Assignment 9

Introduction to Linear Algebra

Material from Lectures 16 and 17 Due Thursday, March 16, 2023

- 16.1 (\pounds 2.17)For each of the following "definitions", show that each cannot be an inner product.
 - (a) For $A, B \in \mathcal{M}_{n \times n}$, let $\langle A, B \rangle = \operatorname{trace}(A + B)$
 - (b) For $f, g \in C[0, 1]$, let $\langle f, g \rangle = \left| \frac{df}{dx} \frac{dg}{dx} \right|$
 - (c) For $a, b \in \mathbf{R}$, let $\langle a, b \rangle = a^2 + b^2$
- 16.4 (#2.18)Let $P(\mathbf{R})$ be the vector space of all polynomials $\mathbf{R} \to \mathbf{R}$, with scalar multiplication and polynomial addition defined as you would expect. You may assume that the following is an inner product on $P(\mathbf{R})$:

$$\langle p(x), q(x) \rangle = \int_0^\infty p(x)q(x)e^{-x} dx.$$

- (a) Check that p(x) = 2x 1 and q(x) = x + 3 are not orthogonal to each other.
- (b) Using the Gram-Schmidt process on p(x) and q(x) as in part 1., find a polynomial $r(x) \in P(\mathbf{R})$ that is orthogonal to p(x). Give your answer as r(x) = ax + b, for $a, b \in \mathbf{Z}$.
- 17.4 (\bigstar 2.20) Consider the three orthogonal vectors

$$\mathbf{x} = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \qquad \mathbf{z} = \begin{bmatrix} 0\\-2\\0 \end{bmatrix}.$$

Let $f \colon \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation for which

$$f(\mathbf{x}) = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \qquad f(\mathbf{y}) = \begin{bmatrix} -1\\-1\\-1 \end{bmatrix}, \qquad f(\mathbf{z}) = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

Construct the 3×3 matrix for f.

- **17.5** (#2.20, 2.21) Let V be the vector space of polynomials in two variables x and y of degree at most 2. This space has dimension 6, and has basis with basis $1, x, y, x^2, y^2, xy$. Let $L: V \to V$ be the linear transformation defined by L(f(x, y)) = f(x y, y x).
 - (a) Find the matrix of L using the basis specified.
 - (b) Find a basis for the image and kernel of L.