
Assignment 7 - Solutions
Introduction to Linear Algebra

Material from Lectures 12 and 13
Due Thursday, March 2, 2023

12.1 (z2.09) Let A =


−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

 be a symmetric 4× 4 matrix.

(a) Find which pairs of columns of A are orthogonal to each other.

(b) Give the nullspace of A as a span of the special solutions to Ax = 0.

(c) Show that the column space of A is orthogonal to the nullspace of A.

(d) Explain why for any symmetric matrix (not just the one given), its column space is
orthogonal to its nullspace.

Let A = [ c1 c1 c3 c4 ], with the columns ci as in the matrix A above.

(a) Column 1 is orthogonal to columns 3 and 4, as

c1 • c3 = c1 • c4 = 0.

Column 2 is also orthogonal to columns 3 and 4, as

c2 • c3 = c2 • c4 = 0.

Column 3 is orthogonal to columns 1 and 2, as described above, and also to column
4, as c3 • c4 = 0. Column 4 is orthogonal to columns 1, 2, 3.

(b) Row reduction will give us the nullspace, and we see that
−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

 adding rows−−−−−−−−→


−1 1 0 0
0 0 0 0
0 0 −1 1
0 0 0 2

 multiplying rows−−−−−−−−−−→


1 −1 0 0
0 0 0 0
0 0 1 −1
0 0 0 1

 .
Columns 1,3,4 are pivot columns and column 2 is a free column. Therefore

null(A) = span




1
1
0
0


 .

(c) Note that the only vector n =

[
1
1
0
0

]
in the spanning set of null(A) is orthogonal to

every column of A:

n • c1 = n • c2 = n • c3 = n • c4 = 0.
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Any vector v = ac1 + bc2 + cc3 + dc4 ∈ col(A) will then be orthogonal to n, as

n • v = n • (ac1 + bc2 + cc3 + dc4)

= an • c1 + bn • c2 + cn • c3 + dn • c4
= a0 + b0 + c0 + d0

= 0.

Since every vector in null(A) is a multiple of n, it follows that every vector in null(A)
will be orthogonal to every vector in col(A). That is, null(A) is orhogonal to col(A).

(d) By Example 12.13 in the lecture notes, the column space of A is orthogonal to the
left nullspace of A. Since A is symmetric, we have that A = AT , and so the left
nullspace is the same as the nullspace, that is, null(AT ) = null(A). Hence for any
symmetric matrix A, the column space of A is orthogonal to the nullspace of A.
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12.6 (z2.10) Let A =

1 2
1 3
2 5

 and B =

−1 2
−1 −2
1 3

.

(a) What are the dimensions of col(A) and col(B)? Only using dimensions, explain why
col(A) 6= col(B)⊥.

(b) Find a vector that is both in col(A) and col(B).
Hint: Row reduce the block matrix

[
A B

]
.

(a) A matrix with two columns has a column space of dimension 0, 1, or 2. The dimen-
sion is 0 if both columns are the zero column (which is clearly not the case for A
and B). The dimension is 1 if one column is a multiple of the other. This is also
not the case, as the ratios are different among rows:

1

2
6= 1

3
6= 2

5
for A, and

−1

2
6= −1

−2
6= 1

3
for B.

Therefore dim(col(A)) = dim(col(B)) = 2.

Since col(B) ⊆ R3, and dim(R3) = 3, for whichever space V = col(B)⊥ that is the
orthogonal complement of col(B), by Definition 12.9 it must be that

dim(col(B)) + dim(V ) = dim(R3) = 3.

Since dim(col(B)) = 2, it must be that dim(V ) = 1. Since dim(col(A)) = 2 6= 1, it
follows that col(A) 6= V , that is, col(A) 6= col(B)⊥.

(b) There are many such vectors. We follow the hint and row reduce

[
A B

]
=

1 2 −1 2
1 3 −1 −2
2 5 1 3

 row reduction−−−−−−−−−→

1 0 0 11
0 1 0 −4
0 0 1 1

 .
The result of this row reduction implies that column 4 of [A B] is in the span of the
first three columns of [A B], with the relationship

11

1
1
2

− 4

2
3
5

+

−1
−1
1

 =

 2
−2
3

 .
Rearranging, we get that

11

1
1
2

− 4

2
3
5

 = −

−1
−1
1

+

 2
−2
3

 ,
the sum of each side being the same vector v =

[
3
−1
2

]
. Since the left side is a linear

combination of the columns of A, v is in the column space of A. Similarly, since the
right side is a linear combination of the columns of B, v is in the column space of
B. Therefore v ∈ col(A) and v ∈ col(B) as desired.

3



13.1 (z2.11) This question is about repeated projections.

(a) Show that projecting twice onto a line is the same as projecting once.

(b) Show that projecting twice onto a subspace is the same as projecting once.

Hint: Use the projection matrices P from Equation (4) and Definition 13.6, and show
that P 2 = P .

(c) Let Rθ ∈ M2×2 be the rotation matrix from Example 12.7. For which θ ∈ [0, 2π) is
Rθ a projection matrix? Justify your answer.

(a) From Lecture 13, after Definition 13.2, the matrix for projecting a vector u onto the
line given by vector v is

P =
1

v • v
· vvT ,

so the projection of u onto the line defined by v is Pu, and projecting twice would
be PPu. Observe that

PP =

(
1

v • v
· vvT

)
·
(

1

v • v
· vvT

)
=

(vvT )(vvT )

(v • v)(v • v)

=
v(vTv)vT

(v • v)(v • v)

=
v(v • v)vT

(v • v)(v • v)

=
vvT

v • v
= P,

so PPu = Pu. That is, projecting onto a line once is the same as projecting onto a
line twice.

(b) Recall from Lecture 13, Definition 13.6, that the matrix for projecting a vector
u ∈ Rn onto a subspace of Rn whose basis vectors are the columns of A is

P = A(ATA)−1AT ,

so the projection of u onto the column space of A is Pu, and projecting twice would
be PPu. Observe that

PP =
(
A(ATA)−1AT

) (
A(ATA)−1AT

)
= A(ATA)−1ATA(ATA)−1AT

= A(ATA)−1(ATA)(ATA)−1AT

= AI(ATA)−1AT

= A(ATA)−1AT

= P,

so PPu = Pu. That is, projecting onto a subspace once is the same as projecting
onto a subspace twice.

(c) By the definition of Rθ, we know that RθRθ = R2θ. That is, rotating by θ twice is
the same as rotating by 2θ once. By part (a), for Rθ to be a projection matrix, we
must have that RθRθ = Rθ, that is, we need 2θ = θ. This is only true for θ = 0.
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13.5 (z2.12) Let A =


1 2 −1 0
1 0 1 −1
0 −1 1 0
2 1 1 −2
−1 0 −1 1

, B =


−1 0
2 1
1 −1
0 −1
0 2

, and v =


1
0
−1
0
1

.

(a) Compute the projection of v onto col(A) and col(A)⊥. What is the angle between
the two projections?

(b) Compute the projection of col(B) onto col(A).

(a) To compute the projection, we need a basis for col(A) and col(A)⊥. By row reduction,
A has three pivots, and rows 1,2,4 are linearly independent. Define the matrix

C =


1 2 0
1 0 −1
0 −1 0
2 1 −2
−1 0 1

 ,
which has lin. indep. columns. Projecting onto col(A) = col(C) is done by

P = C(CTC)−1CT =
1

4


4 0 0 0 0
0 1 1 1 −2
0 1 3 −1 −1
0 1 −1 3 −1
0 −1 −1 −1 1

 .
Using the formulas in Definition 13.6 and Remark 13.7, we see that

projcol(A)(v) = Pv =
1

4


4 0 0 0 0
0 1 1 1 −2
0 1 3 −1 −1
0 1 −1 3 −1
0 −1 −1 −1 1




1
0
−1
0
1

 =


1
−1/2
−1
0

1/2

 ,

projcol(A)⊥(v) = (I − P )v = v− Pv =


1
0
−1
0
1

−


1
−1/2
−1
0

1/2

 =


0

1/2
0
0

1/2

 .
The angle between these two projections is π/2 as the dot product is zero.

(b) A subspace is the span of its basis vectors, and we know the basis vectors for col(B)
are the columns of B (as they are not multiples of each other). The projection
of a subspace is the span of the projection of its basis vectors, so we just need
to compute the projection of the columns of B onto col(A). We already have the
projection matrix P from part (a), with which we find

P


−1
2
1
0
0

 =


−1
3/4
5/4
1/4
−3/4

 , P


0
1
−1
−1
2

 =


0
−3/4
−3/4
−3/4
3/4

 ,
and the span of these vectors is the projection of col(B) onto col(A).
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