
Assignment 8 - Solutions
Introduction to Linear Algebra

Material from Lectures 14 and 15
Due Thursday, March 9, 2023

14.2 (z2.13) Let A ∈Mm×n.

(a) Suppose that x ∈ null(A). Show that x ∈ null(ATA) as well

(b) Suppose that y ∈ null(ATA). Show that y ∈ null(A) as well.

(c) The above two points imply that null(A) = null(ATA). In the case that the columns
of A are linearly independent, use this fact to show that ATA has full rank.

(a) Recal the nullspace of A is all the vectors x for which Ax = 0. Suppose that
x ∈ null(A), which means that Ax = 0. Multiplying this equation by AT on both
sides gives ATAx = 0, which means x ∈ null(ATA).

(b) Suppose that y ∈ null(ATA). That is, ATAy = 0, and multiplying by yT on both
sides gives

0 = yT (ATAy) = (yTAT )(Ay) = (Ay)T (Ay) = (Ay) • (Ay) = ‖Ay‖2.

Hence ‖Ay‖ = 0 and since the norm is positive definite, it follows that Ay = 0.
That is, y ∈ null(A).

(c) Since the columns of A are linearly independent, it follows that null(A) = {0},
so dim(null(A)) = 0. By the two points above, also dim(null(ATA)) = 0. Since
ATA ∈Mn×n, by the rank-nullity theorem we have that

rank(ATA) + dim(null(ATA)) = n ⇐⇒ rank(ATA) + 0 = n

⇐⇒ rank(ATA) = n.

Since A is an m× n matrix, ATA is an n× n matrix. The matrix ATA having rank
n means it has full rank.
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14.3 (z2.14) Consider the two points p1 = (1, 0), p2 = (2, 1) in R2.

(a) Let m ∈ R. Find a point p3 ∈ R2 so that the least squares approximation to
{p1, p2, p3} has slope m.

(b) Let a > 3 ∈ R. Find points p3, p4 ∈ R2 so that the degree 2 least squares approxi-
mation to {p1, p2, p3, p4} has its vertex on the line x = a.

(a) We begin with p3 = (3, y), fixing p3 already on the line x = 3. This is not necessary,
but we are limiting the choices so that the formulas are simpler. If we knew what y
was, the least squares solution would find the solution to1 1

1 2
1 3

[b
a

]
=

0
1
y

 ,

which, by Theorem 14.7 in the lecture notes, would be the same as solving[
1 1 1
1 2 3

]1 1
1 2
1 3

[b
a

]
=

[
1 1 1
1 2 3

]0
1
y

 ⇐⇒
[
3 6
6 14

] [
b
a

]
=

[
1 + y
2 + 3y

]
.

The solution to this equation is found by row reduction of the augmented matrix[
3 6 1 + y
6 14 2 + 3y

]
G.E.−−−−→

[
1 0 1−2y

3

0 1 y
2

]
,

meaning the optimal solution is the function ax + b, with a = 1−2y
3

and b = y
2
. We

already know that the solution has slope m, so

m =
1− 2y

3
⇐⇒ 3m = 1− 2y ⇐⇒ y =

1− 3m

2
.

Therefore, the set
{

(1, 0), (2, 1),
(
2, 1−3m

2

)}
has least squares solution with slope m.

(b) Many solutions are possible, a geometric solution is presented here. Adding every
new point to the set which the least squares solution will approximate pulls the
approximation closer to that new point. Since we are given the condition that the
vertex must be on the vertical line x = a, it is reasonable to choose two points that
are the same as p1, p2, but reflected across the vertical line x = a, so everything is
balanced and symmetric around x = a.

R

R

x = a degree 2 least squares solution

So p3 = (2a− 2, 1) and p4 = (2a− 1, 0) will work. We check to make sure the least
squares does indeed have its vertex on x = a. Here we solve the equation Ax = b as

1 1 1
1 2 4
1 2a− 2 (2a− 2)2

1 2a− 1 (2a− 1)2


dc
b

 =


0
1
1
0

 ,
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which used the Vandermonde matrix for a degree 2 approximation bx2 +cx+d. This
equation does not have a solution, so instead we solve ATAx = ATb, which has
solution

x =

dc
b

 =

(16a4 + 4a2 − 24a + 3)/(32a4 − 4a2 − 20a− 9)
(−4a2 + 6a)/(32a4 − 4a2 − 20a− 9)

(2a− 3)/(32a4 − 4a2 − 20a− 9)

 .

While this does look quite unappealing, all we are intereseted in is the x-value of
the vertex. For a quadratic function bx2 + cx+ d, the vertex is in between the roots,
and hs x-coordinate − c

2b
. For this situation, since the denominators are the same,

that becomes
−c
2b

=
4a2 − 6a

2(2a− 3)
=

4a2 − 6a

4a− 6
=

(4a− 6)a

4a− 6
= a,

as expected.
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15.2 (z2.15) Apply the Gram-Schmidt process to the vectors


0
1
1
1

 ,


2
0
2
0

 ,


2
1
1
2

 ,


2
0
0
1

 ,


1
2
0
1

.

Step 1: Set w1 = v1 =


0
1
1
1

.

Step 2: Project v2 onto w1, and subtract this from v2 to ensure the new vector will be
orthogonal to the previous vector. That is, set w2 to be the error vector when projecting
to w1. So we get

w2 = v2 − projw1
(v2) = v2 −

wT
1 v2

wT
1w1

w1 =


2
0
2
0

− 2

3


0
1
1
1

 =
1

3


6
−2
4
−2

 .

Step 3: Project v3 onto w1 and w2, and subtract these from v3 to make sure everything
is still orthogonal. The formula is

w3 = v3 − projw1
(v3)− projw2

(v3) = v3 −
wT

1 v3

wT
1w1

w1 −
wT

2 v3

wT
2w2

w2 =


1
0
−1
1

 .

Step 4: Repeat the same for v4 to get

w4 = v4−projw1
(v4)−projw2

(v4)−projw3
(v4) = v4−

wT
1 v4

wT
1w1

w1−
wT

2 v4

wT
2w2

w2−
wT

3 v4

wT
3w3

w3 =


0
0
0
0

 .

This means that v4 is a linear combination of v1,v2,v3, and that we do not have to
subtract the projection of v5 onto w4. Or rather, that the projection will be 0.
Step 5: Repeat the same for v5 to get

w5 = v5 − projw1
(v5)− projw2

(v5)− projw3
(v5) =

1

3


1
3
−1
−2

 .

Normalization of these vectors to get the final output of the Gram-Schmidt process is
straightforward:

q1 =
w1

‖w1‖
=

1√
3


0
1
1
1

 , q2 =
w2

‖w2‖
=

1

2
√

15


6
−2
4
−2

 ,

q3 =
w3

‖w3‖
=

1√
3


1
0
−1
1

 , q5 =
w5

‖w5‖
=

1√
15


1
3
−1
−2

 ,

and q4 = 0.
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15.4 (z2.16) Let V be the vector space of polynomials of degree at most 3 with domain [0, 1].

The “dot product” on V is defined by f •g =
∫ 1

0
f(x)g(x) dx, which helps to define length

and angle. You may assume that {1, x, x2, x3} is a basis for V .

(a) Is the given basis orthogonal? Find the lengths of the elements in the basis.

(b) Are the two functions 2x, x2 − 1 linearly independent in V ? Are they orthogonal?

(c) Extend {2x, x2 − 1} to an orthonormal basis of V .

(a) The basis is not orthogonal, as we can quickly compute the dot product on pairs:

1 • x =

∫ 1

0

x dx =
1

2
1 • x2 =

∫ 1

0

x2 dx =
1

3

1 • x3 =

∫ 1

0

x3 dx =
1

4
x • x2 =

∫ 1

0

x3 dx =
1

4

x • x3 =

∫ 1

0

x4 dx =
1

5
x2 • x3 =

∫ 1

0

x5 dx =
1

6

None of these are 0, so the set is not orthogonal. In a similar manner we find

‖1‖ = 1, ‖x‖ =
1√
2
, ‖x2‖ =

1√
5
, ‖x3‖ =

1√
7
.

(b) If the set {2x, x2 − 1} was linearly dependent, there would be some c ∈ R with
2x = c(x2 − 1) for all x. This is not possible, as c must be 2x

x2−1
, but that is not a

constant number for all x ∈ [0, 1]. These are not orthogonal, as

(2x) • (x2 − 1) =

∫ 1

0

2x3 − 2x dx = −1

2
6= 0.

(c) We know {1, x, x2, x3} is a basis of V , so we apply the Gram-Schmidt process to
{2x, x2 − 1, 1, x, x2, x3}. We go step by step:

f1 = 2x,

f2 = (x2 − 1)− projf1(x
2 − 1) = x2 +

3

4
x− 1,

f3 = 1− projf1(1)− projf2(1) =
70

83
x2 − 72

83
x +

13

83
,

f4 = x− projf1(x)− projf2(x)− projf3(x) = 0,

f5 = x2 − projf1(x
2)− projf2(x

2)− projf3(x
2) = 0,

f6 = x3 − projf1(x
3)− projf2(x

3)− projf3(x
3) = x3 − 3

2
x2 +

3

5
x− 1

20
.

Hence {2x, x2 − 1} extended to an orthonormal basis is{
2x, x2 +

3

4
x− 1,

70

83
x2 − 72

83
x +

13

83
, x3 − 3

2
x2 +

3

5
x− 1

20

}
.
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