Assignment 5 - Solutions

Introduction to Linear Algebra

Material from Lectures 8 and 9
Due Thursday, February 9, 2023

8.2 ("41.14) Find the complete solution to Ax = b, for

T
30 -9 -3 0 To 9
A=16 0 =21 0 2|, x= |z3], b= |-1
00 O 0 0 T4 0

Ts

First we find a particular solution. We get these by elimination on the augmented matrix
[A b]. The first multiplier is ¢y = 2:

1 0030 -9 =30 9 30 -9 =30 9
-2 106 0 -21 0 2 —-1|=|00 -3 6 2 -19
0O 0 1110 0 O 0 0 0 00 0 0 0 O
We see the pivots already as 3, —3. Now we clear the —9 above the —3:
1 -3 0/30 -9 =30 9 30 0 —-21 -6 66
0O 1 0|00 -3 6 2 —-19/ =100 -3 6 2 -19
0O 0 1{]j]0 0 0 0 0 O 00 O 0 0 0

Finally we multiply by the reciprocals of the pivots:

1/3 0 0][30 0 —21 -6 66 100 -7 -2 22
0 —-1/30/|l00 -3 6 2 —19/=1001 —2 —2/3 19/3
0 0 1|00 0 0 0 0 000 0 0 0

We find a particular solution immediately by using the last column in the pivot rows:

22

0
p=[19/3

0

0

The special solutions, which we know there are 3 (as there are 3 free columns), come
from considering Rx = 0. The three special solutions will have one 1 in each of the free
variable spots, and 0 in the other free variable spots.

0 7 2
1 0 0
s1 = [0], ss = |2], s3 = |2/3
0 1 0
0 0 1
Hence the complete solution to Ax = b is
22 0 7 2
0 1 0 0
x=[19/3] +¢1 |0] +¢c2 |2| +¢3 |2/3],
0 0 1 0
0 0 0 1

for any ¢y, co,c3 € R.



a b 1 1
, a b 1 0
8.5 ("1.15) Consider the vectors a = NE b= plou= 11 v=1{| for a,b € R.
a b 1 0
(a) What will be the rank of the following 4 x 4 matrices:
i. au’ ii. bv’ iii. au” + bv’

Your answers should depend on a and b.

(b) Explain why the rank of xy”, for any x,y € R", can never be greater than 1.

(a) We multiply the given vectors as usual:

a a a a a a a a a

A _la a a a row reduction 0O 0 0 O
au' = |11 1A=\ 0000
a a a a a 0 0 00

If a = 0, then we have the zero matrix, which has rank 0. But if a is any nonzero
real number, then au” has only one pivot, so the rank is 1. In the second case:

b b b b b b b b b

T b . 00 0O row reduction 0 00O
bvi= | [0 0=y 0000
b 00 00 0000

As before, if b = 0, the rank is 0. If b # 0, the rank is 1. In the third case:

a+b a+b a+b a+b

T T a a a a
aw +bvi =1 b asb ath
a a a a

There are five scenarios:

e [f a = b =0, then rank is 0.

e If a =0 and b # 0, then we are in the second case, and rank is 1.

e If a # 0 and b = 0, we are in the first case, and rank is 1.

e Ifa+#0andb# 0 but a+b=0, then rank is 1, as we have two zero rows and
two rows of just a.

e Ifa# 0andb # 0and a+b # 0, then rows 2, 3, 4 can be made zero by subracting
row 1 (in the case of row 3) and dividing by a 4+ b and then subtracting (in the
case of rows 2.4). Hence rank is 1.

The rank can never be greater than 1 because every row has the same number in
every column. That is, any nonzero row can be used to make any other nonzero
row into a zero row, so there can never be more than 1 nonzero rows after Gaussian
elimination.



2 ("4.02) Prove all the claims of Proposition 9.5, for z = x + yi,w = a + bi € C:

(a) zFw=z+w (f) 27t =7Z/|z]? for 2 £ 0
(b) zw=zw (g) |[z2|=0iff z=0

(c) Z=2 (h) [z] = |z]

(d) z+z =2 (i) [zw] = [2][w]

(€) z—%=2yi () [z +w] < 2] + [w]

Zz+w=(x+yi)+ (a+bi)
= (x+a)+ (y+b)
= (
= (

=Z+w

zw = (x + yi)(a + bi)
= za + xbi + yai — yb
= (xa — yb) + (zb+ ya)i
= (za — yb) — (xb+ ya)i
= xa — yb — xbi — yai
= (r —yi)a — (v — yi)bi
= (93 — yi)(a — bi)

w

M

Z=axtyi=c—yYi=x+yi=2=2
z+z=(r+4yi)+(x—yi)=(x+2z)+ (y —y)i =22

z—zZ=(r+y)—(r—yi)=(r—2)+ (y+y)i =2yi

(f) Since zz~! = 1, we have that

41 1 1 x— T — Yl z
z T4y xtyirx—yi  22+y*  |z|?

(g) Suppose that |z] = 0. Then

0=z =v22+1y2 = 0=2a+y>

Since 22 > 0 and y? > 0, but their sum is equal to zero, it must be that z = y = 0,
so z = 0. Conversely, suppose that z = 0. Then |z| = v02 = 0.

(h)

Z| = v +yi| = |z —yi| = Va2 + (—y)2 = Va2 + 2 = |z + yi| = 2]

3



|zw| = |(z 4 yi)(a + bi)|
= |xa + xbi + yai — yb|
= |(za — yb) + (xb + ya)i|
= V/(za — yb)* + (xb + ya)?
= /(za)? — 2zayb + (yb)? + (xb)2 + 2zbya + (ya)?
= V(za)* + (yb)* + (xb)* + (ya)?
= V(@2 +y?)(a® + 1?)
=22 +y2Va? + b2
= [2l|w]

(j) For this question we work backwards, doing invertible operations (adding / subtract-
ing, multipliying / dividing by nonzero numbers):

|2+ w| <[] + |w]
= |(z + yi) + (a+ bi)| < |+ yi| + |a + bi (expanding)
= [(z +a) + (y + b)i| < |z + yi| + |a + bi (expanding)
— Vi +a)?+ (y+b)2 < Va2 4y 4+ Va + b2 (definition)
= (x+a)*+ (y+0)? <2? + > + 2/ (22 + y2)(a% + b2) + a® + V? (squaring)
— 2’ 2ax+a® P2+ <+ P2V (22 +y2) (a2 + ) +a® +0* (expanding)
= 2az + 2yb < 24/ (22 + y2) (a2 + b2) (cancelling)
= ax +yb < /(22 + y2)(a® + b2) (dividing by 2)
= (az)? + 2axyb + (yb)* < 2%a* + 2°b* + y*a® + y*b? (squaring)
= 2axyb < %0 + yPa® (cancelling)
= 0 < 2°b* — 2axyb + y*a® (rearranging)
= 0 < (zb — ya)? (rearranging)

This last line is clearly a true statement, and since all operations were reversible, the first
line is also true.



9.3 (M44.01) This question is about proving Euler’s formula cos(8) + isin(f) = e¥.

(a) Take the derivative of f(#) = (cos(#) + isin(#))e~* with respect to 6.
(b) Explain why the result of the previous step means that f(6) is constant.
) Evaluate f at # = 0 to find this constant from the previous step.
)

(c

(d) Rearrange to get Euler’s formula.

(a) We use the product rule and the chain rule here:

j@ ((cos(@) + isin(ﬁ))e’w) = (C;le(cos(«?) + isin(@))) e 4+ (cos(f) + isin(0)) <j0 Za)

= (— cos(0) + Zi sm(@)) e " + (cos(f) + isin(f)) (—ie ™)
= (—sin(0) —i— icos(0)) e ™ + (cos(0) + isin(0)) (—ie ™)

= —sin(@)e ™ 4 icos(f)e ™ —icos(B)e 4 sin()e

= 0.

(b) By the fundamental theorem of calculus, integrals and derivatives are inverses of
each other. Taking the derivative of 0 we get a constant C, and this consant must
be equal to f(6).

(c) Following the prompt, we see
£(0) = (cos(0) +isin(0))e ™ = (1 +i-0)-1=1.

Since f(0) = 1, and since f(0) is constant for all 0, it follows that f(6) =
(d) Following the prompt, we see

1 = (cos(f)+isin(f))e ™ «— — = cos(f)+isin(f) <= " = cos(#)+isin(f),

which is Euler’s formula.



