Assignment 8

Introduction to Linear Algebra

Material from Lectures 14 and 15 Due Thursday, March 9, 2023

14.2 (\bigstar 2.13) Let $A \in \mathcal{M}_{m \times n}$.

- (a) Suppose that $\mathbf{x} \in \text{null}(A)$. Show that $\mathbf{x} \in \text{null}(A^T A)$ as well
- (b) Suppose that $\mathbf{y} \in \operatorname{null}(A^T A)$. Show that $\mathbf{y} \in \operatorname{null}(A)$ as well.
- (c) The above two points imply that $\operatorname{null}(A) = \operatorname{null}(A^T A)$. In the case that the columns of A are linearly independent, use this fact to show that $A^T A$ has full rank.
- **14.3** (#2.14) Consider the two points $p_1 = (1, 0), p_2 = (2, 1)$ in \mathbb{R}^2 .
 - (a) Let $m \in \mathbf{R}$. Find a point $p_3 \in \mathbf{R}^2$ so that the least squares approximation to $\{p_1, p_2, p_3\}$ has slope m.
 - (b) Let $a \ge 3 \in \mathbf{R}$. Find points $p_3, p_4 \in \mathbf{R}^2$ so that the degree 2 least squares approximation to $\{p_1, p_2, p_3, p_4\}$ has its vertex on the line x = a.

- **15.4** (#2.16) Let V be the vector space of polynomials of degree at most 3 with domain [0, 1]. The "dot product" on V is defined by $f \bullet g = \int_0^1 f(x)g(x) dx$, which helps to define length and angle. You may assume that $\{1, x, x^2, x^3\}$ is a basis for V.
 - (a) Is the given basis orthogonal? Find the lengths of the elements in the basis.
 - (b) Are the two functions $2x, x^2 1$ linearly independent in V? Are they orthogonal?
 - (c) Extend $\{2x, x^2 1\}$ to an orthonormal basis of V.