there are any vectors in V which cannot be
expressed as linear combinations of the ui. If no, then the spaces are the same. If there exists some
v, then u1, . . . ,un,v is a linearly independent set of n+ 1 vectors in V , which is impossible.

Definition 10.16: Let V be a vector space with dim(V ) = n, and U ⊆ V a subspace of
dimension dim(U) = k. The codimension of U in V is codim(U) = n− k.

For example, lines are codimension 1 in R2, but codimension 2 in R3. The set of points in Rn

that satisfy one linear equation (that goes through the origin) is codimension 1.

Example 10.17. The space of n × n matrices has dimension n2. It has as a subspace the space of
n×n upper triangular matrices, which has dimension n(n+1)/2. For n = 2, a basis for each of these
spaces is [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
in the first case, and [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
in the second case.

Inquiry 10.18 (✠2.03, 2.04): Consider the vector space R4 with its four standard basis vec-

tors e1, . . . , e4, as given in Example 10.7. Consider u =

[
1
2
3
4

]
,v =

[
0
1
−1
2

]
∈ R4

1. Explain why {u,v} cannot be a basis of R4. Is it linearly (in)dependent?

2. Explain why S = {u,v, e1, e2, e3, e4} cannot be a basis of R4. Is it a linearly
(in)dependent?

3. Find a linearly independent subset of S = {u,v, e1, e2, e3, e4} that contains u and v.
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4. For the two vectors of S you did not use in the previous point, express them as a linear
combination of the vectors you did use.

The third point is called extending a set to a basis. It is revisited again in Remark 15.12

10.3 The change of basis matrix

Example 10.19. As mentioned in Definition 10.6, given a basis for a vector space V , every vector in
V can be expressed uniquely as a linear combination of vectors of that basis: 4

−2
8

 = 4

10
0

− 2

01
0

+ 8

00
1


︸ ︷︷ ︸
in the standard basis of R3

= 14

10
0

− 10

11
0

+ 8

01
1


︸ ︷︷ ︸
in the basis of Example 10.5

= 10

10
1

− 8

01
1

+ 6

−1
1
1


︸ ︷︷ ︸

in the basis of Inquiry 10.9

.

The coefficients for the basis vectors were found by solving matrix equations by row reduction:

• The solution to

1 0 0
0 1 0
0 0 1

x =

 4
−2
8

 is x =

 4
−2
8



• The solution to

1 1 0
0 1 0
0 1 1

x =

 4
−2
8

 is x =

 14
−10
8



• The solution to

1 0 −1
0 1 1
1 1 1

x =

 4
−2
8

 is x =

10−8
6


Knowing the important coefficients 14,−10, 8 of the second basis, we can get the important coefficients
10,−8, 6 of the third basis by multiplication: 0 −1 0

1 3 1
−1 −2 0

 14
−10
8

 =

10−8
6

 .

We now learn how to construct this “change of basis” matrix, which lets us go from one basis to
another.

Remark 10.20. Whenever we have a different basis, how can we figure out what the linear combi-
nation is in the other basis, without doing the same work all over again? This is where the change of
basis matrix appears. Suppose that B and B′ are bases for V , with

B = {u1, . . . ,uk}, B′ = {w1, . . . ,wk}, v ∈ V.

Given this v ∈ V , the coefficients for expressing v in the basis B are in the solution vector x, and the
coefficients for expressing v in the basis B′ are in the solution vector y, for the equations | |

u1 · · · uk

| |

x = v,

 | |
w1 · · · wk

| |

y = v.

With the same approach, we can solve for each vector ui of the first basis B, and place the solutions
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ai into a new matrix: | |
w1 · · · wk

| |

ai = ui for all i, so then

 | |
a1 · · · ak
| |


︸ ︷︷ ︸
change of basis matrix

from B to B′

x = y.

Example 10.21. Consider the two bases B =
{
[ 11 ] ,

[
1
−1

]}
and B′ =

{
[ 37 ] ,

[−2
−4

]}
of R2. To construct

the change of basis matrix from B to B′, we need to express every vector of B as a linear combination
of vectors in B′. We do this by sight:[

1
1

]
= −

[
3
7

]
− 2

[
−2
−4

]
,

[
1
−1

]
= −3

[
3
7

]
− 5

[
−2
−4

]
,

Hence the change of basis matrix from vectors in the basis B to vectors in the basis B′ is

A =

[
−1 −3
−2 −5

]
.

For example, taking the vector [
−1
−13

]
= −7

[
1
1

]
+ 6

[
1
−1

]
in the basis B, we have the coefficient vector x =

[−7
6

]
. The coefficient vector y in the basis B′ is

given by computing

y =

[
−1 −3
−2 −5

] [
−7
6

]
=

[
7− 18
14− 30

]
=

[
−11
−16

]
, meaning

[
−1
−13

]
= −11

[
3
7

]
− 16

[
−2
−4

]
.

Note that the inverse of A will take us back to coefficients in the basis B.

10.4 Exercises

Exercise 10.1. (✠2.03) Find all sets of size 3 from the vectors below that are linearly independent:10
1

 ,

01
0

 ,

20
1

 ,

20
2

 ,

 3
−1
3

 .

Exercise 10.2. (✠2.05) For a 2× 2 matrix, linear independence on the columns only depends on
if one column is a multiple of the other.

(a)▷◁ Generate 10 000 random 2 × 2 matrices, with real number entries in the range [−5, 5]. How
many have column space dimension 1?

(b)▷◁ Repeat the same as in part (a), but use integer entries in the range [−5, 5]. How many have
column space dimension 1? Bonus: How many would you expect to have dimension 1?

Exercise 10.3. (✠2.04) Consider the basis B for R3 and a vector v,

B =


12
3

 ,

−1
1
−1

 ,

30
6

 , v =

−3
−1
5

 .

Express v in terms of B.

Exercise 10.4. (✠2.04) Find the change of basis matrix from
{
[ 32 ] ,

[−1
1

]}
to
{[−2

3

]
, [ 05 ]

}
.

Exercise 10.5. (✠2.04) This question is about expressing vectors in different bases.
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1. Express the vector

 3
−2
−8

 in the basis

11
0

 ,

01
1

 ,

10
1

.
2. There are two bases {a1,a2,a3} and {b1,b2,b3} of a vector space V , with the following relations:

b1 = a1 + a2, b2 = a2 + a3, b3 = a1 + a3.

If you know that v = 3a1 − 2a2 − 8a3, express v as a linear combination of b1,b2,b3.

Exercise 10.6. (✠2.05) Prove the claims from Remark 10.14.

Exercise 10.7. (✠2.05) This question is about vector spaces of matrices, where matrix addition
and scalar multiplication are defined as usual.

1. Give a basis for the space of diagonal 3×3 matrices and a basis for the space of skew-symmetric
3× 3 matrices.

2. For n ∈ N, what is the dimension of the space of n × n diagonal matrices and what is the
dimension of the space of n× n skew-symmetric matrices?

3. Show by example that the set of all invertible 2×2 matrices does not form a vector space. Show
that all linear combinations of invertible 2× 2 matrices describe the set M2×2.
Hint: Construct the basis matrices of M2×2 as linear combinatons of invertible matrices.
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Lecture 11: The four fundamental subspaces associated to a matrix

Chapter 3.5 in Strang’s “Linear Algebra”

• Fact 1: A line in R2 is given by one equation, in R3 by two equations.

• Fact 2: Every matrix with m rows splits up Rm into the column space and the left nullspace.

• Fact 3: Every matrix with n columns splits up Rn into the row space and the nullspace.

✠ Standard 2.06: Find the intersection of two planes.

✠ Standard 2.07: Describe a hyperplane as a span of vectors.

✠ Standard 2.08: Find the bases of the four fundamental subspaces of a matrix.

With this lecture we take the column space and nullspace to the transpose matrix, and describe strong
relationships among these spaces.

11.1 Lines, planes, and hyperplanes

Since we will be discussing spaces and their relationships with each other in this lecture, we begin
with a comparison relating two similar lines.

Example 11.1. Consider the two lines L,M ⊆ R2 given below.

R

R

(0, 0)

L

R

R

(0, 0)

M

Each of these lines can be considered in similar ways. Each is:

• the line y = x/4

• the pairs (x, y) that satisfy 1
4x− y = 0

• the nullspace of [ 1 −4 ]

• the set of vectors x for which [ 1 −4 ]x = 0

• a vector subspace of R2

• a vector space of dimension 1

• the line y = x/4 + 1

• the pairs (x, y) that satisfy 1
4x− y = −1

• not the nullspace of any matrix

• the set of vectors x for which [ 1 −4 ]x = −4

• not a vector subspace of R2

• an affine space of dimension 1

The line M can be considered as a vector space, using a different addition and multiplication than in
R2. This is the same affine space structure seen before in Inquiry 6.3 and Example 8.9.
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Note that the vectors in L do not span all of R2, but if we add another line at a different angle than
L, also going through the origin, vectors from both lines together will span R2.

R

R

(0, 0)

(4, 1)

(3, 2) (5, 2)
one line: neither of the two lines go through [ 52 ]

two lines: there is a unique solution to [ 4 3
1 2 ] [

a
b ] = [ 52 ]

The reason for going through all the different perspectives in Example 11.1 was to connect visual
with algebraic intution. We go one step further, into the third dimension, with the following example.

Example 11.2. Consider the two planes in R3 given below. Note that their intersection is a line.

z = 10x− 2y

z = −3x+ 7y

Both planes go through the origin (0, 0, 0). To find the vector along the line of intersection, we need
both equations to be satisfied at the same time. That is, we want to solve the matrix equation

[
10 −2 1
−3 7 1

]xy
z

 =

[
0
0

]
. Notice

[
10 −2 1
−3 7 1

]
RREF−−−−−→

[
1 0 9/64
0 1 13/64

]
,

so the nullspace of the matrix on the left is the span of the single vector
[ −9
−13
64

]
. Unlike in R2, a line

in R3 can not be described by a single equation. We either use two equations (of the two planes),
or a single vector. Finally, we observe that to describe a plane as a span of vectors, we also use the
nullspace:

null
([
10 −2 1

])
= null

([
1 −1/5 1/10

])
= span

1/51
0

 ,

−1/10
0
1

 .

These are the two vectors whose span is the plane z = 10x− 2y.

Inquiry 11.3 (✠2.06): Choose six different nonzero integers a, b, c, d, e, f . These describe two
planes ax+ by + cz = 0 and dx+ ey + fz = 0 in R3.

1. Describe each of the two planes as a span of two vectors each. Can you make the vectors
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only have integer entries?

2. Find the intersection of these two planes. Describe it as the span of one vector. Can you
make the vector only have integer entries?

Definition 11.4: A hyperplane in Rn is the set of points that satisfies a single equation a1x1 +
· · ·+ anxn = 0.

• For n = 1, a hyperplane in R1 is a point .

• For n = 2, a hyperplane in R2 is a line.

• For n = 3, a hyperplane in R3 is a plane.

A hyperplane is an (n− 1)-dimensional (or codimension 1) subspace of Rn.

The intersection of two planes in R3 is (almost always) a line, and the intersection of three planes
in R3 is (almost always) a point.

Inquiry 11.5 (✠2.06): Consider the vector v =
[

1
2
−3

]
∈ R3.

1. Construct a 2× 3 matrix A so that v is in the nullspace of A. That is, create an A so that
Av = 0. Try to make something other than the zero matrix!

2. Create a vector w that is perpendicular to v (that is, w • v = 0). Is w ∈ null(A)?

3. Find two planes in R3 so that their intersection is v.

4. Construct a 3× 3 matrix B so that col(B) = span(v).

5. What is the nullspace of B?

11.2 The four fundamental subspaces

Let A ∈ Mm×n, and let R ∈ Mm×n be the result of applying Guassian and Gauss–Jordan elimination
to A. We have seen two related vector spaces:

• the column space col(A) ̸= col(R), which is the span of the columns

• the nullspace null(A) = null(R), which is the span of the (special) solutions to Ax = 0 or Rx = 0

We now introduce two other spaces, which are related to the above two by the transpose of A.

Definition 11.6: Let A ∈ Mm×n.

• The row space, denoted row(A), is the span of the rows of A.

• The left nullspace is the span of the solutions to xTA = 0.

Together these four vector spaces are the four fundamental subspaces.

Remark 11.7. The left nullspace has no special way to write it. Observing that (xTA)T = ATx, we
see that the left nullspace of A is the vector space null(AT ). With this, we see several other relations
among the four fundamental spaces:

row(A) = col(AT ), row(AT ) = col(A), null(A) =

(
left null-

space of AT

)
, null(AT ) =

(
left null-
space of A

)
.
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Remark 11.8. The previous remark makes it clear that the row space and left nullspace are vector
spaces. Below we put together all the relationships among these four subspaces, for A ∈ Mm×n.

1. subspace relations:

• col(A) ⊆ Rm and null(AT ) ⊆ Rm are subspaces

• col(AT ) ⊆ Rn and null(A) ⊆ Rn are subspaces

2. dimension relations:

• dim(col(A)) = dim(col(AT )) = rank(A) = rank(AT )

• dim(col(A)) + dim(null(AT )) = m

• dim(col(AT )) + dim(null(A)) = n

3. sum relations:

• col(A) + null(AT ) = Rm

• col(AT ) + null(A) = Rn

The last statement in the second point of Remark 11.8 is called the rank-nullity theorem, which we
already saw just after Definition 8.6. We now look at more relations among these vector spaces.

Inquiry 11.9 (✠2.08): Consider the matrix A =
[
2 0 −1
1 −2 1

]
.

1. Describe the column space of A as the span of two nonzero vectors.

2. Suppose your answer to the above was col(A) = span(u,v). Compute ATu and ATv.
Explain why, in general, if v ∈ col(A) is non zero, then ATv ̸= 0.

3. Describe the left nullspace of A. Why does it only contain the zero vector?

4. Construct a 2× 3 matrix whose column space is 1-dimensional and whose left nullspace is
1-dimensional.

The statements of the third point in Remark 11.8 claim that any vector in Rn is (for the first
statement) a linear combination of the vectors in the column space of A and the left nullspace of A.

Inquiry 11.10 (✠2.08): Let A =
[

1 0
0 1
−1 −1

]
.

1. Describe the column space of A and the left nullspace of A as a span of vectors. These
vectors should all be in R3.

2. Are the three vectors you found in part 1. linearly indepedent?

3. Are the three standard basis vectors e1, e2, e3 in col(A)? Are they in null(AT )? Explain
how to get e1 from the three vectors you found in part 1.

4. Bonus: Find the change of basis matrix from the three vectors of part 2. to the three
standard basis vectors of R3.

Remark 11.11. Vectors in the column space of A are perpendicular to vectors in the left nullspace.
For example, consider the matrix

A =

[
1 2 3
2 4 6

]
, col(A) = span

{[
1
2

]
,

[
2
4

]
,

[
3
6

]}
= span

{[
1
2

]}
.
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The left nullspace is

null(AT ) = null

1 2
2 4
3 6

 = null

1 2
0 0
0 0

 = span

{[
−2
1

]}
.

Taking the dot product of the basis vectors, we find

[
1 2

] [−2
1

]
= −2 + 2 = 0,

and so every vector in col(A) is perpendicular to every vector in null(AT ).

Inquiry 11.12 (✠2.08): Consider the vector v =

[
1
0
−1
0

]
∈ R4, and let A ∈ M4×4.

1. Suppose that

[
1
0
0
0

]
∈ col(A) and

[
0
0
−1
0

]
∈ null(AT ). Suppose that v ∈ col(A). Explain why

this also means that

[
0
0
−1
0

]
∈ col(A) as well.

2. Find two vectors in R4 that are perpendicular to v. Explain why this gives you a 4 × 2
matrix that contains v in its left nullspace.

Example 11.13. For a practical application of these spaces, consider the following two matrices, both
representations of the directed graph below. In Ainc, the rows correspond to edges, and the columns
correspond to vertices: each row has a −1 for the vertex where the edge starts and a 1 for the vertex
where the edge ends. This is called an incidence matrix . In Aadj , (i, j)-entry is 1 if there is a directed
edge from vi to vj , and 0 otherwise. This is called the adjacency matrix .

Ainc =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 Aadj =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0


v1

v2 v3

v4

e2
e3

e5

e1

e4

Bringing the matrix (Ainc)
T to row reduced echelon form gives information about the row space of

Ainc and the left nullspace of Ainc. The linearly independent rows of Ainc are the rows corresponding
to the edges e2, e2, e4, and these edges form a spanning tree of the graph. The dependent row 3 of Ainc,
corresponding to edge e3, is dependent because adding it would create a cycle in the graph (among
v1, v2, v3), and cycles contain redundant information, so we want to get rid of cycles. Similarly we get
a cycle if we add row 5 of Ainc, corresponding to edge e5, because then we have a cycle of four edges.

AT
inc =


−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

 G.E.−−−→


−1 −1 0 0 0
0 −1 −1 −1 0
0 0 0 −1 −1
0 0 0 0 0


v1

v2 v3

v4

e2
e3

e5

e1

e4

68



11.3 Exercises

Exercise 11.1. (✠2.07) Consider the plane P = {(x, y, z) ∈ R3 : 2x − 4y − 5z = 0}, which is a
subspace of R3.

1. Find a vector n normal to the plane P . That is, find n ∈ R3 so that n • v = 0, for v =
[
x
y
z

]
a

solution to 2x− 4y − 5z = 0.

2. Considering the vector n as a 1 × 3 matrix A, the nullspace of A is precisely all points in the
plane P . Find this nullspace, and express it as a span.

3. What is a basis for P?

Exercise 11.2. (✠2.08) For a, b, c ∈ R, consider the matrix

A =


0 1 a 0 a 0
0 0 1 b 0 b
0 0 0 1 c c
0 0 0 0 0 0

 .

1. Find a basis for the column space, nullspace, row space, and left nullspace of A.

2. Do the dimensions of the four fundamental spaces change if all of a, b, c are zero?

Exercise 11.3. (✠2.08) Let A =

0 1 0
0 0 1
0 0 0

. Describe the four fundamental subspaces of A, A+I,

and A+A2.

Exercise 11.4. (✠2.08) Let u = [ 12 ] and v = [ 34 ].

1. Construct a 2× 4 matrix A for which col(A) = span({u,v}).

2. Find a basis for the column space and row space of uvT + (uvT )2.

Exercise 11.5. (✠2.07, 2.08) Consider the following two planes, as subspaces of R3:

P1 = {x = (x1, x2, x3) ∈ R3 : 3x1 − 4x2 + x3 = 0},
P2 = {x = (x1, x2, x3) ∈ R3 : 5x1 − 10x3 = 0}.

1. Find normal vectors n1 and n2 to the planes P1 and P2, respectively.

2. Find bases B1 and B2 for the planes P1 and P2, respectively.
Hint: the basis of a plane is the nullspace of the defining equation.

3. Construct a 2× 3 matrix A1 whose row space is P1. Show that the nullspace of A1 is the span
of n1.

4. Construct a 3× 2 matrix A2 whose column space is P2. Show that the left nullspace of A2 is the
span of n2.
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Lecture 12: Orthogonality

Chapter 4.1 in Strang’s “Linear Algebra”

• Fact 1: Two orthogonal subspaces are orthogonal complements if their dimensions sum up to
the dimension of the space they are in.

• Fact 2: The column space is the orthogonal complement to the left nullspace, and the nullspace
is the orthogonal complement to the row space.

✠ Standard 2.09: Determine if the columns of a matrix are orthogonal.

✠ Standard 2.10: Determine if two subspaces are orthogonal.

The vector space pairs column space / nullspace and row space / left nullspace are special because
of the relationship of each element of the pair to the other. In this lecture we will generalize this
relationship.

12.1 Orthogonal spaces

Recall from Lecture 1 that two vectors u,v ∈ Rn are orthogonal if u •v = uTv = 0. Note that in this
case we have something that looks like the Pythagorean theorem:

∥u+ v∥2 = (u+ v) • (u+ v) = u • u+ 2u • v︸ ︷︷ ︸
0

+v • v = ∥u∥2 + ∥v∥2.

If u,v are orthogonal and both have length 1, then they are called orthonormal

Definition 12.1: Two subspaces U, V ⊆ Rn are orthogonal if every pair of vectors u ∈ U,v ∈ V
is orthogonal. We say that “U is orthogonal to V ” and “V is orthogonal to U”, which both
mean the same thing.

Example 12.2. Consider the following subspaces of Euclidean space.

R

R

U

V

R

RR

V
U

R

RR

V
U

lines at 90◦ to each other in
R2 are orthogonal

a line coming out of a plane
in R3 at 90◦ is orthogonal to

the plane

two planes in R3 that
“intersect at 90◦” are not

orthogonal

Two planes “intersecting at 90◦” does not make sense, because any angle can be found between the
two planes with vectors in them. The planes intersect in a 1-dimensional vector subspace (the x-axis),
and the inner product of [ 1 0 0 ]T with itself is not zero.
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Inquiry 12.3 (✠2.10): In Example 12.2 above, the third example with two planes looks like
it “should” describe a perpendicular intersection.

1. Construct bases for U and for V of two vectors each. Make it so that the bases have a
common vector.

2. Take the symmetric difference of the two basis sets. What is the angle between the two
vectors?

3. Give a proper description of what the “perpendicular feeling” in the picture is, using bases.

Example 12.4. For A ∈ Mm×n, the nullspace null(A) and the row space row(A) are orthognal to
each other. Recall that x ∈ null(A) if Ax = 0. Another way of saying this is, for ri ∈ Rn a row of A,
that 

− r1 −
− r2 −

...
− rm −

x =


r1 • x
r2 • x

...
rm • x

 =


0
0
...
0

 ,

and since the row space row(A) = span({r1, . . . , rm}), we see that v • x = 0 for any v ∈ row(A) and
for any x ∈ null(A). Applying the same observation to the transpose AT , we see that the left nullspace
of A (which the nullspace of AT ) is orthogonal to the column space of A (which is the row space of
AT ).

Inquiry 12.5 (✠2.10): This inquiry uses Python, and follows the Python notebook on the
course website.

1. Generate 100 real-valued vectors R2, with entries in the range [0, 5]. How many pairs are
orthogonal? How many have inner product very close to zero?

2. Generate 100 integer-valued vectors R2, with entries in {0, 1, 2, 3, 4, 5}. How many pairs
are orthogonal? How many would you expect to be orthogonal?

3. Generalize the previous point to R3.

Remark 12.6. To check that two vector spaces are orthogonal, it suffices to check that every pair of
elements u ∈ B, v ∈ B′ are orthogonal, for B a basis of U and B′ a basis for V .

We now consider orthogonality in the context of particular matrices.

Example 12.7. The matrixRθ :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is called the rotation matrix , since the angle between

v ∈ R2 and Rθv ∈ R2 is exactly θ. The columns of Rθ are orthogonal, as

[
cos(θ) sin(θ)

] [− sin(θ)
cos(θ)

]
= − cos(θ) sin(θ) + sin(θ) cos(θ) = 0,

for any angle θ. The columns are also orthonormal, as

[
cos(θ) sin(θ)

] [cos(θ)
sin(θ)

]
= cos2(θ) + sin2(θ) = 1,

[
− sin(θ) cos(θ)

] [− sin(θ)
cos(θ)

]
= sin2(θ) + cos2(θ) = 1.

Example 12.8. Consider a matrix A ∈ M3×6 as below. It does not have all orthogonal rows and
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columns, as row reduction shows we have only two pivots, meaning the row rank = column rank is 2:

A =

1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 RREF−−−−−→

1 2 0 1 2
0 0 1 1 1
0 0 0 0 0

 , AT =


1 1 2
2 2 4
3 4 8
4 5 10
5 6 12

 RREF−−−−−→


1 0 0
0 0 0
0 1 2
0 0 0
0 0 0

 .

That is, columns 1 and 3 of A describe the 2-dimensional column space orthogonal to the 1-dimensional
left nullspace of row 3. Analogously, columns 2,4,5 ofA describe the 3-dimensional nullspace orthogonal
to the row space of rows 1 and 2 of A:

col(A) = span


11
2

 ,

34
8

 is orthogonal to null(AT ) = span


 0
−2
1

 ,

null(A) = span




−2
1
0
0
0

 ,


−1
0
−1
1
0

 ,


−2
0
−1
0
1


 is orthogonal to row(A) = span




1
2
3
4
5

 ,


1
2
4
5
6


 .

We are left with a 2 × 2 invertible submatrix of A, hiding in the intersection of the pivot rows and
pivot columns. This submatrix is important for finding left and right inverses of non-square matrices,
and for singular value decomposition, which we will see later in the course.

A =

 1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 , Ainv =

[
1 3
1 4

]
.

12.2 Orthogonal relationships

Definition 12.9: If two subspaces U, V ⊆ Rn are orthogonal and dim(U) + dim(V ) = n, then
each is the orthogonal complement of the other in Rn. That is, U is the orthogonal complement
of V , written U = V ⊥, and V is the orthogonal complement of U , written V = U⊥.

Remark 12.10. Recall the concept of codimension from Definition 10.16. The codimension of a space
is equal to the dimension of its orthogonal complement. That is, codim(U) = dim(U⊥).

Remark 12.11. It follows that, whenever we have orthogonal complements U = V ⊥, with U, V ⊆ Rn

subspaces, then:

• U + V = Rn, or in other words,

• any x ∈ Rn can be expressed as a sum x = u+ v of two elements, u ∈ U and v ∈ V .

Theorem 12.11.1. Let U, V be subspaces of Rn. Then

1. (U⊥)⊥ = U

2. (U + V )⊥ = U⊥ ∩ V ⊥

3. (U ∩ V )⊥ = U⊥ + V ⊥

Proof. We only prove the second point, you will prove the other points in your homework. Recall
that U + V = {u + v : u ∈ U,v ∈ V }. Take u ∈ U , v ∈ V , and x ∈ (U + V )⊥. To see that
(U + V )⊥ ⊆ U⊥ ∩ V ⊥, notice that u,v ∈ U + V , hence

u • x = 0 =⇒ x ∈ U⊥, v • x = 0 =⇒ x ∈ V ⊥,

72



and so x ∈ U⊥ ∩V ⊥. Since the vectors were arbitrary, we get that (U +V )⊥ ⊆ U⊥+V ⊥. To see that
U⊥ ∩ V ⊥ ⊆ (U + V )⊥, take y ∈ U⊥ ∩ V ⊥, which means that both y ∈ U⊥ and y ∈ V ⊥. Consider the
arbitrary element u+ v ∈ U + V , for which

y • (u+ v) = y • u+ y • v = 0 + 0 = 0,

meaning that y ∈ (U+V )⊥. Again, since the vectors are arbitrary, it follows that U⊥∩V ⊥ ⊆ (U+V )⊥.
Combining these two statements, we get that (U + V )⊥ = U⊥ ∩ V ⊥.

Example 12.12. Combining Example 12.4 and the rank-nullity theorem from Lecture 11, for A ∈
Mm×n we see that

• the nullspace and row space are orthogonal complements: null(A) = row(A)⊥

• the left nullspace and column space are orthogonal complements: null(AT ) = col(A)⊥

That is, along with Remark 12.11, any x ∈ Rn can be written as a sum x = xr+xn, where xr ∈ row(A)
and xn ∈ null(A). It follows that no row of A can be in the nullspace of A.

Inquiry 12.13 (✠2.10): Let V be a vector space and U,W ⊆ V subpaces, with U = W⊥.

1. If dim(V ) = n and dim(U) = dim(W ) = k, explain what k must be, in terms of n.

2. You are given that U = span(u1, . . . ,ui) and W = span(w1, . . . ,wj). Explain the rela-
tionship between i, j, k.

We finish this lecture with an observation about bases of Rn.

Remark 12.14. Recall that to be a basis of Rn, a set of vectors has to be linearly independent and
had to span Rn. It follows that:

• If a set of n vectors is linearly independent, it spans Rn.

• If n vectors span Rn, they must be linearly independent.

The second fact comes from considering an n× n matrix A whose columns span Rn, or equivalently,
where for every b ∈ Rn there is a unique solution x in Ax = b. If we argue that the columns are
linearly dependent, then there must be at least one special solution, and so infinitely many solutions
to Ax = b, but this contradicts what we originally assumed.

12.3 Exercises

Exercise 12.1. (✠2.09) Let A =


−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

 be a symmetric 4× 4 matrix.

1. Find which pairs of columns of A are orthogonal to each other.

2. Give the nullspace of A as a span of the special solutions to Ax = 0.

3. Show that the column space of A is orthogonal to the nullspace of A.

4. Explain why for any symmetric matrix (not just the one given), its column space is orthogonal
to its nullspace.

Exercise 12.2. (✠2.10) Confirm the observation from Remark 12.6. That is, let B = {u1, . . . ,uk}
be a basis for a vector space U ⊆ Rn, and let B′ = {v1, . . . ,vℓ} be a basis for a vector space V ⊆ Rn.
If you know that ui ·vj = 0 for all i, j, check that u•v = 0 for arbitrary elements u ∈ U and v ∈ V .
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Exercise 12.3. (✠1.02) Check that the claim about the angle between v and Rθv from Example
12.7 is indeed true.

Exercise 12.4. (✠2.10) Let A ∈ Mm×n. Show that there is a bijective function f : row(A) → col(A).
Hint: use orthogonality and the decomposition of vectors described in Example 9.13.

Exercise 12.5. (✠2.10) Let U, V be subspaces of Rn.

1. Show that (U⊥)⊥ = U .

2. Show that (U ∩ V )⊥ = U⊥ + V ⊥.

3. Suppose there exist matrices A,B with U = col(A) and V = col(B). Find a matrix C for which
null(C) = (U + V )⊥.
Hint: construct C as a block matrix.

Exercise 12.6. (✠2.10) Let A =

1 2
1 3
2 5

 and B =

−1 2
−1 −2
1 3

.
1. What are the dimensions of col(A) and col(B)? Only using dimensions, explain why col(A) ̸=

col(B)⊥.

2. Find a vector that is both in col(A) and col(B).
Hint: Row reduce the block matrix

[
A B

]
.
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Lecture 13: Projections

Chapter 4.2 in Strang’s “Linear Algebra”

• Fact 1: A projection of a vector is always a “projection to” somewhere or “projection onto”
something.

• Fact 2: A projection of a vector is another vector.

• Fact 3: Projections are often used in problems that require the “best approximations” of some-
thing.

✠ Standard 2.11: Compute the projection of a vector onto another vector.

✠ Standard 2.12: Compute the projection of a vector onto a subspace.

We continue our study of orthogonality by describing how it affects arbitrary vectors, not just ones in
the vector subspaces being considered.

13.1 Projecting onto lines

To project a vector v ∈ R3 onto some other vector w ∈ R3 (or onto some plane P going through the
origin), means to create a new vector that points in the same direction as w (or lies in P ), and is “as
close as possible” to the first vector v.

R

R

R

Pspan(w)
•v••

•

the projection of v onto w

the projection of v onto
the subspace P

Since both w and P are subspaces of R3, projections can be understood in (at least) two ways:

1. the projection of v is the part of v that lies in the subspace to which you are projecting

2. the projection of v produces another vector v′, so projecting is simply multiplying by some
appropriate matrix A: Av = v′

Both of these approaches are correct.

Example 13.1. The act of projecting is often done by a matrix:

• Projecting v ∈ R3 onto the y-axis is multiplying v by
[
0 0 0
0 1 0
0 0 0

]
• Projecting v onto the xy-plane is multiplying v by

[
1 0 0
0 1 0
0 0 0

]
In general, projecting a vector u onto a vector v uses the formula for the angle between them, from
Proposition 1.19. Given two such arbitrary vectors, we want to compute the vector p, which goes in
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the direction of v, and is one side of a right triangle with u as hypotenuse.

R

R

u

v

p
θ

cos(θ) =
u • v

∥u∥∥v∥
=

adjacent

hypotenuse

Since the hypotenuse has length ∥u∥, the adjacent, which is p, must have length u•v
∥v∥ . The vector v

may not have unit length, but the vector v
∥v∥ does, and it goes in the same direction as v. Hence p

may be expressed as
u • v
∥v∥

· v

∥v∥
=

u • v
∥v∥2

v =
u • v
v • v

v.

Definition 13.2: The projection of u onto v is the vector

projv(u) =
u • v
v • v

v. (3)

The difference u− projv(u) is called the error vector .

Example 13.3. We note two trivial examples of projections.

• Projecting u onto a line which is orthogonal to u gives the zero vector. This makes sense,
because u • v = 0 for all v in this line. In this case the error vector is equal to u.

• Projecting u onto the line on which u already lies gives back u. This also makes sense, because
the line is all vectors cu, for c ∈ R, and for v = cu, the expression u•v

v•v becomes 1
c , and

1
cv = u.

In this case the error vector is the zero vector.

Considering the dot product as multiplication of matrices, Equation (3) becomes

uTv

v • v
v =

vTu

v • v
v = v

vTu

v • v
=

vvTu

v • v
=

1

v • v
vvT︸ ︷︷ ︸

P

u. (4)

The matrix P is the rank one projection matrix . The idea for it being rank one is that the projection
goes to a 1-dimensional subspace, a line.

Inquiry 13.4 (✠2.11): This inquiry continues the ideas from Example 13.3 above

1. Explain what properties of scalar, vector, or matrix operations are being used for each
equality in Equation (4).

2. Explain why the projection matrix is always rank 0 or rank 1, but never rank 2.

3. Let P =
[
a b
b c

]
∈ M2×2 be a symmetric matrix. Using Equation (4), explain what condi-

tions must be true for a, b, c ∈ R for P to represent a projection matrix.

Remark 13.5. The error vector e = u−p from Definition 13.2 is also a type of projection, but onto
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a different vector, one that is orthogonal to v and p.

u

v

w

p

e

To get a matrix for the projection of u onto w, we want the result to be e = u − p. Since p = Pu,
we quickly see that e = (I − P )u. Hence the projection matrix is I − P .

13.2 Projecting onto subspaces

Next we consider the more general situation of projection a vector onto a subspace. Since all vector
spaces have a spanning set, we consider a subspace to be a span of vectors. Combining these vectors
as columns of a matrix, we get the column space.

Definition 13.6: Let V = span{v1,v2, . . . ,vk} ⊆ Rn, and let A be the matrix with these
vectors as its columns. For any u ∈ Rn, the projection of u onto V is the vector

projV (u) = A(ATA)−1AT︸ ︷︷ ︸
P

u.

We assume the vi are linearly independent, as otherwise ATA does not have an inverse. If the vi
are not independent, remove the vectors that depend on others (this does not change the span).

The motivation for this expression is slightly more tedious, and comes from observing that for p = Ax
the projection (for some appropriate x), the vector u−Ax is orthogonal to the column space of A.

Remark 13.7. Since V ⊥ is the orthogonal complement of V , by Remark 12.11, every u ∈ Rn can be
expressed as u = v + v′, where v ∈ V and v′ ∈ V ⊥. Since matrix multiplication is linear, and using
the trivial projections from Example 13.3, it follows that

projV (u) = projV (v+ v′) = projV (v) + projV (v
′) = v+ 0 = v,

projV ⊥(u) = projV ⊥(v+ v′) = projV ⊥(v) + projV ⊥(v′) = 0 + v′ = v′,

and so we always have v = projV (v) + projV ⊥(v) for any v ∈ Rn. This gives a matrix for projecting
onto the orthogonal complement, as

projV ⊥(u) = u− projV (u) = u−A(ATA)−1ATu = (I −A(ATA)−1AT )︸ ︷︷ ︸
P

u.

Inquiry 13.8 (✠2.12): Let V = R2, choose two perpendicular vectors v1,v2 ∈ R2. Let
w ∈ R2 be a non-trivial linear combination of both of the vectors.

1. Compute the two 2× 2 projection matrices P1 = projspan(v1) and P2 = projspan(v2).

2. Explain why P1P2w = P2P1w = 0. Is P1P2 = P2P1 = 0?

3. Explain why P1P1w = P1w and P2P2w = P2w. Is P1P1 = P2P2 = I?

See Exercise 13.1 for more guidance.
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13.3 Exercises

Exercise 13.1. (✠2.11) This question is about repeated projections.

1. Show that projecting twice onto a line is the same as projecting once.

2. Show that projecting twice onto a subspace is the same as projecting once.

Hint: Use the projection matrices P from Equation (4) and Definition 13.6, and show that P 2 = P .

3. Let Rθ ∈ M2×2 be the rotation matrix from Example 12.7. For which θ ∈ [0, 2π) is Rθ a
projection matrix? Justify your answer.

Exercise 13.2. (✠2.11) Let v = (1, 1, 1) ∈ R3.

1.▷◁ Take random vectors in the unit square in R3, and plot the average error, up until 1000 vectors,
when projecting to v.

2. What does this number converge to?

3. Bonus: Prove this limit.

Exercise 13.3. (✠2.11, 2.12) Find the projection of v = (−3,−1, 6) onto the plane 3x+4y−9z = 0
and its normal vector.

Exercise 13.4. (✠2.12) Let v = (x, y, z, w).

1. What matrix M projects v onto the xy-plane to produce (x, y, 0, 0)? That is, find M for
Mv = (x, y, 0, 0).

2. What matrix N cycles the axes to produce (w, x, y, z)? That is, find N for Nv = (w, x, y, z).

3. Explain why N is not a projection matrix.

Exercise 13.5. (✠2.12) The set U ⊆ Rn is a subspace with basis u1, . . . ,uk. These basis vectors
are the columns of the n × k matrix A. For any v ∈ Rn, define the reflection of v in U to be the
vector

reflU (v) := v− 2projU⊥(v).

1. Construct the matrix of reflU .

2. Show that reflU preserves length, that is, show that ∥reflU (v)∥ = ∥v∥ for all v ∈ Rn.

Exercise 13.6. (✠2.12) Let A =


1 2 −1 0
1 0 1 −1
0 −1 1 0
2 1 1 −2
−1 0 −1 1

, B =


−1 0
2 1
1 −1
0 −1
0 2

, and v =


1
0
−1
0
1

.
1. Compute the projection of v onto col(A) and col(A)⊥. What is the angle between the two

projections?

2. Compute the projection of col(B) onto col(A).
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Lecture 14: The least squares approximation

Chapter 4.3 in Strang’s “Linear Algebra”

• Fact 1: The least squares approximation is a vector x̂ that is “the closest solution to” Ax = b
when b ̸∈ col(A)

• Fact 2: If Ax = b does not have a solution, then ATAx = b will have a solution, as long as the
rows of A are linearly independent.

✠ Standard 2.13: Find the least squares solution to a matrix equation.

✠ Standard 2.14: Find the degree-d polynomial that approximates a collection of points in R2.

One of the main applications of projections is finding the the closest solution to a linear system that
has no exact solution.

14.1 Least squares for lines

When given points in the plane R2, it is often assumed there is some underlying relationship among
the points. To discover this relationship from the points, some approximation must be made, becaused
the points are never arramnged in a neat pattern.

Example 14.1. Consider the points (1, 4), (7, 1), (5, 3) ∈ R2. Is there a line y = ax+ b goes through
all of them? If yes, which one is it? If no, why?

R

R

There is no such line, because any two of the points determine a line that does not intersect the third
point. We are equivalently asking for a solution to three equations, or to a linear system.

4 = a+ b
1 = 7a+ b
3 = 5a+ b

1 1
7 1
5 1


︸ ︷︷ ︸

A

[
a
b

]
=

41
3

  1 1 4
7 1 1
5 1 3

 G.E.−−−−→

 1 1 4
0 −6 −27
0 0 1



Note that [ 4 1 3 ]T is not in the column space of the matrix A, since the auigmented matrix by Gaussian
elimination gives the contradictory equation 0 = 1 in the last row. However, we still want to find a
line that is “as close as possible”, and projections help us do that.

Remark 14.2. Above we had a matrix equation Ax = b for which b ̸∈ col(A). However, we can
project b onto col(A), which will guarantee a solution. That is, we can always write b = p+ e, where
p ∈ col(A) and e is orthogonal to col(A).
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Definition 14.3: Let A ∈ Mm×n and b ∈ Rm, with b = p + e and p ∈ col(A). The least
squares solution to Ax = b is a vector x̂ that, equivalently,

• makes the distance between Ax and b as small as possible

• makes the number ∥Ax− b∥ as small as possible

• is the solution to Ax = p

In practice, we minimize ∥Ax− b∥2 instead of ∥Ax− b∥, since square roots are hard to deal with.
It does not matter which expresion we minimize, because a < b iff a2 < b2 for a, b nonnegative. The
first approach to finding the least squares solution is to use calculus, because that is how to find the
minimum of a quadratic function.

Example 14.4. Using the equation Ax = b fom Example 14.1, we have

∥Ax− b∥2 =

wwwwww
1 1
7 1
5 1

[a
b

]
−

41
3

wwwwww
2

=

wwwwww
 a+ b
7a+ b
5a+ b

−

41
3

wwwwww
2

=

wwwwww
 a+ b− 4
7a+ b− 1
5a+ b− 3

wwwwww
2

,

which simplifies to
M(a, b) = (a+ b− 4)2 + (7a+ b− 1)2 + (5a+ b− 3)2. (5)

To find its minimum, we take the derivative. Since this is a function in two variables, we have two
derivatives to take.

∂M

∂a
= 2(a+ b− 4) + 2(7a+ b− 1)(7) + 2(5a+ b− 3)(5) = 150a+ 26b− 52

∂M

∂b
= 2(a+ b− 4) + 2(7a+ b− 1) + 2(5a+ b− 3) = 26a+ 6b− 16

Having these derivatives be zero produces a new matrix equation to solve:[
150 26
26 6

] [
a
b

]
=

[
52
16

]
:

[
150 26 52
26 6 16

]
RREF−−−−−→

[
1 0 −13

28
0 1 131

28

]
We now see the line y = −13

28x+ 131
28 is the best approximation:

R

R

zoom in−−−−−−→

R

R

(5, 3)

y = ax+ b

The vertical distances from the points to the line have been minimized. Indeed, for example with
(5, 3), minimizing the vertical distance between it and the line y = ax+ b means making the value

∥(5, 5a+ b)− (5, 3)∥2 = ∥(5− 5, 5a+ b− 3)∥2 = (5− 5)2 + (5a+ b− 3)2 = (5a+ b− 3)2

as small as possible, which is exactly the third term in M(a, b) from Equation (5).

Inquiry 14.5 (✠2.13): Suppose you are given three points above are above each other: (1, 1),
(1, 3), and (1, 4).
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1. Redo Example 14.4 with these points to see where the example fails.

2. What do you think is the “best” line that goes through these points?

3. Explain why there is no problem if a fourth point is added at a different x-value.

Remark 14.6. The “distance” from a point to the line can be throught of as the shortest length - not
always the vertical distance. This is sometimes called the perpendicular distance, and will be solved
by the method presented later in Lecture 24.

The second approach is to observe that for b = p+ e, the error vector e is in the left nullspace of
A, since the column space and left nullspace are orthogonal complements.

Theorem 14.6.1. Let A ∈ Mm×n. If b ̸∈ col(A), then

1. the equation Ax = b has no solution, and

2. the equation ATAx = ATb does have a solution.

Moreover, the solution to ATAx = ATb is the least squares solution to Ax = b.

The justification for the second point of this statement is given in the folowing inquiry.

Inquiry 14.7 (✠2.13): This inquiry explains the reasoning behind Theorem 14.6.1. Let Ax =
b be a matrix equation with b ̸∈ col(A), and b = p+ e, where p = projcol(A)(b).

1. Explain why the error vector e ∈ null(AT ).
Hint: use orthogonal complements.

2. What does ATb simplify to, when b is replaced by p+ e? Use what you showed above.

3. Convince yourself that ATp ∈ col(AT ). Explain why this means that ATp ̸∈ null(A).

4. Show that if x ∈ null(A), then x ∈ null(ATA).
Hint: use orthogonal complements.

5. Show that if x ∈ null(ATA), then x ∈ null(A).
Hint: use the positive definiteness of the norm.

6. Put everything together to get that ATp ∈ col(ATA). Explain why this means that
ATAx = ATb has a solution.

For points 4 and 5, see Exercise 14.2 for more guidance.

14.2 Least squares for higher degree polynomials

Suppose we want to generalize the previous section, and find a quadratic function that goes through
three points in the plane R2. Quadratics have the form y = ax2 + bx+ c, so there are three variables
a, b, c that need to be found.

Example 14.8. Three points always have a unique quadratic going through them (which can be
found by back-substitution), so we add another point (8, 2) for increased difficulty.

R

R

4 = a+ b+ c
1 = 49a+ 7b+ c
3 = 25a+ 5b+ c
2 = 64a+ 8b+ c


1 1 1
49 7 1
25 5 1
64 8 1


︸ ︷︷ ︸

A

ab
c


︸︷︷︸
x

=


4
1
3
2


︸︷︷︸
b
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The process then is very similar, except we have three variables:

M(a, b, c) = ∥Ax− b∥2 = (a+ b+c−4)2+(49a+7b+c−1)2+(25a+5b+c−3)2+(64a+8b+c−2)2.

Taking the derivative in all three variables gives

∂M

∂a
= 14246a+ 1962b+ 278c− 512,

∂M

∂b
= 1962a+ 278b+ 42c− 84,

∂M

∂c
= 278a+ 42b+ 8c− 20,

which, when placed into a system, leads to the solutions a = 1
372 , b = −241

620 , c =
2068
465 , as shown in the

plot above.

Definition 14.9: Let p1 = (x1, y1), . . . ,pn = (xn, yn) ∈ R2. The degree-d polynomial a0 +
a1x + a2x

2 + · · · + adx
d that approximates the points pi is the least squares solution to the

matrix equation 
1 x1 x21 · · · xd1
1 x2 x22 · · · xd2
...

...
...

. . .
...

1 xn x2n · · · xdn



a0
a1
...
ad

 =


y1
y2
...
yn


The matrix on the left is called the Vandermonde matrix. This is the same as we used before,
but with rows rearranged (the solution will be the same).

Example 14.10. Suppose that we have four points in the plane. The degree 1, 2, and 3 appoximations
to the four points are given below. Note that individually, the points do not get close to the higher
degree approximations, but the degree 3 approximation does go through all of them.

Inquiry 14.11 (✠2.14): Let p1, . . . ,pn ∈ R2.

1. Explain why the degree-(n−1) polynomial given by Definition 14.9 will always go through
every one of the points perfectly.
Hint: How many points are needed to define a unique line?

2. Let ε > 0 be a very small value, such as 1
1000 . Let n = 8, with pi = (i, ε) for i = 1, 2, 3, 4,

and pi = (i,−ε) for i = 5, 6, 7, 8. Explain which degree-d approximation, for d = 1, . . . , 7,
is the “best” approximation for these points. The points are given in the diagram below.
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R

R

14.3 Exercises

Exercise 14.1. (✠2.13) Using the setup from Example 14.1, finished in Example 14.4, to come to
the same conclusion (that is, the same best fit linear equation), but use the projection matrix instead
of partial derivatives.

Exercise 14.2. (✠2.13) Let A ∈ Mm×n.

1. Suppose that x ∈ null(A). Show that x ∈ null(ATA) as well

2. Suppose that y ∈ null(ATA). Show that y ∈ null(A) as well.

3. The above two points imply that null(A) = null(ATA). In the case that the columns of A are
linearly independent, use this fact to show that ATA has full rank.

Exercise 14.3. (✠2.13) Consider the set of six points P = {p1, . . . , p6} ⊆ R2, with:

p1 = (−1, 3), p2 = (4, 6), p3 = (3, 1), p4 = (−2,−3), p5 = (6,−7), p6 = (−6, 4).

1. Either using the projection matrix or partial derivatives, find the line y = ax+b that is the least
squares approximation to the points.

2. Find a point p7 ∈ R2 such that the least squares approximation to P is the same as to P ∪{p7}.
Hint: Don’t redo all your work! Use an observation from partial derivatives.

3. Let c ∈ R. Find a point p8 ∈ R2 such that the least squares approximation to P ∪ {p8} has
slope c.

Exercise 14.4. (✠2.14) ▷◁ Write a function in Python that takes two inputs:

• a list of points in R2,

• a positive integer d,

and returns the degree-d least squares approximation to the input points. You may use the solve

command from numpy.linalg or scipy.linalg .

Exercise 14.5. (✠2.13) Consider the following collection of four points P = {p1, p2, p3, p4} ⊆ R3:

p1 = (1,−2,−4), p2 = (0, 5, 5), p3 = (−6,−7, 2), p4 = (1, 4,−1).

1. Generalize the least squares approach and find the closest plane H in R3 to the points in P
(instead of the closest line in R2).

2. Project the points in P onto the plane H from part 1.
Warning: The plane H will not go through the origin. You need to shift everything first.

Exercise 14.6. (✠2.14) Find the least squares degree 1,2,3,4 polynomials that approximate the
points

(−7, 2), (−6,−2), (−2,−1), (0, 3), (3, 0), (4, 1).

Plot all the functions and points together to confirm that the higher degree polynomials are better
approximations to the points.
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Exercise 14.7. (✠2.13) Any line in R3 may be given (not uniquely) by ℓ(t) = (a1, a2, a3)t +
(b1, b2, b3).

1. Given two such arbitrary lines, find the location of the points on each which minimize the
distance between them.

2.▷◁ Take 1000 pairs of such random lines and find the average and standard deviation of the minimum
distance between the lines.
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Lecture 15: The Gram–Schmidt process

Chapter 4.4 in Strang’s “Linear Algebra”

• Fact 1: Every basis can be made into an orthonormal basis.

• Fact 2: The result of the Gram–Schmidt process depends on the order of the vectors input.

✠ Standard 2.15: Apply the Gram–Schmidt process to a set of vectors.

✠ Standard 2.16: Extend a set of linearly independent vectors to a basis.

15.1 Orthonormalizing a basis

We previously saw orthogonality and orthonormality in Section 12. We revisit it here from the
perspective of bases. Recall that for a set of vectors B = {v1, . . . ,vk} to be orthonormal , they need
to be orthogonal (that is, vi · vj = 0 whenever i ̸= j), and they need to be of unit length (that is
∥vi∥ = 1 for all i).

Remark 15.1. Placing orthonormal vectors v1, . . . ,vk ∈ Rn as columns in a matrix A will always

give ATA = I. For example, taking two orthonormal vectors
[√

3/2
1/2

]
and

[
−1/2√

32

]
in R2 as columns of

a matrix will show this property, as well as when we consider them as lying in the xy-plane of R3.

R

R

R

R

R

[√
3/2 1/2

−1/2
√
3/2

]
︸ ︷︷ ︸

AT

[√
3/2 −1/2

1/2
√
3/2

]
︸ ︷︷ ︸

A

=

[
1 0
0 1

]

[√
3/2 1/2 0

−1/2
√
3/2 0

]
︸ ︷︷ ︸

AT

√3/2 −1/2

1/2
√
3/2

0 0


︸ ︷︷ ︸

A

=

[
1 0
0 1

]

The key idea here is that even though there are many different pairs of orthonormal vectors, they all
have the common property that they multipy with their transpose to the identity matrix.

Example 15.2. We have already seen the rotation matrix Rθ :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
from Example 12.7

in Lecture 12 has orthonormal columns:

RT
θ Rθ =

[
1 0
0 1

]
.

Every single permutation matrix also has orthogonal columns:
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


︸ ︷︷ ︸

PT


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

P

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Remark 15.3. Whenever A ∈ Mm×n has orthonormal columns, the lengths of v and Av are the
same, for any v ∈ Rn. This follows directly from Remark 15.1:

∥Av∥2 = (Av) • (Av) = (Av)T (Av) = (vTAT )Av = vT (ATA)v = vT Iv = vTv = v • v = ∥v∥2.

Inquiry 15.4 (✠2.15): Let V be a vector space, and U ⊆ V a subspace with basis vectors
u1, . . . ,uk. Suppose that the basis vectors of U are orthonormal.

1. Using Definition 13.6, write the projection matrix P for projecting to U .

2. Let v ∈ V . Express the projection projU (v) as a linear combination of the basis vectors
u1, . . . ,uk of U .
Hint: keep track of the basis vectors ui in the projection matrix P .

We are considering all the impacts of having an orthonormal basis, because a very helpful sim-
plification to many problems is to have an orthnormal basis. The basis you are given may not be
orthonormal, so you have to orthnormalize it. This process of making the basis orthonormal is the
Gram–Schmidt process.

Example 15.5. In the plane R2, every pair of vectors that do not lie on the same line form a basis
for the plane. However, some pairs of vectors u,v are more special than others - those which lie at a
90◦ angle to each other. Equivalently, it is those pairs u,v for which proju(v) = projv(u) = 0.

R

R
R

R

R

H

Vectors perpendicular to each other are much easier to deal with, so we try to only work with those.
This is the case also for subspaces of vector spaces, for example the plane H defined by 2x+3y−2z = 0
in R3. To find the two basis vectors of this plane, we compute a nullspace:

H = null
([
2 3 −2

])
= null

([
1 3

2 −1
])

= span

−3
2
1
0

 ,

10
1

 .

These two vectors in the span are not orthogonal to each other, as

−3
2
1
0


︸ ︷︷ ︸

u

•

10
1


︸︷︷︸
v

= −3

2
̸= 0. In the plane H:

vu

v′

We would like to make them orthogonal to get a nicer basis. All that we need is to make v orthogonal
to u, and recalling that everything in the orthogonal complement of span(u) will fulfill this criteria,
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we simply project v onto span(u)⊥. Following the formula in Remark 13.5, this new vector is

v′ = projspan(u)⊥(v) = (I−P )v = v−v • u
u • u

u =

10
1

− −3/2

9/4 + 1

−3
2
1
0

 =

10
1

−−6

13

−3
2
1
0

 =

1− 9
13

6
13
1

 =

 4
13
6
13
1

 .

The two vectors u,v′ still span H, but now we have the added benefit of orthogonality:

u • v′ =

−3
2
1
0

 •

 4
13
6
13
1

 = − 6

13
+

6

13
= 0.

Algorithm 6 (The Gram–Schmidt Process): Suppose you have a set v1, . . . ,vn ∈ V of
linearly independent vectors. The Gram–Schmidt pocess will first create a set of orthogonal
vectors w1, . . . ,wn ∈ V , and then a set of orthonormal vectors q1, . . . ,qn ∈ V . They will have
all the same span: span(v1, . . . ,vn) = span(w1, . . . ,wn) = span(q1, . . . ,qn).

• Let w1 = v1

• For each i = 2, . . . , n:

– Let wi = vi −
(
projwi−1

(vi) + · · ·+ projw1
(vi)

)
.

• The orthonormal set of vectors is qi =
wi

∥wi∥ .

Inquiry 15.6 (✠2.15): Let V be a vector space and u,v ∈ V be linearly independent vectors.

1. What will be the output of the Gram–Schmidt process when it is run on v, 2v, 3v?

2. What will be the output of the Gram–Schmidt process when it is run on v,u,v+ u?

3. Explain why running the Gram–Schmidt process on the two sets v,u,v+u and v,u+v,u
in that order will give the same result.

Example 15.7. Consider the vectors v1,v2,v3,v4 ∈ R4, placed as columns in the matrix
1 2 0 2
2 0 1 1
0 2 1 1
1 0 1 2


︸ ︷︷ ︸

A

RREF−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

These vectors form a basis, but the basis is clearly not orthnormal. If it were, the computations below
should give values 1 on the diagonal and 0 everywhere else:

1 2 0 1
2 0 2 0
0 1 1 1
2 1 1 2


︸ ︷︷ ︸

AT


1 2 0 2
2 0 1 1
0 2 1 1
1 0 1 2


︸ ︷︷ ︸

A

=


6 2 3 4
2 8 2 4
3 2 3 4
4 4 4 10

 ̸= I4.

Exercise 15.2 works through the Gram–Schmidt process on these vectors.
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Inquiry 15.8 (✠2.15): The three vectors u =

10
1

 ,v =

 0
−1
1

 ,w =

 1
−2
0

 span all of R3.

1. Run the Gram–Schmidt process on u,v,w, in that order, and then on the different order
u,w,v. You may use a computer.

2. Why are the results different? Is the span of the resulting vectors different?

3. How do you think the two results are related?

If possible, visualize the locations of the vectors on a computer.

15.2 Factorizing and extending

As now is very common, we consider vectors as columns of matrices. Given some vectors vi as columns
in A, and the resulting orthonormal vectors qi as columns in Q, a natural question arises: How are A
and Q related?

Proposition 15.9. There exists a matrix R for which A = QR, or R = QTA, and it is given by

R =


− q1 −
− q2 −
− q3 −
− q4 −


 | | | |
v1 v2 v3 v4

| | | |

 =


qT
1 v1 qT

1 v2 qT
1 v3 qT

1 v4

0 qT
2 v2 qT

2 v3 qT
2 v4

0 0 qT
3 v3 qT

3 v4

0 0 0 qT
4 v4

 .

The proof of this statement follows immediately by observing that the construction of the qi meant
that qi • vj = 0 whenever j < i. Indeed, we first note that qi •wj = 0 whenever i ̸= j, since the qi

point in the same direction as the wi. So for example,

q4 • v3 = q4 •
(
w3 + projw1

(v3) + projw2
(v3)

)
= q4 •w3︸ ︷︷ ︸

0

+ q4 • projw1
(v3)︸ ︷︷ ︸

0 because q4•w1=0

+ q4 • projw2
(v3)︸ ︷︷ ︸

0 because q4•w2=0

= 0.

Remark 15.10. Recall that to find the least squares solution to Ax = b, we projected b onto col(A)
as p. Since

Ax = b = p︸︷︷︸
in col(A)

+ e︸︷︷︸
orthogonal to col(A)

has no solution, but
ATAx = ATb = ATp︸︷︷︸

in col(ATA)

+ATe︸︷︷︸
0

does, least squares was about solving ATAx = ATb. Using the result from Proposition 15.9, this
equation becomes

ATAx = ATb

(QR)T (QR)x = (QR)Tb

RTQTQRx = RTQTb

RTRx = RTQTb (since QTQ = I)

Rx = QTb (since R and RT have inverses)

x = R−1QTb (since R has an inverse)

which requires much less multiplications for a computer to do that x = (ATA)−1ATb.
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Inquiry 15.11 (✠2.15): Consider the vector space of all functions [0, 1] → [0, 1], similar to
Exercise 6.3, with the “dot product” defined by f • g =

∫ 1
0 f(x)g(x) dx.

1. Are the two functions x, x2 linearly independent? Are they orthogonal?

2. Run the Gram–Schmidt process on x, x2 to get an orthonormal set of functions.

3. Changing the space to set of all functions [0, 2π] → [0, π], check that sin(x), cos(x) are
orthogonal.

Remark 15.12. The Gram–Schmidt process is useful for extending a basis, a concept previously
visited in Inquiry 10.18. That is, given an orthonormal basis for U ⊆ V , we can extend the basis to a
basis for all of V by simply running the Gram–Schmidt process on the vectors in the given basis, and
add as many vectors from V as necessary. For example, given

V = R4 = span



1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 and U = span




1
0
−1
0

 ,


2
2
2
1


 ⊆ V,

we can extend the two vectors in the basis of U to a basis of V . Since the given basis vectors of U are
orthogonal (but not orthonormal), the first part of Gram–Schmidt process will not affect them. Since
V = R4 is 4-dimensional, we know two facts:

• two vectors are not enough for a basis of V , so

[
1
0
−1
0

]
,

[
2
2
2
1

]
is too small to be a basis, and

• six vectors are too many for a basis of V , so

[
1
0
−1
0

]
,

[
2
2
2
1

]
,

[
1
0
0
0

]
,

[
0
1
0
0

]
,

[
0
0
1
0

]
,

[
0
0
0
1

]
is too big to be a

basis.

To find an orthonormal basis of V that contains the two basis vectors of U , simply run the Gram–
Schmidt process on all six vectors, beginning with the two from the basis of U .

15.3 Exercises

Exercise 15.1. (✠2.15) Check that the columns of the 2×2 rotation matrix (introduced in Lecture
12.1) and of the 3 × 3 permutation matrices (introduced in Lecture 3) are all orthogonal. Are they
orthonormal?

Exercise 15.2. (✠2.15) Apply the Gram-Schmidt process to the vectors


0
1
1
1

 ,


2
0
2
0

 ,


2
1
1
2

 ,


2
0
0
1

 ,


1
2
0
1

.
Exercise 15.3. (✠2.15) Consider the 2-dimensional subspace H ⊆ R4 defined by

H =

{
(x, y, z, w) ∈ R4 :

2x+ 3y − w = 0,
y − z + 2w = 0.

}
1. Express H as a span of two vectors.

2. Apply the Gram–Schmidt process to the two vectors from above to get H as a span of two
orthonormal vectors.

3. The space R4 has the xy-plane as a 2-dimensional subspace, with basis

[
1
0
0
0

]
,

[
0
1
0
0

]
. Give the

change of basis matrix from the two vectors in part 2. to these two vectors.
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Exercise 15.4. (✠2.16) Let V be the vector space of polynomials of degree at most 3 with domain
[0, 1]. The “dot product” on V is defined by f • g =

∫ 1
0 f(x)g(x) dx, which helps to define length and

angle. You may assume that {1, x, x2, x3} is a basis for V .

1. Is the given basis orthogonal? Find the lengths of the elements in the basis.

2. Are the two functions 2x, x2 − 1 linearly independent in V ? Are they orthogonal?

3. Extend {2x, x2 − 1} to an orthonormal basis of V .
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Lecture 16: Generalized distances

Chapter IV.10 in Strang’s “Learning from Data”

• Fact 1: The inner product generalizes the concept a distance for other spaces.

• Fact 2: (Relative) positions of points can be recovered knowing just the distances between them.

✠ Standard 2.17: Determine if something is or is not an inner product space.

✠ Standard 2.18: Compute the length, angle, and projections of vectors in arbitrary inner product
spaces.

We now take a small detour from Strang’s Linear Algebra and work with the material from Strang’s
Learning from Data. The topic follows the topics of the previous lectures, expanding on the idea of
orthogonality and unit length in different vector spaces.

16.1 Functions on spaces

Definition 16.1: Let V be a vector space. An inner product on V is a function ⟨ · , · ⟩ : V 2 → R
such that for all v,u,w ∈ V and all c ∈ R,

• (positive definite) ⟨v,v⟩ ⩾ 0 with ⟨v,v⟩ = 0 if and only if v = 0

• (symmetric) ⟨v,u⟩ = ⟨u,v⟩

• (multiplicative) ⟨cv,u⟩ = c⟨v,u⟩ = ⟨v, cu⟩

• (bilinear) ⟨v+ u,w⟩ = ⟨v,w⟩+ ⟨u,w⟩

A vector space V that has an inner product is called an inner product space. Given any two
vectors u,v in an inner product space V ,

• they are orthogonal if ⟨u,v⟩ = 0,

• the angle θ ∈ [0, 2π) between them is given by cos(θ) = ⟨u,v⟩
∥u∥∥v∥ .

Recall that the only required operations for a vector space were scalar multiplication and vector
addition (a dot product was not required).

We have already seen an example of the inner product in the dot product of two vectors. Just like
there, every inner product has a notion of distance associated to it: the norm, or length, of v in an
inner product space V is

∥v∥ =
√
⟨v,v⟩ =

√
v • v.

Example 16.2. There are many examples of inner product spaces besides Rn with the dot product.

• The space Mm×n of all m× n matrices over R is an inner product space when using ⟨A,B⟩ :=
trace(ATB). The trace is the sum of the entries on the diagonal.

• The space C[0, 1] of all continuous functions with domain [0, 1] and inner product

⟨f, g⟩ :=
∫ 1

0
f(x)g(x) dx

is an inner product space. Adjusting the domain to any interval [a, b] ⊆ R still makes this an
inner product space.
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Inquiry 16.3 (✠2.18): This inquiry is about the properties of an inner product space V given
in Definition 16.1. Using them, show that:

1. ⟨0,v⟩ = ⟨v, 0⟩ = 0 for all v ∈ V

2. the only vector in V that is orthogonal to itself is 0

3. the parallelogram equality holds: ∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2)

Theorem 16.3.1. The inner product ⟨ · , · ⟩ in any inner product space V ∋ v,w satisfies:

• the Cauchy–Schwarz inequaity: |⟨v,w⟩| ⩽ ∥v∥∥w∥ with equality iff v and w are linearly dependent

• the triangle inequality: ∥v+w∥ ⩽ ∥v∥+ ∥w∥

Example 16.4. Using the first point of Theorem 16.3.1, we can show that the functions sin(x) and
cos(x) are linearly independent in C[0, 2π], and that sin(x) and 2 sin(x) are linearly dependent.

sin(x)

2 sin(x)

cos(x)

π

4

π

2

3π

4

π

5π

4

3π

2

7π

4

2π

-2

-1

1

2

We find that

⟨sin(x), cos(x)⟩ =
∫ 2π

0
sin(x) cos(x) dx =

∫ 2π

0

sin(2x)

2
dx =

− cos(4π)

4
− − cos(0)

4
= 0,

∥sin(x)∥2 =
∫ 2π

0
sin2(x) dx =

∫ 2π

0

1− cos(2x)

2
dx = π −

(
sin(4π)

4
− sin(0)

4

)
= π,

∥cos(x)∥2 =
∫ 2π

0
cos2(x) dx =

∫ 2π

0

cos(2x) + 1

2
dx =

(
sin(4π)

4
− sin(0)

4

)
+ π = π.

Since 0 ̸=
√
π ·

√
π = π, the functions sin(x) and cos(x) are linearly independent, but since 2π =√

π ·
√
4π, the functions sin(x) and 2 sin(x) are linearly dependent. Also note that the positive definite

property of the inner product is satisfied.

The notions of angle between vectors, orthogonality, unit length, all apply to inner product spaces
in the same way they applied to Rn with the dot product.

Example 16.5. The angle between the matrices A =
[

4 1
−1 0
7 2

]
and B =

[
0 2
3 −1
2 0

]
is

cos−1

(
trace(ATB)

trace(ATA)trace(BTB)

)
= cos−1

 trace
([

4 −1 7
1 0 2

] [ 0 2
3 −1
2 0

])
trace

([
4 −1 7
1 0 2

] [ 4 1
−1 0
7 2

])
trace

([
0 3 2
2 −1 0

] [ 0 2
3 −1
2 0

])


= cos−1

(
trace ([ 9 9

4 2 ])

trace ([ 66 18
18 5 ]) trace

([
13 −3
−3 5

]))

= cos−1

(
11

1278

)
≈ 89.51◦
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Remark 16.6. The Gram–Schmidt process in Lecture 15 was done on vectors using the usual norm
in Rn. By obeserving that the projection operation can be given in terms of inner product, the
Gram–Schmidt process can be applied to any inner product space:

projv(u) =
vTu

vTv
v =

v · u
v · v

v =
⟨v,u⟩
⟨v,v⟩

v.

Inquiry 16.7 (✠2.18): Consider the inner product spaces C[a, b] and M2×2.

1. What is the angle between x+ 1 and x2 + 1 in C[0, 1]?

2. Compute the projection of cos(x) onto sin(x) in C[0, 2π].

3. Compute the projection of the rotation matrix Rθ onto [ 1 1
1 1 ]. For what angles θ are these

matrices orthogonal to each other?

16.2 Distance matrices

Recall the points from Exercise 14.8 in Lecture 15, which were used in the motivating least squares
example. If the points were located elsewhere but their relative position to each other was the same,
we can still solve the least squares problem, up to some x-shift and y-shift. This situation has two
advantages:

• only requires relative information: measurements only need to be made among the data, not
between data and something else (like a reference point - the origin)

• allows for spaces that are not Rn: on the sphere, on a grid, with barriers, etc

Example 16.8. Consider the distances among the four points, slightly adapted from Exercise 14.8.

R

R

a

c

b

d

a = (1, 3)
b = (5, 4)
c = (7, 1)
d = (8, 2)

X =

[
1 5 7 8
3 4 1 2

]

The matrix X is called the position matrix . We can easily compute the symmetric distance matrix

D =


∥a− a∥2 ∥a− b∥2 ∥a− c∥2 ∥a− d∥2
∥b− a∥2 ∥b− b∥2 ∥b− c∥2 ∥b− d∥2
∥c− a∥2 ∥c− b∥2 ∥c− c∥2 ∥c− d∥2
∥d− a∥2 ∥d− b∥2 ∥d− c∥2 ∥d− d∥2

 =


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0

 ,

which contains the squares of the distance among the points. A method to recover X knowing only
D is not so clear, however.

Proposition 16.9. Let D ∈ Mk×k be the matrix containg squares of distances among k points
v1, . . . ,vk ∈ Rn. The relationship between D and the position matrix X is given by

XTX =
1

2

s
[
1 1 · · · 1

]
+


1
1
...
1

 sT −D

 , for s =


∥v1 − v1∥2
∥v1 − v2∥2

...
∥v1 − vk∥2
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the transpose of the first row of the matrix D.

Example 16.10. Continuing Example 16.8, we fix one of the points as a reference point. Without
loss of generality, we simply say

a = 0.

That is, we subtract a from all the vectors a,b, c,d to get new ones (which we call the same). Any
other vector b, c,d could have been chose. Now the first line of D becomes (squares of) the lengths
∥ · ∥ of all the vectors a,b, c,d, and the lengths also appear on the diagonal of XTX:

D =


0 ∥b∥2 ∥c∥2 ∥d∥2

∥b∥2 0 ∥b− c∥2 ∥b− d∥2
∥c∥2 ∥c− b∥2 0 ∥c− d∥2
∥d∥2 ∥d− b∥2 ∥d− c∥2 0

 , XTX =


0 0 0 0
0 b • b b • c b • d
0 c • b c • c c • d
0 d • b d • c d • d

 .

Applying the result of Proposition 16.9, we construct the position vector sT = [ 0 ∥b∥2 ∥c∥2 ∥d∥2 ] =
[ 0 17 40 50 ], and compute

XTX =
1

2

s
[
1 1 1 1

]
+


1
1
1
1

 sT −D



=
1

2



0
17
40
50

 [1 1 1 1
]
+


1
1
1
1

 [0 17 40 40
]
−


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0




=
1

2



0 0 0 0
17 17 17 17
40 40 40 40
50 50 50 50

+


0 17 40 50
0 17 40 50
0 17 40 50
0 17 40 50

−


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0




=


0 0 0 0
0 17 22 27
0 22 40 44
0 27 44 50

 .

Note that XTX is symmetric (see Lecture 22 for more on this topic) with rank 2. Hence, doing
row reduction to get the LDU -decomposition of XTX will produce symmetric matrices, that is,
LDU = (L

√
D)(

√
DU), with L = UT . This will recover X, up to a shift and potentially a rotation

and a reflection. Note that the matrix “D” here is the diagonal matrix from the LDU -decomposition,
and is different from the distance matrix “D” used above.
For this example, we have

0 0 0 0
0 17 22 27
0 22 40 44
0 27 44 50

 =


1 0 0 0
0 1 0 0
0 22

17 1 0
0 27

17
11
14 1


︸ ︷︷ ︸

L


0 0 0 0
0 17 22 27
0 0 196

17
154
17

0 0 0 0


︸ ︷︷ ︸

U

=


1 0 0 0
0 1 0 0
0 22

17 1 0
0 27

17
11
14 1


︸ ︷︷ ︸

L


1 0 0 0
0 17 0 0
0 0 196

17 0
0 0 0 1


︸ ︷︷ ︸

D


0 0 0 0
0 1 22

17
27
17

0 0 1 11
14

0 0 0 0


︸ ︷︷ ︸

U

,

where we note that L is not precisely the transpose of U , due to zero rows. However, considering the
highlighted 2× 4 subatrix X of U , we do indeed see it and its transpose in the decomposition. From
this we recover the points a′,b′, c′,d′ as the middle two rows of

√
DU . These are not exactly the
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original points, but there are “transformations” that get us to them from the original points.

R

R

a

c

b

d

original points a,b, c,d

a = (1, 3)

b = (5, 4)

c = (7, 1)

d = (8, 2)

R

R

a

c

b

d

shifted so that a is at the origin

R

R

a

c

b

d

rotated so that b is on the x-axis

R

R

a′

c′

b′

d′
reflected on the y-axis to get points a′,b′, c′,d′

a′ = (0, 0)

b′ = (
√
17, 0)

c′ =
(

22√
17
, 14√

17

)
d′ =

(
27√
17
, 11√

17

)

Inquiry 16.11 (✠2.18): Consider vectors a,b, c,d in R2. If we know only the matrix D of
distances between them, the recovery method presented in Example 16.8 computes the positions
of a− a,b− a, c− a,d− a.

1. Suppose instead b was subtracted from all the vectors. What is the relationship between
the vectors recovered in this way to those recovered by subtracting a?

2. Suppose you have 4 new vectors, which are just a,b, c,d rotated by 90◦ clockwise. After
applying the recovery method to getX, how are the recovered vectors related to the vectors
recovered by the first method?

Remark 16.12. If instead we have a set of vectors vi, . . . ,vk, then the distance matrix would be
defined as Dij = ∥vi − vj∥. Note that this means the distance matrix is always symmetric and has a
zero diagonal.

Example 16.13. If D is simply symmetric and has a zero diagonal, there is no guarantee that is
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represents distance among points in a space like Rn, or even any inner product space. Consider the
distance matrix

D =


0 1 1 1
1 0 3 3
1 3 0 3
1 3 3 0

 ,

coming from four points a, b, c, d. As in the previous example, we let the first point a = 0, so that
we get ∥b∥ = ∥c∥ = ∥d∥ = 1. We also see that

32 = ∥b− c∥2

= ⟨b− c,b− c⟩
= ⟨b,b− c⟩ − ⟨c,b− c⟩
= ⟨b,b⟩ − ⟨b, c⟩ − ⟨c,b⟩+ ⟨c, c⟩
= ∥b∥2 − 2⟨b, c⟩+ ∥c∥2

= 1− 2⟨b, c⟩+ 1.

Rearranging, we conclude that ⟨b, c⟩ = −7/2, which contradicts the fact that the inner product must
be positive definite. Hence D can not be a distance matrix of points from an inner product space.

Distance matrices can highlight clustering among the data. That is, given a distance matrix, we
can “connect” points that lie close to each other and so discover which groups of points are close to
each other.

Example 16.14. Consider the distances between the 20 largest cities in Latvia, in kilometers. As
a distance matrix, it is difficult to get information from it, but we can group cities by distance into
clusters. This could be useful, for example, in trying to decide where to build a factory or distribution
center.

Bauska
Cesis

Daugavpils
Dobele

Jekabpils
Jelgava
Jurmala
Kuldiga
Liepaja

Ogre
Olaine

Rezekne
Riga

Salaspils
Saldus
Sigulda

Talsi
Tukums

V almiera
V entspils



0 119 152 62 103 37 68 149 196 53 46 194 62 54 111 91 136 89 145 191
119 0 174 137 96 115 93 200 271 66 97 155 79 69 180 30 159 130 27 220
152 174 0 214 79 186 203 301 344 156 185 89 187 166 263 170 281 235 194 340
62 137 214 0 158 29 47 87 141 81 41 249 59 72 51 108 78 34 158 129
103 96 79 158 0 129 134 242 297 85 122 91 117 96 208 92 215 171 116 276
37 115 186 29 129 0 38 115 170 54 19 220 40 47 80 86 98 51 139 154
68 93 203 47 134 38 0 111 179 49 22 221 18 39 88 65 80 39 112 142
149 200 301 87 242 115 111 0 79 159 120 331 129 149 42 175 48 72 214 48
196 271 344 141 297 170 179 79 0 221 181 389 195 212 92 244 127 141 288 98
53 66 156 81 85 54 49 159 221 0 40 172 32 11 130 38 129 87 91 191
46 97 185 41 122 19 22 120 181 40 0 211 21 31 90 68 96 50 120 156
194 155 89 249 91 220 221 331 389 172 211 0 203 183 299 166 300 259 163 362
62 79 187 59 117 40 18 129 195 32 21 203 0 21 103 50 98 57 100 159
54 69 166 72 96 47 39 149 212 11 31 183 21 0 120 40 119 77 94 180
111 180 263 51 208 80 88 42 92 130 90 299 103 120 0 153 61 52 198 89
91 30 170 108 92 86 65 175 244 38 68 166 50 40 153 0 137 104 54 200
136 159 281 78 215 98 80 48 127 129 96 300 98 119 61 137 0 47 170 62
89 130 235 34 171 51 39 72 141 87 50 259 57 77 52 104 47 0 147 105
145 27 194 158 116 139 112 214 288 91 120 163 100 94 198 54 170 147 0 229
191 220 340 129 276 154 142 48 98 191 156 362 159 180 89 200 62 105 229 0



To get the dendrogram above, each city begins in its own cluster. The two closest cities are connected
to create one cluster of 2 cities (Ogre and Salaspils). Create larger clusters by measuring the distance
between every pair of clusters ci and cj , with distance defined to be

(distance between ci and cj) =
1

|ci||cj |
∑
vi∈ci

∑
vj∈cj

∥vi − vj∥. (6)

For clusters of size 1, note that |ci| = |cj | = 1, and the distance reduces to the usual distance. This is
the average method of drawing a dendrogram. In the diagram above, the last 3 clusters to be joined
are colored differently, but any number can be chosen here.
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Inquiry 16.15 (✠2.18): This question is about coding in Python.

1. Generate a collection of 333 random points in R2, with:

• 300 of them randomly selected from [0, 1]× [0, 1],

• 30 of them randomly selected from [5, 6]× [5, 6],

• 3 of them randomly selected from [1, 2]× [8, 9].

2. Construct the 333× 333 distance matrix between them.

3. Construct the dendrogram from this matrix. Does it reflect the clusters as you created
them?

16.3 Exercises

Exercise 16.1. (✠2.17) For each of the following “definitions”, show that each cannot be an inner
product.

1. For A,B ∈ Mn×n, let ⟨A,B⟩ = trace(A+B)

2. For f, g ∈ C[0, 1], let ⟨f, g⟩ =
∣∣∣ dfdx dg

dx

∣∣∣
3. For a, b ∈ R, let ⟨a, b⟩ = a2 + b2

Exercise 16.2. (✠2.17, 2.18) Check the conditions for the space of m × n matrices over R from
Example 16.2 being an inner product space. What is the distance between [ 1 2 3

4 5 6 ] and [ 0 1 2
3 4 5 ]?

Exercise 16.3. (✠2.18) Consider the following three matrices in M2×2:

A =

[
1 2
2 1

]
, B =

[
2 0
−1 1

]
, C =

[
0 −3
3 2

]
.

Using the Gram–Schmidt process to find an orthonormal basis for span{A,B,C}. Use the inner
product on matrices given in Example 16.2.

Exercise 16.4. (✠2.18) Let P (R) be the vector space of all polynomials R → R, with scalar
multiplication and polynomial addition defined as you would expect. You may assume that the
following is an inner product on P (R):

⟨p(x), q(x)⟩ =
∫ ∞

0
p(x)q(x)e−x dx.

1. Check that p(x) = 2x− 1 and q(x) = x+ 3 are not orthogonal to each other.

2. Using the Gram–Schmidt process on p(x) and q(x) as in part 1., find a polynomial r(x) ∈ P (R)
that is orthogonal to p(x). Give your answer as r(x) = ax+ b, for a, b ∈ Z.

Exercise 16.5. (✠2.18) Given the distance D matrix below, construct the dendrogram using the
same average distance method as in Example 16.14. After every step, give the new distance matrix,
which measures the distances among the clusters.

D =



0 12 10 13 2 11
12 0 3 9 13 8
10 3 0 6 14 5
13 9 6 0 15 1
2 13 14 15 0 7
11 8 5 1 7 0
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Lecture 17: Linear transformations

Chapters 8.1, 8.2 in Strang’s “Linear Algebra”

• Fact 1: A linear transformation is the same thing as a matrix.

• Fact 2: A linear transformation is injective iff it is surjective.

✠ Standard 2.19: Determine whether or not a function is a linear transformation.

✠ Standard 2.20: Construct a matrix for a linear transformation, knowing what it does to a basis.

✠ Standard 2.21: Construct the image and kernel of a linear transformation, as vector spaces.

This lecture focuses on a generalization: the connection between m× n matrices and functions Rn →
Rm. We have already seen the interpretation of a matrix as a function with the rotation matrix Rθ

in Lecture 12. By the end of this lecture, we will see that every such function comes from a matrix.

17.1 Types of linear transformations

Definition 17.1: Let V,W be vector spaces. A linear transformation, or linear map, is a
function f : V → W that satisfies

f(x+ y) = f(x) + f(y) and f(cx) = cf(x) (7)

for every x,y ∈ V and every c ∈ R. These are conditions for linearity .

Example 17.2. We have already seen examples (and non-examples) of linear transformations:

• Every m× n matrix is a linear transformation Rn → Rm, because A(x+ y) = Ax+Ay.

• The shift function x 7→ x + y for nonzero y is not linear, because splitting up the function on
two vectors adds 2y instead of just y.

• The length function is not a linear transformation Rn → R, becausewwww[12
]wwww =

wwww[−1
−2

]wwww =
√
3, but

wwww[12
]
+

[
−1
−2

]wwww =

wwww[00
]wwww = 0 ̸= 2

√
3.

Inquiry 17.3 (✠2.19): Each of the functions below are linear. For each, show that the two
conditions for linearity are satisfied.

1. the dot product of a vector v ∈ R3 with
[
1
2
3

]
∈ R3, as a function R3 → R

2. projection of a vector v ∈ R3 to the x-axis, considered as the span of
[
1
0
0

]
3. differentiation and integration on the space C[R] of continuous functions

Each of the functions below is not linear. For each, show which of the linearity conditions are
violated.

4. addition of the vector [ 11 ]: f ([ xy ]) = [ xy ] + [ 11 ]

5. squaring of every component: f ([ xy ]) =
[
x2

y2

]
Linearity is good because it gives a complete picture with a small amount of information.
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Proposition 17.4. Any linear map V → W is completely determined by what it does to the basis of
V .

This follows immediately by linearity. Another way to say the above proposition is that choosing a
basis v1, . . . ,vn of V and taking any (not necessarily linearly independent!) vectors w1, . . . ,wn ∈ W ,
there is only one unique linear map f : V → W for which f(vi) = wi, for all i.

Inquiry 17.5 (✠2.20): This inquiry is about the vector space R3.

1. Come up with two different bases {v1,v2,v3} and {w1,w2,w3} for R3.

2. Let A be the 2× 3 matrix with Av1 = [ 11 ], Av2 = [ 22 ] and Av3 =
[−1

2

]
. What is A?

3. Let B be the 4× 3 matrix with Bw1 =

[
1
0
0
1

]
, Bv2 =

[
0
2
0
2

]
and Bv3 =

[
0
0
−1
2

]
. What is B?

4. What are the ranks of A and B? How are these numbers related to the dimension of R3?

Every linear transformation V → W creates new subspaces of V and of W .

Definition 17.6: Let f : V → W be a linear transformation.

• The kernel of f is ker(f) = {x ∈ V : f(x) = 0} ⊆ V

• The image, or range of f is im(f) = {f(x) ∈ W : x ∈} ⊆ W

Note that ker(f) ⊆ V is a subspace of V , and im(f) ⊆ W is a subspace of W .

Example 17.7. For f(x) = Ax, multiplication by a matrix, the kernel is the nullspace and the image
is the column space. That is,

ker(f) = null(A), im(f) = col(A).

Recall that a function f : X → Y is injective, or one-to-one, if f(a) = f(b) implies a = b. Further,
the function f is surjective, or onto, if for every y ∈ Y there exists x ∈ X such that f(x) = y. We
will apply these concepts to linear transformations.

Proposition 17.8. Let f : V → W be linear.

• f is injective iff ker(f) = {0}

• if dim(W ) = dim(im(f)), then f is surjective.

Inquiry 17.9 (✠2.21): This inquiry describes the justification for Proposition 17.8.

1. Suppose that ker(f) = {0}. Show that assuming f(x) = f(y) implies that x = y.

2. Suppose that f is injective. Use the second linearity condition with c = 0 to show that
assuming a nonzero vector is in the kernel of f implies a contradiction.

3. Revisit Remark 10.15 and explain why it justifies the second point of the proposition.

Combining injective and surjective linear transformations gives us a very special transformation.

Definition 17.10: A linear transformation f : V → W that is both injective and surjective is
an isomorphism.
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You may have seen the word bijective be used for functions that are both injective and surjective,
but for linear maps we use this special word. Isomorphisms are important because they preserve the
fundamental structure of the vector space V .

Example 17.11. We have already seen examples of isomorphisms:

• The map f : Rn → Rn with f(x) = 2x is an isomoprhism.

• The change of basis matrix from Lecture 10 is an isomorphism

• The dot product of any vector in R2 with (−1, 2) is not an isomoprhism, as it fails injectivity:
(3, 4) · (−1, 2) = (−5, 0) · (−1, 2).

17.2 The matrix of a linear transformation

Theorem 17.11.1. Let f : Rn → Rm be linear. Then there is a unique matrix A for which Ax = f(x)
for all x ∈ Rn.

Proof. First we do this proof in a special case, using the standard bases e1, . . . , en forRn and e1, . . . , em
for Rm. By Proposition 17.4, f is completely determined by what it does on the ei. Suppose that

f(e1) = a11e1 + · · ·+ am1em,

f(e2) = a12e1 + · · ·+ am2em,

...

f(en) = a1ne1 + · · ·+ amnem,

for some aij ∈ R. Then on an arbitrary x = b1e1 + · · ·+ bnen ∈ Rn, the linear map f takes it to

f(x) = f(b1e1 + · · ·+ bnen)

= b1f(e1) + · · ·+ bnf(en)

= b1(a11e1 + · · ·+ am1em) + · · ·+ bn(a1ne1 + · · ·+ amnem)

= (b1a11 + · · ·+ bna1n)e1 + · · ·+ (b1am1 + · · · bnamn)em.

Since ei is all zeros except a 1 on line i, the last line above can be rewritten as
b1a11 + · · ·+ bna1n
b2a21 + · · ·+ bna2n

...
b1am1 + · · · bnamn

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸

A


b1
b2
...
bn

 = A(b1e1 + · · ·+ bnen) = Ax.

So in this case, f is exactly A.
In the general case, where v1, . . . ,vn is some basis for Rn and w1, . . . ,wm is some basis for Rm,

construct the change of basis matrices CV , that takes the vi to the ei, and CW , that takes the wi to
the ei. Then the matrix of the function f is C−1

W ACV .

Inquiry 17.12 (✠2.21): This inquiry connects linear transformations with matrices. Recall
that AT is the transpose of A.

1. Considering the transpose as a “function” M3×2 → M2×3, explain why this cannot be
linear.
Hint: How would this work as a matrix multiplication?
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2. Explain why the function f : M3×2 → R6, for which

f
([

a11 a12
a21 a22
a31 a32

])
= [ a11 a12 a21 a22 a31 a32 ]T

is linear. What is its inverse, and is it linear as well?

3. Describe a function g : R6 → R6 so that

(f−1 ◦ g ◦ f) : M3×2 → M2×3

produces the transpose of a matrix. Is it linear?

This Theorem above has several implications. Combining the rank-nullity theorem from Lecture
11 along with observations above, we immediately get the following.

Corollary 17.13. Let f : V → W be linear, with dim(V ) = dim(W ).

• [Dimension Theorem] dim(V ) = dim(ker(f)) + dim(im(f))

• The map f is surjective iff it is injective

Proof. The first point follows by the rank-nullity theorem and applying Theorem 17.11.1 in Example
17.7 to describe every linear map as a matrix.

The second point follows immediately from the first point and Proposition 17.8.

Remark 17.14. We also get a nice result for compositions of linear maps. Given two linear maps
f : V → W and g : W → Z, their composition is a linear map (g ◦f) : V → Z (you will check this in an
exercise). If f, g have associated matrices A,B, respectively, then the composition g ◦f has associated
matrix BA. This follows by using the equations f(x) = Ax and g(y) = B(y) in simplifying

(g ◦ f)(x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.

17.3 Exercises

Exercise 17.1. (✠2.19) For this question, the vector Ti(x) is simply written Tix, to both ease
notation and as a reminder that linear transformatons are simply matrices. You are given the following
transformations Ti:

T1


x
y
z
w

 =


w
y
z
x

 T2

[
x
y

]
=

[
2ey

x

]
T3

[
x
y

]
=

[
x2

y2

]
T4

[
x
y

]
=

[
sin(x2 + y2)
cos(x2 + y2)

]

T5

xy
z

 =

3y + x
0

x2 − y

 T6

[
x
y

]
=


0
0
0
0

 T7

xy
z

 =

[
−3x
z + y

]
T8

xy
z

 =

2x+ 2y
y + z
0


1. Which of the Ti are linear? For those that are not, give a counterexample in which one of the

linearity conditions fail.

2. Let S : R3 → R3 be the linear transformation for which

ST5

10
0

 =

10
1

 , ST8

01
0

 =

01
1

 , ST8

00
1

 =

11
0

 .

Construct the 3× 3 matrix of S.
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Exercise 17.2. (✠2.21) Prove the claim from Definition 17.6 that the kernel and image of f : V → W
are subspaces of V and W , respectively. Use linearity to check the vector space conditions.

Exercise 17.3. (✠2.21) Let f : V → W be a linear transformation, and let v1, . . . , vn be a basis of
V . Show that f is injective iff the set of vectors f(v1), . . . , f(vn) ⊆ W is linearly independent.

Exercise 17.4. (✠2.20) Consider the three orthogonal vectors

x =

10
3

 , y =

 3
0
−1

 , z =

 0
−2
0

 .

Let f : R3 → R3 be the linear transformation for which

f(x) =

11
0

 , f(y) =

−1
−1
−1

 , f(z) =

 0
1
−1


Construct the 3× 3 matrix for f .

Exercise 17.5. (✠2.20, 2.21) Let V be the vector space of polynomials in two variables x and
y of degree at most 2. This space has dimension 6, and has basis with basis 1, x, y, x2, y2, xy. Let
L : V → V be the linear transformation defined by L(f(x, y)) = f(x− y, y − x).

1. Find the matrix of L using the basis specified.

2. Find a basis for the image and kernel of L.

Exercise 17.6. (✠2.21) Prove the claim from Remark 17.14 that the composition of two linear
maps is linear.
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Part III

Eigentheory

Lecture 18: Defining the determinant

Chapters 5.1,5.2 in Strang’s “Linear Algebra”

• Fact 1: The determinant may be computed either recursively or combinatorially, only for a
square matrix.

• Fact 2: The determinant is related to the pivots and invertibility of a matrix.

✠ Standard 3.01: Compute the determinant using both the recursive and combinatorial definitions.

✠ Standard 3.02: Use the multilinearity and alternating properites to infer results for special
matrices.

We now begin a new part of this course, on everything to do with eigenvectors and eigenvalues. The
first step is the determinant of a matrix, which is a rough estimate of the eigenvalues of the matrix.
As we will see later, the determinant is the product of all the eigenvalues.

18.1 The recursive definition

The determinant is a function det : Mn×n → R, and denoted as either det(A) or with vertical bars
|A|. Before we get to definitions and new ideas, we consider some concepts you have already seen, in
this and previous courses.

Example 18.1. The determinant is often associated with invertibility of a matrix.

• (Definition 18.5) The determinant of a 1 × 1 matrix [ a ] is a. The matrix is not invertible is
a = 0.

• (Definition 18.5) The determinant of a 2×2 matrix
[
a b
c d

]
is ad− bc. The matrix is not invertible

if ad− bc = 0.

• (to be proved later) The determinant is the product of the pivots, up to a sign change.

• (to be proved later) The determinant is zero if and only if the matrix is not invertible.

Example 18.2. The determinant is also associated with the shape change of a square. In R2:

• the vectors [ 00 ] , [
0
1 ] , [

1
0 ] , [

1
1 ] enclose a square with area 1,

• the vectors A [ 00 ] , A [ 01 ] , A [ 10 ] , A [ 11 ] enclose a parallelogram with area |det(A)|,

for any 2× 2 matrix A. This extends to Rn, with a generalization of “square” and “area.”

Definition 18.3: Let n ∈ N. The unit n-cube in Rn is the set of points (x1, . . . , xn) with
0 ⩽ xi ⩽ 1 for all i. The unit n-cube has n-dimensional volume, or simply n-volume, equal to
1. The n-volume of any other shape in Rn is given by the number of (fractions of) unit n-cubes
in the shape.

This way to define n-dimensional volume is a rough estimate of the more accurate way, which would
be to take an n-fold integral.
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Example 18.4. Consider A ∈ Mn×n as a function Rn → Rn. The absolute value of the determinant
of A is the n-dimensional volume of the shape that the unit n-cube becomes, after multiplying each
of its corners by A.

[ 11 ]

A [ 11 ]

B [ 11 ]

R

R

A =

[
1 1

5
13
10

3
2

]
det(A) = 1.24

B =

[
3
2 3
−1

2
5
2

]
det(B) = 5.25

The red and blue images are called parallelograms. In general, the image of the corners of the unit
n-cube, when multiplied by an n× n matrix, is called a parallelotope.

Outr first definition of the determinant is a recursive definition, which justifies the first two exam-
ples in Example 18.1.

Definition 18.5 (Recursive definition): Let A ∈ Mn×n. The determinant det(A) of A is:

• if n = 1, then det(A) = A11

• if n ⩾ 2, then det(A) =
n∑

j=1

(−1)i+jAij det(A
ij), for any i ∈ {1, . . . , n}

The matrix Aij is the (n − 1) × (n − 1) submatrix of A produced when the ith row and jth
column are removed. In this setting,

• the number det(Aij) is called the ij-minor of A,

• the number (−1)i+j det(Aij) is called the ij-cofactor of A.

The n× n matrix with ij-entry the ij-cofactor is called the cofactor matrix cofac(A) of A.

Example 18.6. Following Definition 18.5, we compute the determinant of a matrix A, using i = 1:

det(A) = det

0 3 4
2 −1 2
1 5 −2


=

∣∣∣∣∣∣
0 3 4
2 −1 2
1 5 −2

∣∣∣∣∣∣
= (−1)1+10

∣∣∣∣−1 2
5 −2

∣∣∣∣+ (−1)1+23

∣∣∣∣2 2
1 −2

∣∣∣∣+ (−1)1+34

∣∣∣∣2 −1
1 5

∣∣∣∣
= 0− 3(−4− 2) + 4(10 + 1)

= 18 + 44

= 62.

We would have gotten the same result with i = 2 or i = 3.
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Inquiry 18.7 (✠3.01): Let A ∈ Mn×n. Using the recursive Definition 18.5 of a determininant,
show that the following statements are true, for any n ∈ N.

1. The determinant of the n× n identity matrix is 1. That is, det(In) = 1.

2. The determinant of an upper (or lower) triangular matrix is the product of the diagonal
entries.

Hint: use induction for both!

Next we describe some general properties of the determinant.

Proposition 18.8. Let A ∈ Mn×n. As a function of the rows of A, the determinant is:

• multilinear , that is, det(r1 . . . , ca+ b, . . . , rn) = cdet(r1, . . . ,a, . . . , rn) + det(b, . . . , ri, . . . , rn)

• alternating , that is, det(r1 . . . , ri, . . . , rj , . . . , rn) = −det(r1 . . . , rj , . . . , ri, . . . , rn)

Proof. The first point follows by induction on n, and by using the recursive definition (Definition 18.5)
to expand along row i. The statement is immediately true for a 1× 1 matrix. For the inductive step,
notice that

detA = det(r1, . . . , ca+ b, . . . , rn)

=
n∑

j=1

(−1)i+j(ca+ b)j det(A
ij)

= c

 n∑
j=1

(−1)i+j(a)j det(A
ij)

+

 n∑
j=1

(−1)i+j(b)j det(A
ij)

 ,

and Aij is the same in both cases.
The second point follows by using the combinatorial definition of the determinant (Definition

18.13). Fix two different indices i, j ∈ {1, 2, . . . , n}. For every permutation σ on a set of size n, let σ′

be the permutation given by

σ′(k) =


σ(k) k ̸= i, j,

σ(j) k = i,

σ(i) k = j.

That is, σ′ is the same as σ, except it swaps the images of i and j. Note that sgn(σ′) = −sgn(σ),
since σ′ has one row swap that σ does not have. Now suppose that for a matrix A, the matrix A′ is
the same, except with rows i and j swapped. Then

det(A′) =
∑

permutations σ

sgn(σ)A′
1σ(1)A

′
2σ(2) · · ·A′

iσ(i) · · ·A′
jσ(j) · · ·A′

nσ(n) (definition of det)

=
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·A′
iσ(i) · · ·A′

jσ(j) · · ·Anσ(n) (definition of A′)

=
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·Aiσ(j) · · ·Ajσ(i) · · ·Anσ(n) (Ai = A′
j and Aj = A′

i)

=
∑

permutations σ′

sgn(σ)A1σ′(1)A2σ′(2) · · ·Aiσ′(i) · · ·Ajσ′(j) · · ·Anσ′(n) (definition of σ′)

= −
∑

permutations σ′

sgn(σ′)A1σ′(1)A2σ′(2) · · ·Aiσ′(i) · · ·Ajσ′(j) · · ·Anσ′(n) (property of σ′)

= −det(A). (definition of det)
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Example 18.9. Consider the following example of multilinearity (on the left) and the alternating
property (on the right):

−46 = 11 · (−2)− 8 · 3
∣∣∣∣−5 6
−5 6

∣∣∣∣ = (−5) · 6− (−5) · 6

=

∣∣∣∣11 8
3 −2

∣∣∣∣ = −30 + 30

=

∣∣∣∣6 + 5 9− 1
3 −2

∣∣∣∣ = 0

= 3

∣∣∣∣2 3
3 −2

∣∣∣∣+ ∣∣∣∣5 −1
3 −2

∣∣∣∣
= 3 (2 · (−2)− 3 · 3) + (5 · (−2)− (−1) · 3)
= −39− 7

= −46.

Inquiry 18.10 (3.02): There are two immediate consequences of Proposition 18.8. Show why
they are both true using the proposition, for any n× n matrix.

1. A matrix with a zero row has determinant zero.

2. A matrix with two equal rows has determinant zero.

Hint: consider the determinant as a function of the rows, as in the proposition.

18.2 A combinatorial definition

We now consider the determinant in a combinatorial context, that is, as it relates to all permutations
of the rows and columns of a matrix.

Definition 18.11: Let S = (a1, . . . , an) be an ordered set. A permutation of S is equivalently

• a bijective function σ : (1, . . . , n) → (1, . . . n), or

• a rearrangement of the elements of S in a different order.

A transposition is a permutation in which only two elements are in a different order, that is, for
which σ(i) = i for all i = 1, . . . , n except two.

Example 18.12. A permutation can be denoted in several different ways:

(1 2)(4 6 5)

(
1 2 3 4 5 6
2 1 3 6 4 5

) 1 7→ 2
2 7→ 1
3 7→ 3
4 7→ 6
5 7→ 4
6 7→ 5

all describe the same permutation. Moreover, (1 2)(4 6 5) is the same as (1 2)(6 5)(4 6), if we apply
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the 2-element permutations from right to left:

(4 5 6) (1 2)
1 7→ 1 7→ 2
2 7→ 2 7→ 1
3 7→ 3 7→ 3
4 7→ 6 7→ 6
5 7→ 4 7→ 4
6 7→ 5 7→ 5

(4 6) (6 5) (1 2)
1 7→ 1 7→ 1 7→ 2
2 7→ 2 7→ 2 7→ 1
3 7→ 3 7→ 3 7→ 3
4 7→ 6 7→ 6 7→ 6
5 7→ 5 7→ 4 7→ 4
6 7→ 4 7→ 5 7→ 5

On a set of size n there are n! permutations and n(n − 1)/2 transpositions. They are related to
each other, but in a difficult to prove way.

Theorem 18.12.1. Every permutation on a set of n elements may be uniquely (up to rearrangement)
described as a composition of transpositions.

This is a nontrivial fact and we do not prove it here.

Definition 18.13 (Combinatorial definition): Let A ∈ Mn×n, and let σ be a permutation
on a set of size n.

• The parity of σ is “odd” or “even,” depeding on if the number of transpositions necessary
to represent it is odd or even, respectively.

• The sign of σ is +1 if the parity of σ is even, and −1 is the parity of σ is odd. This number
is denoted by sgn(σ).

• The determinant of a matrix A is a sum over all permutations of the columns of A:

det(A) =
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n) =
∑

permutations σ

sgn(σ)
n∏

i=1

Aiσ(i). (8)

This definition may seem much more technical than the recursive Definition 18.5, but it very useful
in cases where direct construction is important.

Example 18.14. We use the combinatorial definition to compute the determinant of a 3× 3 matrix:

() (1 2) (1 3) (2 3) (1 2 3) (1 3 2)2 5 −1
3 −2 6
1 0 2

 2 5 −1
3 −2 6
1 0 2

 2 5 −1
3 −2 6
1 0 2

 2 5 −1
3 −2 6
1 0 2

 2 5 −1
3 −2 6
1 0 2

 2 5 −1
3 −2 6
1 0 2


−8 30 2 0 30 0− − − + +

Hence det(A) = −10.

Inquiry 18.15 (3.02): Recall from Definition 3.9 that elementary matrices are either permu-
tation (swaps rows), elimination (adds multiples of rows), or diagonal (multiplies rows by a
number) matrices.

1. What is the determinant of any elimination matrix?

2. What is the determinant of any diagonal matrix?

3. What is the determinant of a permutation matrix that swaps two rows? What about three,
four rows? Start with some small examples to see what happens.
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Convince yourself that permutation matrices with an odd number of row swaps have determinant
-1, and permutation matrices with an even number of row swaps have determinant 1. This is
the concept of parity .

Remark 18.16. Every term of the combinatorial definition of the determinant of A ∈ Mn×n has

• exactly one factor in every row of A, and

• exactly one factor in every column of A.

All the different ways to choose n elements from A respecting both of these conditions gives all the
differnt terms in the determinant.

Example 18.17. There are 3! = 6 permutations on a set of size 3, so a determinant of a 3× 3 matrix
is an alternating sum of 6 terms. The permutations are given below.

ρ
1 7→ 1
2 7→ 2
3 7→ 3

σ
1 7→ 2
2 7→ 1
3 7→ 3

τ
1 7→ 3
2 7→ 2
3 7→ 1

µ
1 7→ 1
2 7→ 3
3 7→ 2

ν
1 7→ 2
2 7→ 3
3 7→ 1

λ
1 7→ 3
2 7→ 1
3 7→ 2

The transpositions are σ, τ , µ. Note that ν = τ ◦σ and λ = σ◦τ , which gives us a complete description
of the signs of these permutations:

permutation σ ρ σ τ µ ν λ

sgn(σ) 1 −1 −1 −1 1 1

So if A =
[

4 −2 1
7 0 3
−1 −3 4

]
, then the determinant is

det(A) = A1ρ(1)A2ρ(2)A3ρ(3) −A1σ(1)A2σ(2)A3σ(3) + · · ·+A1λ(1)A2λ(2)A3λ(3)

= 4 · 0 · 4− ·(−2) · 7 · 4 + · · ·+ 1 · 7 · (−3)

= 77.

However, if we had a different matrix A =
[
4 0 0
7 0 3
0 −3 4

]
, then all permutations except one would have a

factor of zero in them. That is, since the product A1σ(1)A2σ(2) · · ·Anσ(n) has exactly one element in
each row and exactly one element in each column, none of the terms in the combinatorial definition
of the determinant can have two elements in the same row or in the same column. In other words,

det(A′) = sgn(µ) · 4 · 3 · (−3) = (−1) · (−36) = 36.

Taking 4 in row 1, column 1, we cannot take any other element in column 1, so we must take row 2,
column 3, to get a nonzero number. That leaves row 3, column 2 as the final factor (since columns 1
and 3 have already been used). All other terms in the expansion (8) will have at least one factor of 0,
so can be safely ignored.

18.3 Exercises

Exercise 18.1. (✠3.01) Show with a counterexample that the set of all invertible n × n matrices
is not a subspace of Mn×n. That is, show it is not a vector space.

Exercise 18.2. (✠3.01) Recall the definition of an inverse of a square matrix A, which was a matrix
B such that AB = BA = I. Show that the statement AB = I implies BA = I.
Hint: Use the fact that a matrix having an inverse is the same as the matrix having nonzero determi-
nant.
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Exercise 18.3. (✠3.01) Let A be a 3× 3 matrix. Suppose that det(A) = k.

1. Use the multilinearity property of the determinant to compute det(A+A).

2. Use the multilinearity property of the determinant to compute det(−A).
Hint: Use the fact that −A = A− 2A.

3. Explain how the result for part (b) would be different if A was a 2× 2 matrix.

Exercise 18.4. (✠3.02) Let A ∈ Mn×n. Show that det(A) = 0 is equivalent to saying that there
is a nonzero vector x for which Ax = 0.

Exercise 18.5. (✠3.01) How many cofactors, or minors, of the matrix below are nonzero? How
many terms in the recursive definition of the determinant are nonzero?

A =

1 1 1
2 2 0
1 1 0


Exercise 18.6. (✠3.01) Find the parity of the two permutations below.

σ
1 7→ 1
2 7→ 3
3 7→ 2
4 7→ 4

ρ
1 7→ 3
2 7→ 1
3 7→ 2
4 7→ 4

Use this to find the determinant of the matrix A =

[
7 0 −1 0
3 0 2 0
0 −2 6 0
0 0 0 1

]
.

Exercise 18.7. (✠3.01) Use the combinatorial definition of the determinant for this question.
Recall from Example 19.15 that every term in the combinatorial definition uses exactly one entry
from each row and one entry from each column of the matrix.

1. Compute the determinant of 
1 0 1 0 1
1 1 1 1 1
0 0 1 0 0
1 1 1 0 1
1 0 1 0 0

 .

2. The n × n identity matrix has n2 − n zeroes and exactly one nonzero term in the combinato-
rial definition. What is the smallest number of zeroes an n × n matrix can have so that the
combinatorial definition has only one nonzero term?
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Lecture 19: Properties of the determinant

Chapters 5.2,5.3 in Strang’s “Linear Algebra”

• Fact 1: The determinant of a product is the product of determinants: det(AB) = det(B) det(A)

• Fact 2: The determinant is the product of the pivots, up to a sign change.

• Fact 3: The determinant is nonzero iff the matrix is invertible.

✠ Standard 3.03: Compute determinants of products, inverses, transposes of matrices.

✠ Standard 3.04: Prove simple properties of the determinant.

This lecture explores some properties of the determinant.

19.1 Splitting the determinant

We begin by showing that the determinant is multiplicative, that is, that det(AB) = det(A) det(B)
for any n× n matrices A,B. First we need to revisit elementary matrices in Definition 3.9.

Lemma 19.1. Let A ∈ Mn×n be an invertible matrix. That is, A−1 exists.

• If P is a permutation matrix of a single row swap, then det(PA) = det(P ) det(A) = −det(A).

• If E is an elimination matrix, then det(EA) = det(E) det(A) = det(A).

• If D is a diagonal matrix, then det(DA) = det(D) det(A).

Proof. The first point follows from the alternating property from Proposition 18.8 and the third point
of Inquiry 18.15.

The second point follows by multilinearity from Proposition 18.8 and the first point ofInquiry
18.15, which gives that det(E) = 1. Elimination matrices are row operations, so in terms of A and
the rows r1, . . . , rn of A,

det(EA) = det(r1, . . . , ri, . . . , rj − ℓijri, . . . , rn)

= det(r1, . . . , ri, . . . , rj , . . . , rn)︸ ︷︷ ︸
det(A)

−ℓij det(r1, . . . , ri, . . . , ri, . . . , rn)︸ ︷︷ ︸
0 because two rows the same

= det(A).

The third point follows by the second point of Inquiry 18.7, which says that det(D) is the product
of its diagonal entries, and by the recursive definition of the determinant. If D has all ones on the
diagonal except on row i, then

det(DA) =

n∑
j=1

(−1)i+j(DA)ij det((DA)ij)

= Dii

n∑
j=1

(−1)i+jAij det((DA)ij)

= Dii

n∑
j=1

(−1)i+jAij det(A
ij)

= Dii det(A)

= det(D) det(A).

If D has more than one diagonal entry that is not 1, repeat this step for every such row.
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Inquiry 19.2 (✠3.03, 3.04): Let A ∈ M3×3. Use Lemma 19.1 for these tasks.

1. Suppose that row operations turn A into
[
1 2 −1
0 1 3
0 0 0

]
. Explain why A has determinant zero.

2. Suppose that A has 3 pivots. Explain why A has a nonzero determinant.

Let A be the elimination matrix
[

1 0 0
−2 1 0
0 0 1

]
.

3. Compute the inverse B of A.

4. What is det(A) and what is det(B)?

The above inquiry sets the scene for the following inquiry and the proposition afterward.

Inquiry 19.3 (✠3.04): Let A,B ∈ Mn×n, not necessarily related matrices.

1. Suppose that det(A) = 0. Show by contradiction that det(AB) must also be 0.

2. Suppose that det(A) ̸= 0 and det(B) ̸= 0. Show that det(AB) = det(A) det(B).

For the second point, convince yourself that A having n pivots means A can be expressed as a
product of elementary matrices.

We conclude this section with a strong relationship among some big concepts we have seen so far:
pivots, invertibility, and the determinant.

Proposition 19.4. Let A ∈ Mn×n.

• The determinant of A is the product of the pivots of A, up to a sign change.

• The determinant of A is nonzero if and only if A has n pivots.

• The determinant is zero if and only if A is not invertible.

Proof. The first point follows from the second point of Inquiry 19.3. The second point is a direct
consequence of the first point. The third point follow from both points of Inquiry 19.3.

19.2 Inverses and transposes

Now we take a look at how the determinant works with transposes and inverses.

Proposition 19.5. Let A ∈ Mn×n be invertible (that is, have nonzero determinant).

• The determinant of the tranpose is the same as the determinant: det(AT ) = det(A)

• The determinant of the inverse is the reciprocal of the determinant: det(A−1) = det(A)−1

Proof. The first statement follows by using the fact that if A is invertible, then it may be expressed
as the product of elementary matrices. Using the properties of the transpose (after Definition2.11,
the transpose of the product is the (reversed) product of the individual factors. Finally by applying
multiplicativity of the determinant, we get back the original matrix A.

The second statement follows from Proposition 19.1 and the fact that AA−1 = I:

AA−1 = I =⇒ det(AA−1) = det(I)

=⇒ det(A) det(A−1) = 1

=⇒ det(A−1) =
1

det(A)
= det(A)−1.
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Recall from Definition 18.5 the ij-minor of a matrix A was the determinant of the submatrix after
the ith row and jth column are removed. The ij-cofactor was the ij-minor multiplied by (−1)i+j .

Proposition 19.6. Let A ∈ Mn×n be invertible, and let Cij = (−1)i+j det(Aij) be the ij-cofactor of
A. Then the ij-entry in the inverse is

(A−1)ij =
Cji

det(A)
.

In general, for C the cofactor matrix of A, we have ACT = det(A)I, or A−1 = CT / det(A).

Proof. This comes from the recursive definition of the determinant, which states that

det(A) = A11C11 +A12C12 + · · ·+A1nC1n = aT1 c1,

det(A) = A21C21 +A22C22 + · · ·+A2nC2n = aT2 c2,

and so on, where ai is the ith row of a and ci is the ith row of C. Moreover, for i ̸= j, the sum

det(A′) = Ai1Cj1 +Ai2Cj2 + · · ·+AinCjn = aTi cj

of some new matrix A′ must be zero, as this is the determinant for a matrix whose ith and jth rows
are the same. That is, Aj1 does not appear in Cj1, so having Aj1 = Ai1 is allowed for this determinant.
Inquiry 18.10 told us that a matrix with two equal rows has determinant zero. Hence

− a1 −
− a2 −

...
− an −


︸ ︷︷ ︸

A

 | | |
c1 c2 · · · cn
| | |


︸ ︷︷ ︸

CT

=


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...
0 0 · · · det(A)

 ,

or ACT = det(A)I.

This formula generalizes the formula for the inverse of the 2 × 2 matrix A =
[
a b
c d

]
and A−1 =

1
ad−bc

[
d −b
−c a

]
. The determinant is still in the denominator, but the cofactors come from larger matrices

and so the inverse is not just about rearranging elements.

Example 19.7. Consider the matrix

A =


1 0 0 1 0
0 1 0 5 0
0 0 2 8 0
7 2 9 3 6
0 0 0 3 1

 , det(A) = −136.

This matrix is invertible, and the (4, 4)-entry of the inverse will be

(A−1)44 =
(−1)4+4

−136

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

∣∣∣∣∣∣∣∣ =
−1

68
.

A final application of the determinant that we will see is in a physical setting. Recall the standard
basis from Example 10.7 in Lecture 10.
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Definition 19.8: Let v1, . . . ,vn−1 ∈ Rn, arranged as columns of A ∈ Mn×(n−1), and let
e1, . . . , en ∈ Rn be the standard basis vectors. The cross product of the vectors vi is the vector

X(v1, . . . ,vn−1) :=

n∑
i=1

(−1)i+n det(Ai)ei =

∣∣∣∣∣∣∣
| | | e1

v1 v2 · · · vn−1
...

| | | en

∣∣∣∣∣∣∣ ,
where Ai ∈ M(n−1)×(n−1) is A with the ith row removed. The expression on the right is a formal
determinant, since we can’t put in a whole vector ei in a single entry.

Example 19.9. What does the cross product represent? In three dimensions, it is the right-hand rule
of physicists, determining the direction a moving charge from a rotating magnetic field. The vector
computed will be perpendicular to the initial vectors:23

4

×

10
1

 = (−1)1+3

∣∣∣∣3 0
4 1

∣∣∣∣
10
0

+ (−1)2+3

∣∣∣∣2 1
4 1

∣∣∣∣
01
0

+ (−1)3+3

∣∣∣∣2 1
3 0

∣∣∣∣
00
1

 =

 3
2
−3

 .

Remark 19.10. The cross product has several interesting properties:

• X(v1, . . . ,vn−1) = 0 iff the set of vectors v1, . . . ,vn−1 is linearly dependent

• For n = 2, the length of the cross product is ∥u× v∥ = ∥u∥∥v∥| sin(θ)|

• The cross product is related to the dot product by (u× v)×w = (u ·w)v− (v ·w)u

• The cross product is anti-commutative, or skew-symmetic: a× b = −b× a

Inquiry 19.11 (✠3.03): This inquiry is about the cross product.

1. Compute the cross product of the two basis vectors for the plane defined by z = 10x− 2y
(see Example 11.2).

2. Compare your answer above with a normal vector to this plane. Are the two vectors the
same? Are they similar?

3. You should have four vectors from the two points above. Explain why their span can be
expressed using at most three vectors.

19.3 Exercises

Exercise 19.1. (✠3.03) Let a, b, c, d ∈ R. Using elementary matrices (permutation, elimination,
diagonal) to bring these matrices to triangular form, compute their determinants.

A =


0 a 0 0
0 0 b 0
0 0 0 c
d 0 0 0

 B =

a b a
a c a
a d a

 C =

a b c
b 0 b
c b a


Exercise 19.2. (✠3.04) Show that the cross product X(v1, . . . ,vn−1) is skew-symmetric, in the
sense that swapping the order of two entries puts a negative sign in front.

Exercise 19.3. (✠3.04) Let A be an n× n matrix, for some n ∈ N.

1. Explain why det(kA) = kn det(A), for any real number k.

2. If A is skew-symmetric, explain why randomly choosing n in the range [1, 100] means det(A) = 0
exactly half of the time.
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3. Suppose that A is a projection matrix, projecting from Rn to an (n− 1)-dimensional subspace
of Rn. Explain why det(A) = 0.
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Lecture 20: Defining eigenvalues and eigenvectors

Chapter 6.1 in Strang’s “Linear Algebra”

• Fact 1: An n× n matrix has at most n eigenvalues, which may be real or complex.

• Fact 2: The roots of the characteristic polynomial det(A− λI) are the eigenvalues of A.

✠ Standard 3.05: Find eigenvectors and eigenvalues of a matrix

✠ Standard 3.06: Given only eigenvalues and eigenvectors of A, compute Ax for any x

✠ Standard 3.07: Given only eigenvalues and eigenvectors, construct a matrix with these eigenval-
ues and eigenvectors

This lecture gets to the heart of the current topic of eigensystems. Eigenvalues are important to
undrstand what a matrix does to vectors. Eigenvectors are unique in that their direction does not
change when multiplied by a matrix A (though their length may change).

20.1 Words beginning with “eigen”

It is important to remember that eigenvalues are unique, but eigenvectors are not, as they can be
multiplied by any real number.

Definition 20.1: Let A ∈ Mn×n. For every vector v with Av = λv, where λ ∈ R,

• the vector v is called an eigenvector ,

• the value λ is called the eigenvalue,

• the pair (v, λ) is called an eigenpair .

The set of all eigenvalues of A is called the spectrum of A. The set of all eigenpairs whose
eigenvectors are linearly independent is called the eigensystem of A. Eigensystems are unique
up to vector scaling.

Eigenvectors describe the direction in which a matrix changes Rn, and the eigenvalues describe the
stretching that is done in that direction. Although the zero vector v = 0 satisfies the above definition
for any number λ, it is not considered an eigenvector, since it does not give any information about
the matrix.

Example 20.2. In R2, the matrix A =
[
23/10 −6/5
9/20 1/5

]
has eigenvector v1 = [ 41 ] with eigenvalue 2, and

eigenvector v2 = [ 23 ] with eigenvalue 1
2 .

R

R

v1

Av1

v2

Av2
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The vector v1 gets longer and v2 gets shorter as A is applied more times. Adjusting v1 and v2 so that
they make angles π

6 and π
3 with the x-axis, respectively, we can visually see what happens to vectors

on the unit circle as A is applied more times.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

A
0

A
1

A
2

A
3

A
4

A
5

The unit eigenvectors are marked with black circles around them. They are also distringuished from
other vectors because their “trajectory” as A is applied is a striaght line. Below in Remark 20.8 we
see what happens to vectors that are not exactly an eigenvector.

Example 20.3. Consider the following examples of eigenvectors and eigenvalues.

• The matrix A =
[
4 −2
0 2

]
has eigenvector [ 11 ] with eigenvalue 2. But A also has eigenvalue [ 22 ]

with eigenvalue 2.

• The matrix B =
[
0 −1
1 0

]
has no (real) eigenvalues. This is the rotation matrix with θ = π

2 . In
the second part of this lecture we will see how to get an eigenvalue from this matrix.

• The identity matrix has every vector as an eigenvector with eigenvalue 1.

• The projection matrix P = projU (from Lecture 13) has every vector in U as an eigenvector
with eigenvalue 1, and has every vector of U⊥ as an eigenvector with eigenvalue 0.

Eigenvectors v,w of a matrix A are called independent eigenvectors if the set {v,w} is linearly
independent.

Inquiry 20.4 (✠3.05): Let v = [ v1v2 ] ,w = [w1
w2 ] ∈ R2 be fixed.

1. If A ∈ M2×2 with A [ 10 ] = v and A [ 01 ] = w, what is the determinant of A?

2. Suppose that there is B ∈ M2×2 with v,w as eigenvectors. In what cases will the vector
v+w be an eigenvector for B?

3. Must there always exist a 2 × 2 matrix with v and w as eigenvectors? That is, knowing
only v and w, can you construct a 2× 2 matrix with these as eigenvectors?

20.2 The characteristic polynomial

So far we have seen just examples of eigenvalues and eigenvectors, but not yet a procedure for finding
them. We describe this procedure now.
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Definition 20.5: Let A ∈ Mn×n. The characteristic polynomial of A is

χ(t) = det(A− tI). (9)

The roots λi of the characteristic polynomial are the eigenvalues of A. The multiplicity of each
root λi is its algebraic multiplicity .

Once the roots λ1, . . . , λk of χ are found, then Avi = λivi can be solved in each coordinate to find
the corresponding eigenvector vi.

Example 20.6. Consider the matrix A =
[

2 3
−1 6

]
. What are its eigenvalues and corresponding eigen-

vectors? We must solve det(A− λI) = 0:

0 = det (A− λI)

= det

([
2 3
−1 6

]
−
[
λ 0
0 λ

])
=

∣∣∣∣2− λ 3
−1 6− λ

∣∣∣∣
= (2− λ)(6− λ) + 3

= 12− 8λ+ λ2 + 3

= λ2 − 8λ+ 15

= (λ− 5)(λ− 3).

Hence the eigenvalues are λ = 5 and λ = 3. To find the corrseponding eigenvectors, we solve:

Av = 3v ⇐⇒
[
2 3
−1 6

] [
v1
v2

]
= 3

[
v1
v2

]
⇐⇒

[
2v1 + 3v2
−v1 + 6v2

]
=

[
3v1
3v2

]
.

This is a linear system of 2 equations, which has solution (by back-substitution) v = [ 31 ], though
we can choose any value we want for v2 (and we choose 1 - to avoid such problems, we often take
eigenvectors with unit length). Similarly, λ = 3 has the eigenvector [ 31 ].

Inquiry 20.7 (✠3.07): Consider the vectors v = [ 12 ] ,w =
[−1

3

]
∈ R2.

1. Construct a 2× 2 matrix A that has v as an eigenvector.

2. What is the determinant of A? What does that say about its other eigenvalue?

3. Construct a 2 × 2 matrix B that has v as an eigenvector with eigenvalue 2 and w as an
eigenvector with eigenvalue 3.

4. Compute the determinant and trace of B.

Remark 20.8. If A ∈ Mn×n has n eigenvectors, then knowing them and their eigenvalues is enough
to know the effect of A on any matrix in Rn. In Example 20.6 we found two eigenvalues and two
eigenvectors. Then for any other vector we have

A

[
2
−2

]
= A

(
2

[
3
1

]
− 4

[
1
1

])
= 2A

[
3
1

]
− 4A

[
1
1

]
= 2 · 5

[
3
1

]
− 4 · 3

[
1
1

]
=

[
18
−2

]
.
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Definition 20.9: Let A ∈ Mn×n. For every eigenvalue λ,

• the number of linearly independent eigenvectors with λ as their eigenvalue is the geometric
multiplicity of λ,

• the span of these linearly independent eigenvectors is the eigenspace of λ.

In other words, if A has k eigenvectors v1, . . . ,vk in its eigensystem, then the number of vi with
eigenvalue λ is the geometric multiplicity of λ.

Inquiry 20.10 (✠3.05): Consider the matrix A =
[
0 1 0
1 0 0
0 1 1

]
.

1. Compute the eigensystem of A.

2. What are the eiegenspaces of A?

3. Explain the relationship between the dimension of an eigenspace and its geometric multi-
plicity.

20.3 Exercises

Exercise 20.1. (✠3.05) Consider the matrix A =
[
6 −5
5 −2

]
.

1. Find the eigenvalues and eigenvectors of A. Be careful, there may be complex numbers!

2. If v1 and v2 are the eigenvectors, compute the dot product v1 · v2. Is it a complex or a real
number?

Exercise 20.2. (✠3.05) Let v ∈ Rn be a unit vector, and let A = vvT .

1. Show that A is a projection matrix.

2. Show that v is an eigenvector of A and find its eigenvalue.

3. Show that if u ⊥ v, then Au = 0.

4. How many independent eigenvectors does A have with eigenvalue 0?

Exercise 20.3. (✠3.07) Consider the values λ1 = −3, λ2 = −2, λ3 = 5.

1. Construct two different 3× 3 matrices with λ1, λ2, λ3 as eigenvalues.

2. What are the eigenvectors v1,v2,v3 of the two matrices you created in part (a)?

3. If λ3 = −2, explain why every linear combination of v2 and v3 is an eigenvector.

Exercise 20.4. (✠3.05) You are given that a matrix B has eigenvalues −1, 2, 5 and a matrix C
has eigenvalues 9, 3, 1. Find the eigenvalues of the matrix

A =

[
B C
0 D

]
=



1 0 1 −2 0 0
−2 2 0 0 0 7
8 0 3 0 8 0
0 0 0 9 −9 0
0 0 0 0 3 0
0 0 0 −5 2 1

 .

Exercise 20.5. (✠3.07) Let λ, µ be real numbers, and u = [ xy ] ,v = [ zw ] ∈ R2 be two vectors.

1. Construct a 2× 2 matrix with eigenpairs (u, λ) and (v, µ).
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2. What assumptions did you make in the first part to reach a conclusion?

Exercise 20.6. (✠3.06, 3.07) Let A : R2 → R2 be the 2 × 2 matrix for which A [ 12 ] = [ 24 ] and
A [ 62 ] = [ 31 ]. This is described in the picture below.

R

R

(1, 2)

A(1, 2) = (2, 4)

(6, 2)

A(6, 2) = (3, 1)

1. What is the eigensystem of A?

2. Express [ 10 ] and [ 01 ] as linear combinations of the eigenvectors of A.

3. Compute A [ 10 ] and A [ 01 ]. Use this to construct the matrix of A.

4. Using eigenvalues, explain why A is invertible.
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Lecture 21: Properties of eigenvalues and eigenvectors

Chapters 6.1 and 6.2 in Strang’s “Linear Algebra”

• Fact 1: The sum of the eigenvalues is the trace of the matrix.

• Fact 2: The product of the eigenvalues is the determinant of the matrix.

• Fact 3: An n× n matrix has exactly n eigenpairs, counting multiplicity.

• Fact 4: Eigenvalues may be zero. Eigenvectors cannot be the zero vector.

✠ Standard 3.08: Compute trace, determinant, eigensystems of special matrices.

✠ Standard 3.09: Diagonalize a matrix with linearly independent eigenvectors, and identify when
it is not possible.

We continue understading the key properties of eigenvalues and eigenvectors.

21.1 Properties of eigensystems

Recall that the key idea of the eigensystem of a matrix A ∈ Mn×n was that it explains how Rn is
transformed, when A multiplies any vector in Rn.

Definition 21.1: Let A ∈ Mn×n. If there are vectors v,w ∈ Rn for which there exists λ, µ ∈ R,
such

• Av = λv, then v is called an eigenvector , or right eigenvector of A,

• wTA = µwT , then w is called a left eigenvector of A.

Note that a right eigenvector of A is a left eigenvector of AT .

If no adjective “right” or “left” is used, then “right” is assumed. The relationship between left and
right eigenpairs is not immediate.

Inquiry 21.2 (✠3.08): Let A ∈ Mn×n.

1. Suppose that A is symmetric. If (v, λ) is an eigenpair for A, show that v is an eigenvector
for ATA. What is its eigenvalue?

2. Suppose that there are n distinct eigenpairs (vi, λi) for A, with each eigenvector being
both a right and a left eigenvector. Show that AAT = ATA.

Remark 21.3. Let A ∈ Mn×n have eigenvalues λ1, . . . , λn (not all necessarily distinct). The charac-
teristic polynomial can then be expressed as

χ(t) = (−1)n(t− λ1)(t− λ2) · · · (t− λn).

This follows from the definition of the characteristic polynomial and the recursive definition of the
determinant. The coefficient (−1)n comes from the fact that −t is multiplied by itself n times, and so
the leading term must be (−1)ntn.

Proposition 21.4. Let A ∈ Mn×n.

• The eigenvalues of A and AT are the same, but not necessarily their eigenvectors.
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• If A is upper or lower triangular, its eigenvalues are on its diagonal.

• If the rank of A is less than n, then A has an eigenvalue 0 for a non-trivial eigenvector.

• If A has an eigenpair (v, λ), then An has an eigenpair (v, λn).

Proof. The first point follows by distributing transposes in a sum (see Remark 5.14) in

det(A− λI) = det((A− λI)T ) = det(AT − (λI)T ) = det(AT − λI),

so the characteristic polynomial, and hence the eigenvalues, of A and AT are the same.
The second point follows by using the standard basis of Rn as eigenvectors.
The third point follows by using a vector in the nullspace.
The fourth point follows from a repeated application of Av = λv:

Anv = An−1(Av) = An−1(λv) = λAn−2(Av) = λ2An−3(Av) = · · · = λnv.

We are allowed to move the λ from the right to the left of An−1 because λ is a number.

The first point above is similar to the determinant, however: row operations change the eigenvalues
(they do not change the determinant). The sum of the diagonal entries in a matrix is called the trace
of the matrix.

Inquiry 21.5 (✠3.09): Recall that the characteristic polynomial of A ∈ Mn×n is χ(t) =

det(A− tI). For this question, let A =
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
.

1. The recursive definition of det(A− tI) has 6 terms in its expansion. Write all of these out,
without expanding the (aij − t) factors.

2. When the (aij − t) factors are all expanded,

• what is the coefficient of t3?

• what is the coefficient of t2?

• what is the coefficient of t?

• what is the constant term?

3. Among the parts above, find the trace and the determinant.

4. Express the characteristic polynomial using the trace and the determinant.

How do you think this generalizes to higher n ∈ N?

Sometimes we come across matrices (as in Example 20.3) that do not seem to have eigenvalues,
such as A =

[
0 −1
1 0

]
. Its characteristic polynomial is χ(t) = t2 + 1. This polynomial has no real

solutions, but does have complex solutions.

Definition 21.6: The complex numbers C are elements the set R × R, expressed as a + bi,
a, b ∈ R, with a new operation:

(0, 1) • (0, 1) = (−1, 0) ⇐⇒ i · i = −1.

Remark 21.7. Here are some key properties of the complex numbers .

• multiplying a complex number by i is “rotating the vector by 90 degrees”

• every polynomial with real (or complex) coefficients has roots in the complex numbers
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The last statement says that C is algebraically closed .

Inquiry 21.8 (✠3.08): Let A ∈ Mn×n be a skew-symmetric matrix.

1. Compute the eigensystem for A =
[
0 −5
5 0

]
. How many complex and how many real eigen-

values does A have?

2. Compute the eigensystem for A =
[

0 1 −2
−1 0 3
2 −3 0

]
. How many complex and how many real

eigenvalues does A have? You may use a computer.

3. If n is an odd number, explain why A has at least one real root. Hint: use limits.

4. How many real and how many complex values will a skew-symmetric n× n matrix have?
Begin by showing that ∥Av∥2 = −λ2∥v∥2 for any eigenpair (v, λ) of A.

More about complex numbers is discussed in Lecture 25.

Proposition 21.9. Let A,B ∈ Mn×n.

• The eigenvectors of A+B can not be expressed in terms of the eigenvectors of A and B.

• A and B have the same eigenvectors iff A and B commute (that is, AB = BA).

21.2 Multiplicity and diagonalization

We begin with considering several different possibilites of eigenpairs for a 3× 3 matrix.

Example 21.10. Consider the three linearly independent vectors u =
[
0
1
1

]
,v =

[
1
0
1

]
,w =

[
1
1
0

]
R

R

R

span(u)
span(v)

span(w)

eigenspaces of A

R

R

R

span(u,v)

eigenspaces of B

R

R

R

span(u)

span(w)

eigenspaces of C

These three vectors may appear in six different ways as eigenvectors of a 3× 3 matrix.

• A =
[

1 5 −5
2 4 −2
−3 3 −1

]
has 3 different eigenvalues, 3 different eigenvectors: (2,u), (−4,v), (6,w)

• B =
[
1 5 −5
5 1 −5
0 0 −4

]
has 2 different eigenvalues, 3 different eigenvectors: (−4,u), (−4,v), (6,w)

• C =
[ 1 5 −5
6 0 −4
1 −1 −3

]
has 2 different eigenvalues, 2 different eigenvectors: (−4,u), (6,w)

• D =
[−4 0 0

0 −4 0
0 0 −4

]
has 1 eigenvalue, 3 different eigenvectors: (−4,u), (−4,v), (−4,w)

• E =
[−5 1 1

0 −4 0
−1 1 −3

]
has 1 eigenvalue, 2 different eigenvectors: (−4,v), (−4,w)

• F =
[−3 1 −1

2 −4 0
3 1 −5

]
has 1 eigenvalue, 1 eigenvector: (−4,u)

For B and C, λ = −4 has algebraic multiplicity 2. For D,E, F , it has algebraic multiplicity 3.
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Inquiry 21.11 (✠3.09): Let u,v,w ∈ R3 be distinct vectors. Explain why the following
situations each cannot happen. Justify your reasoning with the matrix equation Av = λv, for
an eigenpair (λ,v).

1. A is a 2× 3 matrix with eigensystem {(1,u), (2,v)}.

2. B is a 3× 3 matrix with determinant zero and eigensystem {(1,u), (2,v)}.

3. C is a 3× 3 matrix with trace zero and eigensystem {(1,u), (2,v)}.

4. D is a 3× 3 matrix with eigensystem {(1,u), (2,u)}.

5. E is a 3× 3 matrix with eigensystem {(1,u), (2,v), (3,u+ v)}.

6. F is a 3 × 3 matrix with eigensystem {(0,u), (0,v), (1,w)} and a 2-dimensional column
space.

We continue with an example by constructing a matrix from the eigenvectors.

Example 21.12. Let u = [ 11 ], v = [ 01 ] ∈ R2, which are linearly indepedent vectors. Let A =
[
a b
c d

]
be a matrix with these two as eigenvectors, and corresponding eigenvalues 2, 3, respectively. What are
the entries a, b, c, d of A? We know that

[
a b
c d

] [
1
1

]
=

[
2
2

]
,

[
a b
c d

] [
0
1

]
=

[
0
3

]
, =⇒

a+ b = 2
c+ d = 2

b = 0
d = 3

⇐⇒
[
a b
c d

]
=

[
2 0
−1 3

]
.

The equations Au = 2u and Av = 3v on the left, which can be combined into a single equation

A

 | |
u v
| |


︸ ︷︷ ︸

X

=

 | |
2u 3v
| |

 =

 | |
u v
| |

[2 0
0 3

]
︸ ︷︷ ︸

Λ

=⇒ A =

 | |
u v
| |


︸ ︷︷ ︸

X

[
2 0
0 3

]
︸ ︷︷ ︸

Λ

 | |
u v
| |

−1

︸ ︷︷ ︸
X−1

The inverse of X can be constructed because u,v are linearly independent, so X has rank 2

Definition 21.13: A matrix A ∈ Mn×n is diagonalizable if it has n linearly independent
eigenvectors. If A is diagonalizable, then the diagonalization of A is the decomposition of A as
the product

A = XΛX−1, (10)

for Λ a diagonal matrix and (Λii,xi) an eigenpair of A, for every i = 1, . . . , n. The vector xi is
the ith column of X.

Remark 21.14. The matrix X is not unique, as its columns (the eigenvectors of A) may be scaled by
any real number. That is, if Ax = λx, then also A(cx) = λ(cx), so cx is an eigenvector whenever v is
an eigenvector, for any nonzero c ∈ R. In terms of diagonalization, if A = XΛX−1, continuing from
Example 21.12, we could have the eigenvectors 5u and −7v instead of just u and v. In that case,

X =

 | |
5u −7v
| |

 =

 | |
u v
| |

[5 0
0 −7

]
=⇒ X−1 =

 | |
u v
| |

[5 0
0 −7

]−1

=

[
1/5 0
0 −1/7

] | |
u v
| |

−1

,
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and the decomposition in that case is

A =

 | |
u v
| |

[5 0
0 −7

]
︸ ︷︷ ︸

X

Λ

[
1/5 0
0 −1/7

] | |
u v
| |

−1

︸ ︷︷ ︸
X−1

=

 | |
u v
| |

Λ

[
5 0
0 −7

] [
1/5 0
0 −1/7

] | |
u v
| |

−1

=

 | |
u v
| |

Λ

 | |
u v
| |

−1

,

which is the same decomposition as we had previously, with just u and v. We used the fact that
diagonal matrices commute with each other.

Example 21.15. Consider diagonalization for different types of matrices:

• If A = In, then we the eigenvectors are the standard basis vectors of Rn, and the only eigenvalue
is 1. This eigenvalue has algebraic multiplicity n, because there are n linearly independent
eigenvectors with the same eigenvalue. That is, A = X = Λ = I.

• If A has all nonzero eigenvalues that are all the same, then A must be a multiple of the identity
matrix. Indeed:

Λ = kI =⇒ A = X−1(kI)X = kX−1IX = kX−1X = kI.

• If A ∈ M4×4 has two nonzero eigenvalues and two zero eigenvalues, then A may be diagonaliz-
able, but not always. For example:

A =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 , det(A− λI) = λ2((1− λ)(−1− λ)− 3) = λ2(−4 + λ2),

and the roots of the characteristic polynomial are λ = 0 and λ = ±2. By solving the appropriate
matrix equation, we find the nonzero eigenvector / eigenvalue pairs to be

2 for


0
0
1
1

 , −2 for


0
0
−1
3

 .

For the zero eigenvalues, the corresponding eigenvector [ x y z w ]T will have z = 0 and w = 0,
but there will be no conditions on x, y, so by convention we choose e1 and e2 of the standard
basis of R4 to be the eigenvectors. Diagonalization still works:

0 0 1 0
0 0 0 1
1 −1 0 0
1 3 0 0


︸ ︷︷ ︸

X


2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Λ


0 0 3

4
1
4

0 0 −1
4

1
4

1 0 0 0
0 1 0 0


︸ ︷︷ ︸

X−1

=


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 = A

However, this works because we essentially have a diagonal block matrix
[
0 0
0 B

]
, and the 2 × 2

matrix B had linearly independent eigenvectors. If we do not have a block matrix form with
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zero eigenvalues, then we cannot diagonalize. Consider the matrix

C =

[
1 −1
1 −1

]
, det(C − λI) = (1− λ)(−1− λ) + 1 = λ2,

and the roots of the characteristic polynomial are only λ = 0. The matrix equation to solve is[
1 −1
1 −1

] [
x
y

]
= 0

[
x
y

]
⇐⇒ x− y = 0,

x− y = 0.

It seems like the only eigenvector is [ 11 ], but then X = [ 1 1
1 1 ] does not have full rank and can not

be diagonalized.

21.3 Exercises

Exercise 21.1. (✠3.08) Let A ∈ Mn×n and let χ(t) be its characteristic polynomial.

1. Show that χ(0) = (−1)n det(A). That is, show that the constant term in χ(t) is (−1)n times the
determinant of A.

2. Show that the coefficient of tn−1 in χ(t) is −trace(A).

Exercise 21.2. (✠3.08) Let A,B,C be any 3× 3 matrices, with C diagonalizable.

1. Show that trace(AB) = trace(BA).

2. Use that above to show that trace(C) is the sum of the three eigenvalues of C.
Hint: Split up the diagonalization of C into two matrices.

3. Suppose that the eigenvalues of C are 1, 12 ,
1
3 . Show why the limit lim

n→∞
Cn exists, and why it

has rank 1.

Exercise 21.3. (✠3.09) Decompose both matrices below in their XΛX−1-decomposition, where
Λ is a diagonal matrix with the eigenvalues, and X is the matrix with columns as eigenvectors.

A =

[
2 2
5 5

]
B =

1 2 3
0 4 5
0 0 6


Exercise 21.4. (✠3.09) Let A ∈ M3×3 with the eigenvectors

[
1
2
1

]
,
[
0
1
0

]
,
[−1
−1
0

]
and eigenvalues

−1, 2,−3, respectively.

1. Construct the eigenvector matrix X and the eigenvalues matrix Λ.

2. Construct A by the diagonalization equation A = XΛX−1.

Exercise 21.5. (✠3.09) Diagonalize the matrices A,B below and find what Ak and Bk look like,
for any k ∈ N. Your answers should have the value k in them.

A =

[
3 −1
−1 3

]
, B =

[
5 1
0 10

]
.
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Lecture 22: Diagonalizability and special matrices

Chapters 6.2, 6.4, 6.5 in Strang’s “Linear Algebra”

• Fact 1: A matrix being invertible and diagonalizable are not the same. These properties are
preserved under similarity.

• Fact 1: Symmetric matrices have orthonormal eigenvectors.

• Fact 2: Positive definiteness can be expressed in terms of pivots, eigenvalues, determinants, and
matix or vector multiplications.

✠ Standard 3.10: Given a matrix A, construct and identify matrices similar to A.

✠ Standard 3.11: Identify symmetric and positive definite matrices, directly and indirectly.

✠ Standard 3.12: Express a symmetric matrix as a sum of rank one matrices.

The goal of this section is to show how diagonalizability works with symmetric and positive definite
matrices. The diagonal matrix Λ is easier to deal with, because it acts like a number rather than a
matrix. We will see that for any matrix A ∈ Mm×n, the matrices ATA ∈ Mn×n and AAT ∈ Mm×m

are both symmetric and positive definite.

22.1 Invertibility and similarity

You may be tempted to think that a matrix being invertible is the same as being diagonalizable, but
this is not true. In fact, there is no direct relationship between being invertible and diagonalizable, as
the Venn diagram of such matrices below shows.

diagonalizableinvertible [
3 0
0 2

]
(3− λ)(2− λ)

3, [ 10 ] 2, [ 01 ]

[
0 0
0 1

]
λ(1− λ)

0, [ 10 ] 1, [ 01 ]

[
1 1
0 1

]
(1− λ)2

1, [ 10 ]

[
1 −1
1 −1

]
λ2

0, [ 11 ]

For eigenvalues λi and eigenvectors vi of A, invertibility asks whether or not λi = 0. Diagonalizability
asks whether or not the vi are independent.

Inquiry 22.1 (✠3.10): Let A ∈ M3×3, and suppose that A has 3 different eigenvalues.

1. Explain why A must have 3 linearly independent eigenvectors.
Hint: Show this by contradiciton, assuming that two eigenvectors are linearly independent,
and the third is a linear combination of the first two.

2. If none of the eigenvalues are zero, explain why A is invertible. What happens if one of
the eigenvalues is zero?
Hint: Use the diagonalization equation.

3. Convince yourself that the statement generalizes to any n ∈ N.

Remark 22.2. Let A ∈ Mn×n be diagonalizable, with eigenvector matrix X and corresponding
eigenvalue matrix Λ. Then:
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• For any invertible B ∈ Mn×n, the matrix C = BAB−1 has the same eigenvalues as A, and has
eigenvector matrix BX.

• For any k ∈ N, the matrix Ak is diagonalizable with the same eigenvectors as A, and with
eigenvalues on the diagonal of Λk.

• If |λi| = |Λii| < 1 for all i, then lim
k→∞

Akx = 0 for any x ∈ Rn.

All of these facts follow directly from the diagonalizing equation A = XΛX−1. In the last point, for
complex eigenvalues λ = a+ bi, the absolute value is the product of λ with its conjugate λ∗ = a− bi:

|λ| = |a+ bi| = (a+ bi)(a− bi) = a2 − (bi)2 = a− b2i2 = a2 + b2.

Example 22.3. Consider the matrix A =
[

1/6 1/3
−1/6 2/3

]
. The roots of its characteristic polynomial are

given by

0 = det(A− λI) =

(
1

6
− λ

)(
−2

3
− λ

)
+

1

3
· 1
6
= λ2 − 5

6
λ+

1

6
⇐⇒ 0 = 6λ2 − 5λ+ 1,

which factors as 0 = (3λ − 1)(2λ − 1), so the eigenvalues are λ1 = 1
3 and λ2 = 1

2 . By solving the
appropriate matrix equations, we get the correspoinding eigenvectors to be v1 = [ 21 ] and v2 = [ 11 ], so
the diagonalization of A is

A =

[
2 1
1 1

]
︸ ︷︷ ︸

X

[
1/3 0
0 1/2

]
︸ ︷︷ ︸

Λ

[
1 −1
−1 2

]
︸ ︷︷ ︸

X−1

.

The eigenvalues of Ak then are computed by the equation

Ak =
(
XΛX−1

)k
= (XΛX−1)(XΛX−1) · · · (XΛX−1) = XΛ(X−1X) · · · (X−1X)ΛX−1 = XΛkX−1,

and Λk =
[
1/3k 0

0 1/2k

]
. Hence the eigenvectors of Ak are the same as those for A, and the eigenvalues

are siomply powers of the original eigenvalues. We can even construct the matrix Ak explicitly:

Ak = XΛkX−1

=

[
2 1
1 1

] [
1/3k 0
0 1/2k

] [
1 −1
−1 2

]
=

[
2/3k 1/2k

1/3k 1/2k

] [
1 −1
−1 2

]
=

1

6k

[
2k+1 − 3k 2(3k − 2k)
2k − 3k 2 · 3k − 2k

]
For example, when k = 5, we have

A5 =
1

7776

[
−179 422
−211 454

]
.

Definition 22.4: Let A,B,C ∈ Mn×n with C invertible. The matrices A and B are similar if
A = CBC−1.

As mentioned in Remark 22.2, similar matrices have the same eigenvalues with the same algebraic
multiplicity, but may have different eigenvectors.
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22.2 Symmetric matrices

Recall from Definition 5.2 in Lecture 3 that a matrix A ∈ Mn×n is symmetric if Aij = Aji for all
1 ⩽ i, j ⩽ n. This property makes many of the previous computations we did before much easier.

Proposition 22.5 (The Spectral Theorem). Let A ∈ Mn×n. If A is symmetric, then A has n real
eigenvalues and n orthogonal eigenvectors.

This implies that a symmetric matrix can always be diagonalized. Symmetric matrices will often be
written “S”.

Inquiry 22.6 (✠3.10): Consider the symmetric matrix S =
[
1 2 0
2 1 2
0 2 1

]
.

1. Compute the matrices X,Λ for the diagonalization of S.

2. Find the matrix B for which BX has orthonormal columns.

3. Consider the matrix X ′ which is the same as X, but with the first two columns swapped.
Explain why X ′Λ′(X ′)−1 is still equal to S. As with X, here Λ′ is the same as Λ, but with
the first two columns swapped.

4. Does column swapping as in the point above work for any symmetric matrix, or only for
this particular S?

Example 22.7. Consider S = [ 1 2
2 4 ]. We can find its eigenvalues by solving

0 = det(S − λI) = (1− λ)(4− λ) = 4 = −5λ+ λ2 = λ(λ− 5),

for which λ1 = 0 and λ2 = 5. We find the eigenvectors by solving[
1 2
2 4

] [
x
y

]
= 0

[
0
y

]
⇐⇒ x+ 2y = 0

2x+ 4y = 0
=⇒

[
x
y

]
=

[
1
−1

2

]
= v1,[

1 2
2 4

] [
x
y

]
= 5

[
0
y

]
⇐⇒ x+ 2y = 5x

2x+ 4y = 5y
=⇒

[
x
y

]
=

[
1
2
1

]
= v2.

These vectors are orthogonal as v1 • v2 = 0. They both have length
√
5/2, so the normalized vectors

are

q1 =

[
2/
√
5

−1/
√
5

]
, q2 =

[
1/
√
5

2/
√
5

]
.

This gives us the diagonalization as[
1 2
2 4

]
︸ ︷︷ ︸

S

=

[
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
︸ ︷︷ ︸

Q

[
0 0
0 5

]
︸ ︷︷ ︸

Λ

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

]
︸ ︷︷ ︸

QT

.

Remark 22.8. The fact that S = QΛQT , where Q has orthonormal columns, allows us to write S in
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another way. If S ∈ M3×3, then

S =

 | | |
u v w
| | |


︸ ︷︷ ︸

Q

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

Λ

− uT −
− vT −
− wT −


︸ ︷︷ ︸

QT

=

 | | |
λ1u λ2v λ3w
| | |


︸ ︷︷ ︸

QΛ

− uT −
− vT −
− wT −



= λ1uu
T + λ2vv

T + λ3wwT ,

which is a sum of 3× 3 rank one matrices. This description will be important for Lecture 23.

We finish off the first part of this lecture with another comment about the relationship between
pivots and eigenvalues.

Remark 22.9. Let A ∈ Mn×n. Below are the main facts about pivots and eigenvalues summarized,
along with a new one:

• det(A) = (product of pivots) = (product of eigenvalues)

• trace(A) = (sum of eigenvalues)

• (number of pivots > 0) = (number of eigvals > 0) whenever A is symmetric

This last fact is counting multiplicity. It follows from the LDU -decomposition of a symmetric matrix,
which turns into LDLT .

Inquiry 22.10 (✠3.11): Consider the symmetric matrix S =
[
1 1 1
1 1 1
1 1 1

]
. For this inquiry, you

may use a computer.

1. Compute the eigensystem of S.

2. As given, S is not invertible. What is the smallest number of entries in S that should be
changed to keep it symmetric and to make it invertible? Give an example.

3. The eiegnsystem of S contains only integers. Change at least one entry of S to keep it
symmetric and to keep the eigensystem with only integers.
Hint: This can be done by changing entries to 0 or −1.

22.3 Positive definite matrices

The second part of this lecture focuses on special types of symmetric matrices.

Definition 22.11: Let S ∈ Mn×n be symmetric. The matrix S is positive definite if, equiva-
lently,

• all eigenvalues of S are positive

• vTSv > 0 for any nonzero v ∈ R.

Weakening the conditions to λ ⩾ 0 and vTSv ⩾ 0 means S is (positive) semidefinite.

Finding eigenvalues is computationally intensive for large matrices, so we use the relationship with
pivots from Remark 22.9 to determine when eigenvalues are positive. This gives several quick ways to
determine when a matrix is positive definite.
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Example 22.12. The 2× 2 symmetric matrix
[
a b
b c

]
has pivots a, c− b2

a , so the pivots are positive iff
a > 0 and ac− b2 > 0. For example, all the symmetric matrices[

1 10
10 200

]
,

[
22 −3
−3 2

]
,

[
3 0
0 2

]
are positive definite because they have positive eigenvalues.

Remark 22.13. To see why the two definitions from Definition 22.11 are equivalent, consider an n×n
positive definite matrix S with eigenvector v and positive eigenvalue λ. Then

Sv = λv =⇒ vTSv = λvTv = λ(v21 + · · · v2n) > 0.

Conversely, any x ∈ Rn can be expressed as a linear combination a1v1 + · · · anvn of the orthonormal
eigenvectors v1, . . . ,vn of S. Then by orthonormality of the eigenvectors,

xTSx = (a1v1 + · · ·+ anvn)
T (a1λ1v1 + · · ·+ anλnvn) = a21λ1∥v1∥2 + · · ·+ a2nλn∥vn∥2 > 0.

Proposition 22.14. The previous remark has some nice consequences:

• If S, T ∈ Mn×n are positive definite, then S + T is positive definite.

• If A ∈ Mm×n has independent columns, then ATA is positive definite.

Proof. The first point follows from distributing

xT (S + T )x = xTSx+ xTTx.

The second point comes from rewriting

xT (ATA)x = (Ax)T (Ax) = ∥Ax∥2 > 0.

The proof of the second claim implies that ATA (and also AAT ) is always positive semidefinite.

Inquiry 22.15 (✠3.11): This inquiry uses Definition 16.1 of an inner product from Lecture 16.

1. Let S ∈ Mn×n be positive definite. Show that ⟨u,v⟩ = uTSv satisfies all the properties
of an inner product on Rn.

2. Let A ∈ Mn×n be a matrix and ⟨u,v⟩ = uTAv an inner product. Show that A must be a
positive definite matrix.
Hint: To show A must be symmetric, use the symmetric property of the inner product with
the standard basis vectors. To show A must be positive definite, use the positive definite
property of the inner product.

Proposition 22.16. Let S ∈ Mn×n be symmetric. Then, equivalently,

• S is positive definite

• S has all positive pivots

• S has all positive eigenvalues

• Every top-left submatrix of S has positive determinant

• xTSx > 0 for any nonzero x ∈ Rn

• There exists A ∈ Mm×n with independent columns and S = ATA
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Example 22.17. Let’s check all the claims above on a simple matrix S =
[ 2 −1 0
−1 2 −1
0 −1 2

]
. For the pivots,

we quickly row reduce: 2 −1 0
−1 2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 0 4/3


The pivots are 2, 3/2, 4/3, which are all positive. The eigenvalues are the roots of

det(S − λI) =

22.4 Hermitian and unitary matrices

Recall from a previous lecture about complex numbers.

Definition 22.18: Let A ∈ Mn×n(C). Then

• A is Hermitian if A = A∗

• A is unitary if the columns of A are orthonormal

Proposition 22.19. Let A ∈ Mn×n(C) and z ∈ Cn. If A is Hermitian, then:

• z∗Az is a real number

• every eigenvalue of A is a real number

• eigenvectors (of different eigenvalues are orthogonal

If A is unitary, then:

• A∗A = I and A−1 = A∗

• every eigenvalue of A is ±1

Example 22.20. Consider the 2 × 2 matrix A =
[

2 3−3i
3+3i 5

]
. This matrix is Hermitian, so should

have real eigenvalues and orthogonal eigenvectors by the previous Proposition. Indeed, we find that

det(A− λI) = (2− λ)(5− λ)− (3− 3i)(3 + 3i) = 10− 7λ+ λ2 − 18 = λ2 − 7λ− 8 = (λ− 8)(λ+ 1),

so the eigenvalues are λ = 8,−1. For the eigenvectors, we must solve[
2 3− 3i

3 + 3i 5

] [
z
w

]
=

[
8z
8w

]
⇐⇒ −6z + (3− 3i)w = 0,

(3 + 3i)z − 3w = 0.

Using the first equation to isolate w, we get

w =
6z

3− 3i
=

6z

3− 3i

3 + 3i

3 + 3i
=

(18 + 18i)z

9 + 9
= (1 + i)z,

which, when placed into the second equation, gives us (3 + 3i)z − 3(1 + i)z = 0, which means there
are no constraints on z. So we let z = 1 and w = 1 + i. Similarly for the second eigenvector we find
z = 2 and w = −1− i. To check they are orthogonal, we observe that[
1 + i
1

]∗
·
[
−1− i

2

]
=
[
1− i 1

] [−1− i
2

]
= (1− i)(−1− i) + 2 = −1− i+ i+ i2 + 2 = −2 + 2 = 0,

and we have orthogonality, as desired.
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Inquiry 22.21 (✠3.12): Consider the Fourier matrix F = 1√
3

1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3

.
1. Note that F is symmetric. Is it Hermitian? Which entries must change so that it is

Hermitian?

2. Show that F is unitary.

3. Compute the third power F 3 of F .

This matrix is very useful for real-world applications of linear algebra.

22.5 Exercises

Exercise 22.1. (✠3.10) The three vectors u =

12
0

 ,v =

−1
0
1

 ,w =

 1
1
−1

 are linearly indepen-

dent.

1. Construct a matrix A with eigensystem {(u, 2), (v,−1), (w, 3)}.

2. Give examples of two matrices B,C that are similar to A.

Exercise 22.2. (✠3.11) Let a ∈ R be nonzero.

1. Find the eigenvalues of
[

0 a
−a 0

]
.

2. Find the eigenvalues of
[

0 0 a
0 ia 0
−a 0 0

]
.

3. Using a, construct a 4× 4 skew-symmetric matrix that has all imaginary eigenvalues.

4. Construct a 3× 3 symmetric matrix that has three pivots a and no zero entries.

Exercise 22.3. (✠3.11) Let A ∈ Mm×n. Show that AAT and ATA are both symmetric matrices.

Exercise 22.4. (✠3.11) The numbers a, b, c are chosen randomly from the set of integers {−3,−2, . . . , 2, 3},
with replacement, to create a matrix A =

[
a b
0 c

]
.

1. What is the probability that A is symmetric?

2. What is the probability that A is positive definite?

Exercise 22.5. (✠3.11) Consider the two symmetric matrices below, for a, b ∈ R:

A =

1 2 2
2 a 2
2 2 1

 , B =

b 2 0
2 b 3
0 3 b

 .

1. Find the pivots for both matrices. For what values of a, b will the pivots be positive?

2. Find the eigenvalues for both matrices. For what values of a, b will the eigenvalues be positive?

3. Find the upper left determinants for both matrices. For what values of a, b will the determinants
be positive?

4. Choose some b so that pivots, eigenvalues, determinants are positive. Find theQΛQT -decomposition
for B.
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Exercise 22.6. (✠3.08, 3.12) Consider the symmetric matrix A =

 0 0 −2
0 0 1
−2 1 2

.
1. Find the trace and determinant of A. Do not use a calculator, show your work.

2. Diagonalize A as QΛQT .

3. Express A as a sum of rank one matrices using the part above.
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Lecture 23: Singular values

Chapters 7.1,7.2 in Strang’s “Linear Algebra”

• Fact 1: No matter what size A has, AAT and ATA are both positive semidefinite and have the
same nonzero eigenvalues.

• Fact 2: The SVD contains orthonormal bases of the four fundamental subspaces.

✠ Standard 3.13: Compute the rank r approximation to a matrix A

✠ Standard 3.14: Decompose a non-square matrix A by the SVD

This lecture continues with generalizing diagonalizibility. Instead to having some XΛX−1 decompo-
sition for a square matrix, as in the previous lecture, we get a decomposition for a matrix of any
rectangular size.

23.1 Eigenvalues of symmetric matrices

The word singular so far has been used when talking about matrices. A square matrix was seen to be
singular if its determinant is zero, and non-singular otherwise. Before we begin with the new concept
of singular , we make two observations.

Remark 23.1. Let any A ∈ Mm×n. Then AAT ∈ Mm×m and ATA ∈ Mn×n

• both have the same nonzero eigenvalues, not counting algebraic multiplicity;

• both are positive semidefinite.

The first points follows by using the usual eigenvalue-eigenvector equations. Suppose that (λ,u) is an
eigenpair for AAT , and the (µ,v) is an eigenpair for ATA. Then

AATu = λu =⇒ ATA(ATu) = λ(ATu), (11)

ATAv = µv =⇒ AAT (Av) = µ(Av). (12)

In other words, we the immediately get that (λ,ATu) is an eigenpair for ATA and (µ,Av) is an
eigenpair for AAT . However, we only get this conclusion if Au and ATv are not the zero vector!
Recall that an eigenvector cannot be the zero vector. This situation is explored more in Inquiry 23.2.

The second point follows by obsevervation. Let x ∈ Rm and y ∈ Rn. Then

xTAATx = (xTA) · (ATx) = (ATx)T · (ATx) = (ATx) • (ATx) = ∥ATx∥2 ⩾ 0,

yTATAy = (yTAT ) · (Ay) = (Ay)T · (Ay) = (Ay) • (Ay) = ∥Ay∥2 ⩾ 0,

where the last inequality follows from the nonnegativity of the norm ∥ · ∥. Note that xTAATx may
be equal to zero even when x ̸= 0. Indeed, if ATx = 0, it simply means there is linear dependence
among the columns of AT (equivalently, among the rows of A).

Inquiry 23.2 (✠3.14): Consider the matrix A =
[
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

]
∈ M3×5. You may use a computer

for this Inquiry.

1. Compute the 3 eigenvalues of AAT and the 5 eigenvalues of ATA.

2. Compute the eigenvectors for the zero eigenvalues of ATA are zero.

3. Attempt to use Equation (11) to get the associated eigenvectors for AAT . What is hap-
pening?
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Definition 23.3: Let A ∈ Mm×n. The singular values of A are the square roots of the eigen-
values that AAT and ATA have in common.

Example 23.4. Continuing with the matrix A from Inquiry 23.2, we can apply the decomposition
from Remark 22.8. For AAT , suppose that it has eigensystem {(λ1,u1), (λ2,u2), (λ3,u3)}, with λ1 >
λ2 > λ3. Then, using decimals,

AAT ≈ 83.38︸ ︷︷ ︸
λ1

0.17 0.23 0.3
0.23 0.3 0.4
0.3 0.4 0.53


︸ ︷︷ ︸

u1uT
1

+2.49︸︷︷︸
λ2

 0.69 0.08 −0.45
0.08 0.01 −0.05
−0.45 −0.05 0.3


︸ ︷︷ ︸

u2uT
2

+0.13︸︷︷︸
λ3

 0.14 −0.31 0.15
−0.31 0.69 −0.34
0.15 −0.34 0.17


︸ ︷︷ ︸

u3uT
3

.

Notice the very large eigenvalue and the two smaller ones. This decomposition will be useful when we
ignore the smaller eigenvalues.

Inquiry 23.2 above showed that if AAT has more eigenvalues than ATA, or vice versa, then the
extra eigenvalues are zero. However, this does not imply that AAT and ATA have the same number
of independent eigenvectors!

Remark 23.5. Let A ∈ Mm×n. Let u1, . . . ,um ∈ Rm be the eigenvectors of AAT and v1, . . . ,vn ∈
Rn be the eigenvectors of ATA, where both are repeated depending on algebraic multiplicity. Without
loss of generality, we assume that n ⩾ m, so vm+1, . . . ,vn are all eigenvectors for the zero eigenvalue.
Let σ1, . . . , σm ∈ R be such that

AATui = σ2
i ui and ATAvi = σ2

i vi,

for all i = 1, . . . ,m. We may do this because AAT and ATA are both positive semidefinite (so we can
take square roots of the eigenvalues). We use σ instead of λ because these are the singular values -
the letter σ is the letter “s” in Greek. The relationship among the ui, vi, σi and the original matrix
A is then given by

ATui = σivi and Avi = σiui,

as multiplying the left equation by A on the left means the equation on the right must be true (for the
previous equation to hold). Combining all the equations Avi = σiui into a big equation, and assuming
that the ui are orthonormal, and the vi are orthonormal as well ,we get the following decomposition:

A

 | | |
v1 v2 · · · vm

| | |

 =

 | | |
σ1u1 σ2u2 · · · σmum

| | |



A

 | | |
v1 v2 · · · vm

| | |

 =

 | | |
u1 u2 · · · um

| | |



σ1

σ2
. . .

σm



A

 | | |
v1 v2 · · · vm

| | |



− v1 −
− v2 −

...
− vm −

 =

 | | |
u1 u2 · · · um

| | |



σ1

σ2
. . .

σm



− v1 −
− v2 −

...
− vm −



A =

 | | |
u1 u2 · · · um

| | |



σ1

σ2
. . .

σm



− v1 −
− v2 −

...
− vm −


= σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σmumvT

m.
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Definition 23.6: The singular value decomposition of A ∈ Mm×n is A = UΣV T , where

• U ∈ Mm×m has the eigenvectors of AAT as columns,

• V ∈ Mn×n has the eigenvectors of ATA as columns,

• Σ ∈ Mm×n has the singular values of A on the diagonal of its upper left rank(A)×rank(A)
submatrix, in decreasing order from the largest in Σ11.

The order of the eigenvectors in U and V corresponds to the order of the singular values in Σ.
The vectors ui are called the left singular vectors and the vi are called the right singular vectors
of A.

Singular value decomposition allows us to have an eigenvalue-eigenvecftor type decomposition for
non-square matrices. This is very powerful, as most data in real life is not square.

Inquiry 23.7 (✠3.13): Consider the two flags below (of Lithuania and Benin), given as matri-
ces.

L =



y y y y y y y y y
y y y y y y y y y
g g g g g g g g g
g g g g g g g g g
r r r r r r r r r
r r r r r r r r r

 B =



g g g y y y y
g g g y y y y
g g g y y y y
g g g r r r r
g g g r r r r
g g g r r r r


1. How many singular values do these two matrices have?

2. Express both matrices as sums of rank one matrices.

You may use a computer for this task, and a Python function such as svd from the package
scipy.linalg. You will need to convert colors to numbers (the choice of number does not
matter, but distinct colors should have distinct numbers).

Very often we do not need the whole decomposition, only a part of it.

Definition 23.8: Let A ∈ Mm×n, and let σ1, σ2, . . . be the singular values of A in decreasing
order. The rank r approximation of A is the sum

σ1u1v
T
1 + · · ·+ σrurv

T
r ∈ Mm×n,

for every 1 ⩽ r ⩽ rank(A). If r = rank(A), then the rank r approximation of A is equal to A.

These rank r approximations help is massively reduce the amount of “information” in a matrix.
For example, given a 100× 100 matrix, which has 1002 = 10 000 numbers, we could just consider the
rank 5 approximation, which has 5+5 · (100+100) = 1005 numbers, an approximately 90% reduction
in size.

Inquiry 23.9 (✠3.13): This inquiry explores how “similar” the rank r approximations are to
the input, continuing on the example given in class.

1. Open up the Google Colab notebook (link here) and execute the cells in your Python IDE.

2. For each of the two new images, find the r for which the rank r approximation “essen-
tially looks like” the input image. What percentage reduction in information size did this
achieve?
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3. Find some images on your own, and perform the same steps as above. Without using
single color images, try to find the images that have the highest reduction in size.

23.2 Bases in the decomposition

For this section, let r = rank(A) ⩽ min{m,n}, for A ∈ Mm×n. We have alrerady seen the decompo-
sition of A into three matrices, using eigenvalues and eigenvectors of AAT and ATA:

A =

 | | |
u1 u2 · · · ur

| | |


︸ ︷︷ ︸

eigenvectors of AAT


σ1

σ2
. . .

σr


︸ ︷︷ ︸

singular values


− vT

1 −
− vT

2 −
...

− vT
r −


︸ ︷︷ ︸

eigenvectors of ATA

. (13)

Hiding in this equation are the bases for the four fundamental subspaces that we have already seen in
Lecture 11.

Remark 23.10. The rank(A)-approximation of A contains orthonormal basis vectors of other sub-
spaces:

column space left nullspace
m− r rows,

n− r columns

row space

nullspace

A =

 | | | |
u1 · · · ur ur+1 · · · um

| | | |



σ1

. . . 0
σr

0 0





− vT
1 −
...

− vT
r −

− vT
r+1 −
...

− vn −



Example 23.11. Let’s compute the full SVD for a matrix, and get the appropriate bases. Consider

A =

 1 1
2 2
−1 −1

 , AAT =

 2 4 −2
4 8 −4
−2 −4 2

 , ATA =

[
6 6
6 6

]
.

It is immediate that A has rank 1, as the rows are all multiples of the first row. We already know
both ATA and AAT have the same eigenvalues, so we just find them for the easier of the two, ATA.
The roots of the characteristic polynomial are found by

0 = det(ATA− λI) = (6− λ)2 − 36 = 36− 12λ+ λ2 − 36 = λ2 − 12λ = (λ− 12)λ,

so the eigenvalues are 12 and 0. Hence the only singular value is σ1 = 2
√
3. To find the eigenvectors,

we row reduce the appropriate augmented matrices, remembering to normalize the eigenvectors.

12 for AAT :

−10 4 −2 0
4 −4 −4 0
−2 −4 −10 0

 RREF−−−−−→

1 0 1 0
0 1 2 0
0 0 0 0

 =⇒ u1 =

−1/
√
6

−2/
√
6

1/
√
6


0 for AAT :

 2 4 −2 0
4 8 −4 −0
−2 −4 2 0

 RREF−−−−−→

1 2 −1 0
0 0 0 0
0 0 0 0

 =⇒ u2 =

1/√2
0

1/
√
2

 ,u3 =

−2/
√
5

1/
√
5

0


12 for ATA :

[
−6 6 0
6 −6 0

]
RREF−−−−−→

[
1 −1 0
0 0 0

]
=⇒ v1 =

[
1/
√
2

1/
√
2

]
0 for ATA :

[
6 6 0
6 6 0

]
RREF−−−−−→

[
1 1 0
0 0 0

]
=⇒ v2 =

[
−1/

√
2

1/
√
2

]
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We could have also found v1 by ATu1 = 2
√
3v1. This gives us the complete decomposition

A =

−1/
√
6 1/

√
2 −2/

√
5

−2/
√
6 0 1/

√
5

1/
√
6 1/

√
2 0


︸ ︷︷ ︸

U

3√2 0
0 0
0 0


︸ ︷︷ ︸

Σ

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]
︸ ︷︷ ︸

V T

,

as well as bases

col(A) = span


−1/

√
6

−2/
√
6

1/
√
6

 , null(AT ) = span


1/√2

0

1/
√
2

 ,

−2/
√
5

1/
√
5

0

 ,

row(A) = span

{[
1/
√
2

1/
√
2

]}
, null(A) = span

{[
−1/

√
2

1/
√
2

]}
.

Remark 23.12. If A is symmetric, then the SVD is the same as the QΛQT -decomposition. In
this way, the SVD is a more general decomposition that captures the nice properties of the QΛQT -
decomposition.

23.3 Exercises

Exercise 23.1. (✠3.13) Consider the two “matrices” below.

L =


r r r r r r r r r r
r r r r r r r r r r
w w w w w w w w w w
r r r r r r r r r r
r r r r r r r r r r

 B =



w w w r w r w w w
w w w r w r w w w
r r r r w r r r r
w w w w w w w w w
r r r r w r r r r
w w w r w r w w w
w w w r w r w w w


1. Express L, the flag of Latvia, as a rank one product of two vectors.

2. Express B, the flag of Latvian battleships, as a sum of two rank one matrices. That is, decompose
B as B = σ1u1v

T
1 + σ2u2v

T
2 .

Exercise 23.2. (✠3.13) This question uses Python. You may use the folowing resources:

• Sample code: jlazovskis.com/teaching/linearalgebra

• Sample images: links.uwaterloo.ca/Repository.html

Find a grayscale image online at least 100× 100 pixels in size. It does not have to be square.

1.▷◁ Find the singular values of the image. How many of them are less than 1/100 of the largest
singular value?

2.▷◁ Compute the rank r approximation to the image for r = 1, 2, 3, 5, 10.

3. If the image had size m× n, what is the percent reduction in size for the rank r approxmation?

Exercise 23.3. (✠3.14) Let a ∈ R̸=0, and consider the matrix

A =

[
a 0 a 0
0 0 0 2a

]
.

1. Compute the SVD of A by finding the eigenvalue / eigenvector pairs for AAT and ATA.

2. What are the dimensions of the four fundamental subspaces of A?
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Exercise 23.4. (✠3.13, 3.14)

1. Construct a 3× 4 matrix with singular values 1, 2, 3.

2. Construct a 2× 2 rank 1 matrix with right singular vectors
[

1/2√
3/2

]
,
[
−
√
3/2

1/2

]
.

3. Find the rank 1 and rank 2 approximations for

A =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .

Hint: Since two eigenvalues are the same, there are two rank 2 approximations!
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Lecture 24: Principal component analysis

Chapter 7.3 in Strang’s “Linear Algebra”

• Fact 1: The first principal component solves the perpendicular least squares problem

• Fact 2: The first two principal components give a reasonable way to plot high-dimensional data

✠ Standard 3.15: Normalize and center a matrix of n samples on its mean

✠ Standard 3.16: Identify the principal components of A ∈ Mm×n, in terms of the total covariance
of A

✠ Standard 3.17: Solve the perpendicular least squares problem using SVD

In the previous lecture, we saw how to simplify images, thought of as a matrix A, for compressed com-
munication, using the eigenvectors of AAT and ATA, which appear in the singular value decomposition
of A. in this lecture we will apply SVD, but to a different problem: dimensionality reduction.

24.1 The first significant direction of data

Data used in this lecture is available at jlazovskis.com/teaching/linearalgebra/spring2022.

Example 24.1. Consider the following data set, representing the number of instructors (x-value) and
the number of students (y-value) at 32 different post-secondary institutions in Latvia.

{(1531, 15260), . . . , (2, 33)}

instructors

students

200

3000

There seems to be a general trend! In Lecture 14 we saw how to approximate this data with a least
squares line of best fit. We do something similar now, but slightly differently, and as motivation
for higher dimensions. Each pair in this data set is a sample, so we can costruct a sample matrix
A ∈ M2×32.

Definition 24.2: Let A ∈ Mm×n and consider each of the n columns of A as a sample. There
are two matrices associated to A:

Mij = Aij −
1

n

n∑
k=1

Aik︸ ︷︷ ︸
mean of row i

, S =
MMT

n− 1
.

A has a mean-centered matrix M ∈ Mm×n and a sample covariance matrix S ∈ Mm×m.

By definition, S is symmetric.
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Inquiry 24.3 (✠3.15): Consider the matrix A =
[
2 3 −1 6 1
0 −3 −4 1 −1

]
.

1. Compute the mean-centered matrix M .

2. Suppose you add one column (sample) to M . Will M still be mean-centered? Why or why
not?

3. Suppose you add two columns to M . What must be true about the two columns for the
new M to still be mean-centered?

Continuing with Example 24.1, we find the means and center the matrix accordingly:

mean of row 1 (students): 145.6
mean of row 2 (instructors): 1890.6

This lets us create the mean-centered 2× 32 matrix M and the sample covariance 2× 2 matrix S for
the data. The key lies in the singular value decomposition of

S =

[
73909.14 864786.84
864786.84 10971745.39

]
=

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

U

[
11039942.91 0

0 5711.62

]
︸ ︷︷ ︸

Σ

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

V T

.

Since S is symmetric, the matrices U and V are the same. The singular vector with the largest
eigenvalue identifies the principal component of the mean-centered data. This can be thought of as
a 1-dimensional subspace of Rm that does the best job (that a 1-dimensional subspace could do) of
approximating all the data. The first eigenvalue dominates the second one, indicating the data is
very close to a straight line. The straight line is given by the eigenvector corresponding to the large
eigenvalue.

instructors (mean-centered)

students (mean-centered) span of (−0.0786,−0.9969)

The line here is y = 0.9969
0.0786x, which best approximates the mean-centered data. The line that best

approximates the original data is this line, but shifted back by the mean:

y =
0.9969

0.0786
(x− 145.6) + 1890.6.

Definition 24.4: Let A ∈ Mm×n. The (first) principal component of A is the singular vector
corresponding to the largest singular value of A.

The first principal component of A solves the perpendicular least squares problem. That is, the first
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eigenvector minimizes the square of the distance from its line to the data. This is alternative to the
least squares solution we saw in Lecture 13, which minimized the the vertical distance.

Inquiry 24.5 (✠3.16): Consider the data sets and lines below.

R

R

R

R

R

R

1. For each of the grids above, indicate which of the three lines you think corresponds to the
linear least squares approximation and which corresponds to the first principal component.

2. Check your answers by computing the least squares linear approximation and the first
principal component to the data sets. Use the interactive plot (link here).

3. Which approximation do you think is better? Why?

4. Try to come up with data for which the difference between the two lines is as big as posible.

The key idea for this inquiry is that least squares minimizes vertical distance and the first
principal component minimizes perpendicular distance. “Distance” means the sum of the lengths
from each point to the line.

24.2 PCA for higher dimensions

So far we saw data with two coordinates, but very often the data we see is many-dimensional, and
has more than one important component. Now we analyze the principal components (that is, singular
vectors) corresponding to the several largest singular values.

Example 24.6. The data from Example 24.1 can be augmented with extra data about the change
in student and instructor numbers from the previous year. This gives 4-dimensional data, which can
not be easily visualized on a page.

iestade akad pers 2019 akad pers 2020 stud 2019 stud 2020

Latvijas Universitāte 1182 1531 15250 15260
R̄ıgas Tehniskā universitāte 930 904 14383 14006

Daugavpils Universitāte 194 182 2163 2068
...

...
...

...
...

Latvijas Nacionālā aizsardz̄ıbas akadēmija 10 10 269 262

If we want to consider the change (percent), then we need to normalize the data, to make sure that a
change in every coordinate is taken into account similarly.

Definition 24.7: Let x ∈ Rn. The normalization of x is a vector x̂ ∈ Rn that is either:

• a multiple of x so that it has unit length: x̂ = x
∥x∥

• a shift and scale the vector so that it lies in [0, 1]n: x̂ = x−m
M−m , where m = mini xi,

M = maxi xi, and m = [m m · · · m]T .

The second case is also called min-max normalization, and is the normalization used here.
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We normalize each row, then center it at zero, then compute the sample covariance matrix, and finally
get its SVD. The matrices U and Σ from the SVD are below.

U =


−0.61 0.161 −0.011 −0.776
−0.754 0.167 −0.09 0.629
−0.096 −0.075 0.992 0.046
−0.224 −0.97 −0.094 −0.025



Σ =


0.802 0 0 0
0 0.363 0 0
0 0 0.164 0
0 0 0 0.0145



Looking at the first two columns of U (the first two singular vectors), we see that the second coordinate
(student number) has the largest magnitude for the first singular vector u1, and the last coordinate
(change in student number) has the largest magnitude for the second singular vector u2:

xnew = projspan(u1,u2)(xold) =

[
x1
x2

]
, x1 =

u1 • xold

u1 • u1
, x2 =

u2 • xold

u2 • u2
.

The first two singular vectors are the “defining directions” of the data, and they most similar to the
number of students and the change in students, respectively.

Definition 24.8: Let A ∈ Mm×n, considered as n samples in m coordinates.

• For each 1 ⩽ i ⩽ m, the variance of coordinate i is Sii.

A large variance means coordinate i is spread out, and a small variance means coordinate i is
densely packed.

• For each 1 ⩽ i, j ⩽ m, the covariance of coordinate i with coordinate j is Sij = Sji.

A large positive covariance means coordinate i increases when coordinate j increases, and a
large negative covariance means coordinate i decreases when coordinate j increases.

• The total variance of A is trace(S).

The variance of the data from Example 24.1 is either trace(S) = S11 + S22 or trace(Σ) = Σ11 + Σ22,
since the sum of the eigenvalues of a matrix is the trace of the matrix. The singular value of the
first principal component accounts for σ1/trace(S) ≈ 0.99, or about 99% of the total covariance. In
general, it may take more than the first principal component to accont for so much of the covariance
- your choice of when to stop determines the princial components of the data.

24.3 Exercises

Exercise 24.1. (✠3.17) This question is about the 4 point interactive found on the course website
(link here).

1. Create an arrangement of the points with the largest angle possible between the two approxi-
mations that you can find. Do you think any angle is possible? Justify your reasoning.
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2. Create an arrangement of the points with the largest difference between the sums of the distances
that you can find. Besides all points being on a line, what situations give the same sums of
distances?

Exercise 24.2. (✠3.16) Find samples of high-dimensional (at least 4) data online.

1. Construct the sample covariance matrix S and find the two largest eigenvalue / eigenvector pairs
from its SVD.

2. What percentage of the total covariance do the first two principal components cover?

3. Plot the data on the axes of the two principal components.

4. Create two plots of the data having for axes:

(a) the first principal component against the coordinate with the highest (in magnitude) asso-
ciation

(b) the second principal component against the coordinate with the highest (in magnitude)
association

Exercise 24.3. (✠3.16) Create a matrix of 2-dimensional data for which the first principal com-
ponent of the data is a multiple of the eigenvector [ ab ], for a, b ∈ R̸=0. Make sure that:

• the matrix has at least 3 columns (samples),

• no 3 samples are colinear.

Exercise 24.4. (✠3.16)

1. Create a matrix of 3-dimensional data for which first two principal components are the vectors
[ 1 0 0 ]T and [ 0 1 0 ]T . Make sure that:

• the data is centered at 0,

• the matrix has at least 4 columns (samples),

• no 3 samples are colinear.

2. Do the same as in part (a), but change the last condition to “no 4 samples lie on a plane.”
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Part IV

Extensions

Lecture 25: Complex numbers

Chapters 9.1 and 9.2 in Strang

• Fact 1: All the math we have done so far can be considered over C instead of R

• Fact 2: Complex number adition and multiplication have geometric meaning

✠ Standard 4.01: Express a complex number in one of four different ways

✠ Standard 4.02: Translate known properties of vectors and matrices to Hermitian vectors and
matrices

In this lecture we will take some time to introduce fully the topic of coplex numbers. Fortunately,
almost all the results we have seen so far with matrices over R apply to matrices over C as well.

25.1 The space of complex numbers

Definition 25.1: The complex numbers are elements of the set C = {x+ iy : x, y ∈ R}. The
symbol i is the imaginary number , having the property that i2 = −1. For every z = x+ iy ∈ C:

• the standard form of z is x+ iy.

• in Cartesian, or rectangular coordinates, the number z is written (x, y).

The real part of z is x and its imaginary part is y. If x = 0, then z is a purely imaginary number .

Let z = x + iy and w = a + ib be complex numbers and c ∈ R. Complex number addition and
multiplication, and real number multiplication are defined in the following way:

z + w = (a+ x) + i(y + b)

zw = xa+ ixb+ iya+ i2tb = (xa− yb) + i(xb+ ya)

cz = cx+ icy

Inquiry 25.2 (✠4.02): The set C along with complex number addition and scalar multiplica-
tion as above form a vector space.

1. Show that the function f : C → R2, given by f(x+ iy) = (x, y) is a bijection.

2. With the bijection from above, the complex number z = 1 + i could be considered as the
vector v = [ 11 ] ∈ R2. Compute the square z · z and the dot product v • v. Why do you
get two dfferent results?

3. For any z ∈ C, will z ·z always be a real number? Give an example when it is and another
example when it isn’t.

4. Describe a surjective function C → R that takes in a complex number, and outputs a real
number.

145



Example 25.3. What does the complex number (1 + i)−2 look like in standard form? Observe that

1

(1 + i)2
=

1

1 + 2i+ i2
=

1

1 + 2i− 1
=

1

2i
=

1

2i

i

i
=

i

−2i
=

−1

2
i.

Definition 25.4: Let z = x + yi ∈ C. The (complex ) conjugate of z is z = z∗ = x − iy. The
absolute value, or modulus of z is

|z| =
√
zz =

√
(x+ iy)(x− iy) =

√
x2 + y2.

Taking the conjugate twice returns back the original number: (z∗)∗ = z.

Proposition 25.5. Let z = x+ iy, w = a+ ib ∈ C. Then the conjugate satisfies:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z ̸= 0

And the absolute value satisfies:

1. |z| = 0 iff z = 0

2. |z| = |z|

3. |zw| = |z||w|

4. |z + w| ⩽ |z|+ |w|

Definition 25.6: The third way to express z = x+iy ∈ C is with polar coordinates (r, θ), where
r = |z| and θ is the angle from the positive x axis to the vector (x, y). Note that

x+ iy = r cos(θ) + ir sin(θ) = reiθ,

where the second equality is known as Euler’s formula. This last expression is in exponential
form.

Remark 25.7. All that we have seen so far about the complex numbers, and a new observation about
multiplying complex numbers, can be drawn together in a picture.

R

R

|z|

z

z

zw

w

z + w

x

y

=

=

=

=

zw rzrwe
i(θz+θw)

z + w rw cos(θw) + irw sin(θw)

z x+ iy = rz cos(θz) + irz sin(θz)

z x− iy = rz cos(θz)− irz sin(θz)

Remark 25.8. Putting complex numbers into polar coordinates makes computations in standard
form much easier. For z = reiθ and n ∈ N, we have:

• (De Moivre’s theorem) zn = (reiθ)n = rneinθ

• (complex roots) the nth roots of z are r1/nei(θ+2kπ)/n, for every k = 0, 1, . . . , n− 1.

For the second point, when z = 1 + 0i, then the kth root of z is called the kth root of unity .
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Inquiry 25.9 (✠4.01): This inquiry is about the different forms of complex numbers.

1. Express z = 5 cos(π/4) + 5i sin(π/4) in standard form.

2. Express w = −
√
3− i in polar form.

3. Find the 4th roots of p = 1 + i in Cartesian coordinates.

4. Explain why finding nth roots of unity is much easier in polar coordinates than in rectan-
gular coordinates.

Example 25.10. Below are given the 5th roots of z = −1 + 9i and the 5th roots of z = e0 = 1, or
unity. For some 5th roots ω of z, the complex numbers ω, ω2, ω3, ω4, ω5 = z are also shown. The circle
with radius 5

√
|z| is given to emphasize that all 5th roots are the same distance from 0.

R

R

−1 + 9i

R

R

e0

e2π/5

e4π/5

e6π/5

e8π/5

1 1 1

Remark 25.11. The space of complex numbers is a 2-dimensional vector space over R via the
identification of Cartesian coordinates. However, it is a 1-dimensional vector space over C.

25.2 Complex vectors and complex matrices

Just like we generalized numbers to vectors, we generalize complex numbers to complex matrices. We
now talk about the vector space Cn, of vectors having n components, and the matrix space Mm×n(C),
of m× n matrices with complex number entries.

Remark 25.12. Multiplication of complex numbers may be viewed as matrix multiplication. Making
a correspondence between z = x+ iy ∈ C and [ xy ] ∈ R2, as in Inquiry 25.2, reveals a correspondence
for multiplication:

(a+ ib)(x+ iy) ↔
[
a −b
b a

] [
x
y

]
.

Definition 25.13: Let z = [z1 · · · zn]
T ∈ Cn be a vector. The (complex ) conjugate is the

vector z = [ z1 ··· zn ]T .

Often we talk about not just the conjugate, but the conjugate transpose. The reason for taking both
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the conjugate of each element and the transpose, when n = 2 and z = [ xy ] = x+ iy = z, is to get that

zT z = z∗z = ∥z∥2 = |z|2 = zz,

so the previous notion of length of a vector corresponds with the new notion of absolute value of a
complex number. The notation z∗ = zT is also used for matrices, with A∗ ∈ Mn×m(C) whenever
A ∈ Mm×n(C) defined by (A∗)ij = Aji.

Definition 25.14: The square matrix A ∈ Mn×n(C) is is Hermitian if A = A∗.

We will see nice properties of Hermitian matrices later in the course. For now we consider some
of their properties.

Proposition 25.15. Let A,B ∈ Mn×n(C) be Hermitian. Then:

• the entries on the diagonal of A are real numbers

• the identity (AB)∗ = B∗A∗ holds

Inquiry 25.16 (✠4.02): Let A ∈ Mn×n(C) be Hermitian, and let v ∈ Cn.

1. Expand the product (v∗Av)∗ to show that it is Hermitian. How many rows and columns
does the product have, and in what space must it be?

2. Find the complete solution to
[

0 3+i
3−i 0

]
z =

[
i

2−i

]
, for z ∈ C2.

25.3 Exercises

Exercise 25.1. (✠4.02) Show that every complex number z = x + iy for which at least one of x
and y are not zero has an inverse. That is, find w ∈ C for which zw = 1.

Exercise 25.2. (✠4.02) Prove all the claims of Proposition 9.5, for z = x+ yi, w = a+ bi ∈ C:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z ̸= 0

7. |z| = 0 iff z = 0

8. |z| = |z|

9. |zw| = |z||w|

10. |z + w| ⩽ |z|+ |w|

Exercise 25.3. (✠4.01) This question is about proving Euler’s formula cos(θ) + i sin(θ) = eiθ.

1. Take the derivative of f(θ) = (cos(θ) + i sin(θ))e−iθ with respect to θ.

2. Explain why the result of the previous step means that f(θ) is constant.

3. Evaluate f at θ = 0 to find this constant from the previous step.

4. Rearrange to get Euler’s formula.
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Lecture 26: Graphs

Chapter 10.1 in Strang’s “Linear Algebra” and IV.6 in Strang’s “Learning from Data”

• Fact 1: Graphs may be directed or undirected, and may or may not have weight associated to
vertices or edges.

• Fact 2: Row reducing the incidence matrix gives a spanning tree.

• Fact 3: Something about connectedness

✠ Standard 4.03: Construct the four matrices associated to graph (adjacency, incidence, Laplacian,
transition probability), and reconstruct the graph from them

✠ Standard 4.04: Find a spanning tree of a graph using row reduction on the incidence matrix

In this lecture we take a brief break to set up a new interpretation of matrices. We will apply the
tools of matrix algebra already seen so far to graphs. A network is just a fancy name for a graph,
with perhaps more structure. In general, both “graph” and “network” refer to the same thing.

26.1 The structure of graphs

Definition 26.1: A graph G is a pair of sets (V,E), where V = {v1, . . . , vn} is a finite set and
every element of E is a set {vi, vj}, for 1 ⩽ i < j ⩽ n. The elements of V are called vertices
(singular vertex ) and the elements of E are called edges.

The above definition only conains the most basic information, but with a little work we can get
much more.

Remark 26.2. Additional structure may be placed upon graphs in the following ways:

• Definition 26.1 is for an undirected graph, as demonstrated by the fact that an edge is a set, so
{vi, vj} = {vj , vi}. For a directed graph, or digraph, every element of the set E is an ordered
set, or pair, (vi, vj), with 1 ⩽ i, j ⩽ n and i ̸= j.

• The set V of vertices in Definition 26.1 is an unordered set, but the naming often gives vertices
an order. When the elements of V have an order, the edges have a natural order as well, with
{vi, vj} ⩽ {vk, vℓ} whenever i < k, or i = k and j < ℓ. Here we assumed without loss of
generality that i = min{i, j} and k = min{k, ℓ}.

Definition 26.3: Let G = (V,E) be a directed graph. In the edge e = (t, h) ∈ E, the vertex
t is called the tail and the vertex h is called the head of e. If v ∈ V only appears as a tail in
edges, then v is called a source of G. If v only appears as a head, then v is called a sink of G.

etail of e head of e

source of G
sink of G

sink of G

The egde e = (t, h) is an outgoing edge of t and an incoming edge of h.
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In the definitions of both directed and undirected graphs we do not allow repeated edges (since
E is a set, it only sees distinct elements) and self loops (such as an edge {vi, vi}). Graphs without
repeated edges and without self loops are called simple graphs.

Example 26.4. Here are some examples of graphs and their associated adjacency matrices.

a

b

c d

e

V = {a, b, c, d, e}

E = {{a, b}, {b, c}, {d, e}, {c, a}}

a b c d e


a 0 1 1 0 0
b 1 0 1 0 0
c 1 1 0 0 0
d 0 0 0 0 1
e 0 0 0 1 0

x

y

z

w

v

V = {x, y, z, v}

E = {(x, y), (y, x), (x,w), (y, z), (y, v),

(w, z), (z, w), (w, v), (z, v)}

x y z w v


x 0 1 0 1 0
y 1 0 1 0 1
z 0 0 0 1 1
w 0 0 0 0 1
v 0 0 0 0 0

p

q r

s
7 2

3

9

V = {p, q, r, s}

E = {(p, q), (p, r), (q, r), (r, s)}

p q r s


p 0 7 2 0
q 7 0 3 0
r 2 3 0 9
s 0 0 9 0

Each graph has its square adjacency matrix A ∈ M|V |×|V | given below it: Aij = 1 if an edge from vi
to vj exists, and is 0 otherwise. In the matrix, every potential edge (even self loops) has a position.
The graph on the right is a weighted graph, meaning every edge has a (potentially negative) number
associated to it.

Definition 26.5: A graph G = (V,E) is weighted when accompanied by a function w : E → R.
This is sometimes called an edge-weighted graph to distinguish it from a vertex-weighted graph,
which needs a function w : V → R.

Vertex-weighted directed graphs can be turned into edge-weighted graphs by assigning each edge
the weight of its head (or tail). Similarly, an edge-weighted graph can be turned into a vertex weighted
graph by assigning each vertex the sum of the weights of all incoming (or outgoing) edges.

Example 26.6. Here is an example of an edge-weighted directed graph G and two vertex-weighted
graphs G1, G2 that are built following the comment above.

1 5

2

−1

3

−2

7 1−4

6

G

2
1 5

1

2
1

8

G1

1
7 2

6

5
1

−4

G2
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Definition 26.7: Let G = (V,E) be a graph and A ∈ Mn×n its adjacency matrix. For vk ∈ V ,
the degree of vk is the number of edges in E in which vk appears. Or, it is the sum

deg(vk) =
n∑

i=1

Aik︸ ︷︷ ︸
G undirected

or deg(vk) =

out-degree︷ ︸︸ ︷
n∑

i=1

Aik +

in-degree︷ ︸︸ ︷
n∑

j=1

Akj︸ ︷︷ ︸
G directed

.

The out-degree of vk is denoted outdeg(vk), and the in-degree is denoted indeg(vk). If every
vertex v ∈ V has deg(v) = k, then G is called a k-regular graph.

Remark 26.8. Let G = (V,E) be a graph and A ∈ M|V |×|V | be its adjacency matrix. There are
three other matrices associated to G:

• the incidence matrix N ∈ M|E|×|V |, where Nij = −1 if vertex j is the tail of edge i, and 1 if it’s
the head of edge i

• the Laplacian matrix L ∈ M|V |×|V |, defined as L = NTN . If G is undirected, then L = D −A,
where D is a diagonal matrix with Dii = deg(vi) and A is the adjacency matrix

• the transition probability matrix T ∈ M|V |×|V |, where the (i, j)-entry of T is defined as the
“probability” of going from vertex i to vertex j. For different types of graphs, there are different
definitions:

Tij =

{
0 if Aij = 0

1
deg(vi)

else

︸ ︷︷ ︸
undirected, unweighted graph

Tij =

{
0 if Aij = 0

1
outdeg(vi)

else

︸ ︷︷ ︸
directed, weighted graph

Tij =

{
0 if Aij = 0

w(vi,vj)∑
k w(vi,vk)

else

︸ ︷︷ ︸
weighted graph

Most often the adjacency matrix is used, since it is square and the graph can be easily reconstructed
from it.

Inquiry 26.9 (✠4.03): Consider the following (imagined) traffic observations between among
cities.

Liepāja

Ventspils

Tukums

R̄ıga

Madona

Jelgava

Ainaži

Rēzekne

2

4 3

2

4

5
1

2

2

2

1

1

4

2

5

2

6

2

1

5

3

3

1. Construct three matrices associated to this graph: adjacency, incidence, Laplacian.

2. Construct the transition probability matrix using the weights as shown.

The transition probability matrix is a stochastic matrix, which can be multiplied with itself to
see how a system evolves.

151



Definition 26.10: Let G = (V,E) be a graph. A subgraph of G is a graph G′ = (V,′ , E′)
with V ′ ⊆ V and E′ ⊆ E. The subgraph G′ is called induced if for every e = (v, w) ∈ E with
v, w ∈ V ′, we also have e ∈ E′.

26.2 Patterns in graphs

Definition 26.11: Let G = (V,E) be a graph.

• A path in G is an ordered sequence of distinct vertices v1, . . . , vn for which vi and vi+1

form an edge, for every i.

• A walk in G is the same as a path, but the vertices do not need to be distinct.

• A cycle, or loop in G is a path for which vn and v1 form an edge.

In directed graphs, the edges of these objects do not need to all be oriented the same way, but
often it is assumed they are. To highlight the difference in digraphs, the words undirected and
directed are used in front of each of these objects.

Every one of the objects in Definition 26.11, directed or undirected, is related to a unique sequence
of edges. That is, these objects are often given in terms of the edges rather than the vertices.

Example 26.12. Consider the following directed graph and associated sequences of vertices.

G =
a

b

c

d

e f

g

h

i

P1 = (d, e, f, g, h)
P2 = (c, d, e, f, g, h)
W1 = (f, d, e, f, g, h)
W2 = (a, b, c, a, c, a, b, c)
C1 = (a, b, c)
C2 = (d, e, f)

Here P1 is a (directed) path, P2 is an undirected path, but W1 is not a path, as f appears twice. The
sequence W1 is a (directed) walk and W2 is an undirected walk. For cycles, C1 is an undirected cycle
(though it is a directed path) and C2 is a directed cycle (and a directed path).

Row reduction was a key operation in matrices, but so far we have not seen row operations for
matrices related to graphs.

Remark 26.13. Let G = (V,E) be the graph given below, with incidence matrix N .

G =

a

b

c

d

e

N =

a b c d e


ab −1 1 0 0 0
ac −1 0 1 0 0
bd 0 −1 0 1 0
cb 0 1 −1 0 0
de 0 0 0 −1 1
ec 0 0 1 0 −1

The linearly independent rows of the incidence matrix N of G form a spanning tree T of G. That is,
T = (V ′, E′) is a subgraph of G with V ′ = V , and T has no cycles (directed or undirected). For G,
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we have many spanning trees, including T1 and T2 given below.

T1 =

a

b

c

d

e

ab = ac+ cb

bd = −cb− de− ec

T2 =

a

b

c

d

e

cb = ab− ac

de = ac− ab− bd− ec

Proposition 26.14. Let G = (V,E) be a graph with adjacency matrix A and vi, vj ∈ V . The number
of walks from vi to vj of length k is the (i, j)-entry of Ak.

The adjacency matrix for an undirected graph is symmetric and binary , which means the entries
are either 1 or 0. For directed graphs, the matrix is still binary, but not symmetric. Matrices that are
neither symmetric nor binary are associated to a special type of graph.

Inquiry 26.15 (✠4.04): Consider the following directed graph G.

a

b

c

d

e

f

g

1. Construct the incidence matrix for G.

2. Row reduce the matrix to find a spanning tree T of G.

3. Is this spanning tree unique for G? Would row reducing by hand (instead of a computer)
yield a different tree?

26.3 Exercises

Exercise 26.1. (✠4.03, 4.04) Consider the following directed graph:

G = a b c e f

d

3 2 2 1

1 4

7

2

1. Compute the adjacency A, incidence N , Laplacian L, and transition probability T matrices for
G. Use the weighted definition for T .

2. Row reduce N and give the resulting spanning tree of G.

3. Using a computer make an educated guess as to what lim
n→∞

Tn could be.

4. Let T̂ be the same as T , but with the (c, c) and (f, f) entries 1 (instead of 0) on the diagonal.
Using a computer make an educated guess as to what lim

n→∞
T̂n could be.
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The last two questions address the network flow , where matrix multiplication represents movement
along the edges, and the weights represent the probability of moving along a given edge (relative to
all the weights outgoing from the tail node).

Exercise 26.2. (✠4.03) Let G = (V,E) be a directed simple graph, and let A be its adjacency
matrix.

1. Just by looking at A, how can you tell which vertices are sinks and which are sources of G?

2. What is the largest number of edges that G can have?

Exercise 26.3. (✠4.03) Use induction to prove Proposition 26.14.

Exercise 26.4. (✠4.03, 4.03) Consider the following directed graph:

G = a

b

c

d e

f

1. Give the adjacency and incidence matrix for G.

2. Find all k ∈ N for which there are no walks of length k from f to f .

3. Find as many spanning trees as you can for G.

The preferred (but not required) order of the edges is the lexicographic order: ab, ad, bf, cb, db, eb,
ec, fd, fe.
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Index of notation

v vector 7

v •w dot product (inner product) of two vectors v, w 9

∥v∥ norm of the vector v 11
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Index

absolute value, 54, 146
additive identity, 16, 37
additive inverse, 37
adjacency matrix, 68, 150
affine space, 39, 49, 64
algebraic multiplicity, 117, 124
algebraically closed, 122
angle, 91
anti-commutative, 113
augmented matrix, 23
axiom of choice, 59

basis, 58
binary, 153
block matrix, 14

Cartesian coordinates, 53, 145
Cauchy–Schwarz inequaity, 92
Cauchy–Schwarz inequality, 11
change of basis matrix, 61, 100
characteristic polynomial, 117
codimension, 60, 72
cofactor, 104, 112
cofactor matrix, 104
colinear, 12
column rank, 47
column space, 42
complex conjugate, 54, 55, 146, 147
complex numbers, 53, 121, 145
component, 7, 8
conjugate, 54, 55, 127, 146, 147
conjugate transpose, 55, 147
covariance, 143
cross product, 113
cycle, 152
cyclic matrix, 18

degree, 151
dendrogram, 96
determinant, 103, 104, 107
diagonal matrix, 15, 25
diagonalization, 123
digraph, 149
dimension, 59, 72
direct sum, 40
directed graph, 149
distance, 11
distance matrix, 93
dot product, 9

edge, 149
eigenpair, 115

eigenspace, 118
eigensystem, 115
eigenvalue, 115
eigenvector, 115, 120
elementary matrix, 25
elementary row operations, 21
elimination, 25
elimination matrix, 25
entry, 14
error vector, 76
Euler’s formula, 54, 146
exponential form, 54, 146
extend to a basis, 61

field, 9
Fourier matrix, 132
free variable, 44
full column rank, 50
full rank, 47, 50
full row rank, 50
function space, 38

Gauss–Jordan elimination, 25
Gaussian elimination, 23, 24
general position, 50
geometric multiplicity, 118
Gram–Schmidt process, 86
graph

simple, 150
undirected, 149
weighted, 150

head, 149
Hermitian, 56, 131, 148
hyperplane, 23

identity matrix, 14
image, 99
imaginary number, 53, 145
imaginary part, 53, 145
in-degree, 151
incidence matrix, 68
induced subgraph, 152
inner product, 9, 91
inner product space, 91
inverse, 17
isomorphism, 99

kernel, 99

least squares, 80
left eigenvector, 120
left inverse, 19
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left nullspace, 66
length, 11, 91
line, 9
linear combination, 8, 39
linear dependence, 57
linear independence, 47, 57
linear map, 98
linear transformation, 98
linearity, 98
loop, 152

matrix, 14
identity, 14
zero, 14

matrix addition, 15
matrix equation, 18
matrix multiplication, 15
mean-centered, 140
min-max normalization, 142
minimal spanning set, 58
minor, 104
modulus, 54, 146
multiple, 8
multiplicative identity, 16, 37
multiplicity

algebraic, 117, 124
geometric, 118

multiplier, 24

nontrivial vector, 7
norm, 11, 91
normalization, 142
nullity, 48, 60
nullspace, 43

orthogonal, 12, 70, 91
orthogonal complement, 72
orthonormal, 70
out-degree, 151
outer product, 35

parallel, 12
parallelogram, 104
parallelotope, 104
parity, 107, 108
particular solution, 48
path, 152
permutation, 106
permutation matrix, 25
perpendicular, 12
pivot, 24, 44
plane, 9
polar coordinates, 54, 146
position matrix, 93
positive definite, 129

principal component, 141

product, 7

projection, 8, 76, 77

projection matrix, 76

proper subspace, 37

purely imaginary number, 53, 145

range, 99

rank, 47

rank approximation, 136

rank-nullity theorem, 48, 67

real part, 53, 145

rectangular coordinates, 53, 145

reduced row echelon form, 44

reflection, 78

regular, 151

right eigenvector, 120

right inverse, 19

roots of unity, 54, 146

rotation matrix, 71

row echelon form, 26

row rank, 47

row space, 66

sample covariance, 140

scalar, 8, 37

scalar product, 7

semidefinite, 129

sign, 107

similar matrix, 127

simple graph, 150

singular, 32

singular value decomposition, 136

singular values, 135

singular vectors, 136

sink, 149

skew-symmetic, 113

skew-symmetric matrix, 34

source, 149

span, 39, 40

spanning set, 58

spanning tree, 152

special solution, 43

spectrum, 115

standard basis, 58, 112

standard form, 53, 145

subgraph, 152

submatrix, 104

subspace, 37

symmetric matrix, 34, 128

tail, 149

trace, 91, 121

transpose, 17, 66
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transposition, 106
triangle inequality, 11, 92
triangular matrix, 15
trivial vector, 7

undirected graph, 149
unit cube, 103
unit vector, 11
unitary, 131

Vandermonde, 82
variance, 143

vector, 7

unit, 11

vector space, 37

vertex, 149

volume, 103

walk, 152

weighted graph, 150

zero matrix, 14

zero vector, 7
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