Assignment 7

Introduction to Linear Algebra

Material from Lectures 12 and 13 Due Thursday, March 2, 2023

12.1 (**¥**2.09) Let
$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 be a symmetric 4×4 matrix.

- (a) Find which pairs of columns of A are orthogonal to each other.
- (b) Give the nullspace of A as a span of the special solutions to $A\mathbf{x} = 0$.
- (c) Show that the column space of A is orthogonal to the nullspace of A.
- (d) Explain why for any symmetric matrix (not just the one given), its column space is orthogonal to its nullspace.

12.6 (#2.10) Let
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 \\ -1 & -2 \\ 1 & 3 \end{bmatrix}$

- (a) What are the dimensions of col(A) and col(B)? Only using dimensions, explain why $col(A) \neq col(B)^{\perp}$.
- (b) Find a vector that is both in col(A) and col(B). Hint: Row reduce the block matrix $\begin{bmatrix} A & B \end{bmatrix}$.
- **13.1** (\bigstar 2.11) This question is about repeated projections.
 - (a) Show that projecting twice onto a line is the same as projecting once.
 - (b) Show that projecting twice onto a subspace is the same as projecting once.

Hint: Use the projection matrices P from Equation (4) and Definition 13.6, and show that $P^2 = P$.

(c) Let $R_{\theta} \in \mathcal{M}_{2\times 2}$ be the rotation matrix from Example 12.7. For which $\theta \in [0, 2\pi)$ is R_{θ} a projection matrix? Justify your answer.

13.5 (#2.12) Let
$$A = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 \\ 2 & 1 & 1 & -2 \\ -1 & 0 & -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 1 & -1 \\ 0 & -1 \\ 0 & 2 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) Compute the projection of **v** onto col(A) and $col(A)^{\perp}$. What is the angle between the two projections?
- (b) Compute the projection of col(B) onto col(A).