
Assignment 5 - Solutions
Introduction to Linear Algebra

Material from Lectures 8 and 9
Due Thursday, February 9, 2023

8.2 (z1.14) Find the complete solution to Ax = b, for

A =

3 0 −9 −3 0
6 0 −21 0 2
0 0 0 0 0

 , x =


x1
x2
x3
x4
x5

 , b =

 9
−1
0

 .
First we find a particular solution. We get these by elimination on the augmented matrix
[A b]. The first multiplier is `21 = 2: 1 0 0

−2 1 0
0 0 1

3 0 −9 −3 0 9
6 0 −21 0 2 −1
0 0 0 0 0 0

 =

3 0 −9 −3 0 9
0 0 −3 6 2 −19
0 0 0 0 0 0

 .
We see the pivots already as 3,−3. Now we clear the −9 above the −3:1 −3 0

0 1 0
0 0 1

3 0 −9 −3 0 9
0 0 −3 6 2 −19
0 0 0 0 0 0

 =

3 0 0 −21 −6 66
0 0 −3 6 2 −19
0 0 0 0 0 0

 .
Finally we multiply by the reciprocals of the pivots:1/3 0 0

0 −1/3 0
0 0 1

3 0 0 −21 −6 66
0 0 −3 6 2 −19
0 0 0 0 0 0

 =

1 0 0 −7 −2 22
0 0 1 −2 −2/3 19/3
0 0 0 0 0 0

 .
We find a particular solution immediately by using the last column in the pivot rows:

p =


22
0

19/3
0
0

 .
The special solutions, which we know there are 3 (as there are 3 free columns), come
from considering Rx = 0. The three special solutions will have one 1 in each of the free
variable spots, and 0 in the other free variable spots.

s1 =


0
1
0
0
0

 , s2 =


7
0
2
1
0

 , s3 =


2
0

2/3
0
1

 .
Hence the complete solution to Ax = b is

x =


22
0

19/3
0
0

+ c1


0
1
0
0
0

+ c2


7
0
2
1
0

+ c3


2
0

2/3
0
1

 ,
for any c1, c2, c3 ∈ R.
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8.5 (z1.15) Consider the vectors a =


a
a
a
a

, b =


b
b
b
b

, u =


1
1
1
1

, v =


1
0
1
0

, for a, b ∈ R.

(a) What will be the rank of the following 4× 4 matrices:

i. auT ii. bvT iii. auT + bvT

Your answers should depend on a and b.

(b) Explain why the rank of xyT , for any x,y ∈ Rn, can never be greater than 1.

(a) We multiply the given vectors as usual:

auT =


a
a
a
a

 [1 1 1 1
]

=


a a a a
a a a a
a a a a
a a a a

 row reduction−−−−−−−→


a a a a
0 0 0 0
0 0 0 0
0 0 0 0

 .
If a = 0, then we have the zero matrix, which has rank 0. But if a is any nonzero
real number, then auT has only one pivot, so the rank is 1. In the second case:

bvT =


b
b
b
b

 [1 0 1 0
]

=


b b b b
0 0 0 0
b b b b
0 0 0 0

 row reduction−−−−−−−→


b b b b
0 0 0 0
0 0 0 0
0 0 0 0

 .
As before, if b = 0, the rank is 0. If b 6= 0, the rank is 1. In the third case:

auT + bvT =


a+ b a+ b a+ b a+ b
a a a a

a+ b a+ b a+ b a+ b
a a a a

 .
There are five scenarios:

� If a = b = 0, then rank is 0.

� If a = 0 and b 6= 0, then we are in the second case, and rank is 1.

� If a 6= 0 and b = 0, we are in the first case, and rank is 1.

� If a 6= 0 and b 6= 0 but a + b = 0, then rank is 1, as we have two zero rows and
two rows of just a.

� If a 6= 0 and b 6= 0 and a+b 6= 0, then rows 2, 3, 4 can be made zero by subracting
row 1 (in the case of row 3) and dividing by a+ b and then subtracting (in the
case of rows 2,4). Hence rank is 1.

(b) The rank can never be greater than 1 because every row has the same number in
every column. That is, any nonzero row can be used to make any other nonzero
row into a zero row, so there can never be more than 1 nonzero rows after Gaussian
elimination.
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9.2 (z4.02) Prove all the claims of Proposition 9.5, for z = x+ yi, w = a+ bi ∈ C:

(a) z + w = z + w

(b) zw = z w

(c) z = z

(d) z + z = 2x

(e) z − z = 2yi

(f) z−1 = z/|z|2 for z 6= 0

(g) |z| = 0 iff z = 0

(h) |z| = |z|
(i) |zw| = |z||w|
(j) |z + w| 6 |z|+ |w|

(a)

z + w = (x+ yi) + (a+ bi)

= (x+ a) + (y + b)i

= (x+ a)− (y + b)i

= (a− yi) + (a− bi)
= z + w

(b)

zw = (x+ yi)(a+ bi)

= xa+ xbi+ yai− yb
= (xa− yb) + (xb+ ya)i

= (xa− yb)− (xb+ ya)i

= xa− yb− xbi− yai
= (x− yi)a− (x− yi)bi
= (x− yi)(a− bi)
= z w

(c)

z = x+ yi = x− yi = x+ yi = z

(d)
z + z = (x+ yi) + (x− yi) = (x+ x) + (y − y)i = 2x

(e)
z − z = (x+ yi)− (x− yi) = (x− x) + (y + y)i = 2yi

(f) Since zz−1 = 1, we have that

z−1 =
1

z
=

1

x+ yi
=

1

x+ yi

x− yi
x− yi

=
x− yi
x2 + y2

=
z

|z|2
.

(g) Suppose that |z| = 0. Then

0 = |z| =
√
x2 + y2 =⇒ 0 = x2 + y2.

Since x2 > 0 and y2 > 0, but their sum is equal to zero, it must be that x = y = 0,
so z = 0. Conversely, suppose that z = 0. Then |z| =

√
02 = 0.

(h)

|z| = |x+ yi| = |x− yi| =
√
x2 + (−y)2 =

√
x2 + y2 = |x+ yi| = |z|
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(i)

|zw| = |(x+ yi)(a+ bi)|
= |xa+ xbi+ yai− yb|
= |(xa− yb) + (xb+ ya)i|
=
√

(xa− yb)2 + (xb+ ya)2

=
√

(xa)2 − 2xayb+ (yb)2 + (xb)2 + 2xbya+ (ya)2

=
√

(xa)2 + (yb)2 + (xb)2 + (ya)2

=
√

(x2 + y2)(a2 + b2)

=
√
x2 + y2

√
a2 + b2

= |z||w|

(j) For this question we work backwards, doing invertible operations (adding / subtract-
ing, multipliying / dividing by nonzero numbers):

|z + w| 6 |z|+ |w|
⇐⇒ |(x+ yi) + (a+ bi)| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒ |(x+ a) + (y + b)i| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒
√

(x+ a)2 + (y + b)2 6
√
x2 + y2 +

√
a2 + b2 (definition)

⇐⇒ (x+ a)2 + (y + b)2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (squaring)

⇐⇒ x2 + 2ax+ a2 + y2 + 2yb+ b2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (expanding)

⇐⇒ 2ax+ 2yb 6 2
√

(x2 + y2)(a2 + b2) (cancelling)

⇐⇒ ax+ yb 6
√

(x2 + y2)(a2 + b2) (dividing by 2)

⇐⇒ (ax)2 + 2axyb+ (yb)2 6 x2a2 + x2b2 + y2a2 + y2b2 (squaring)

⇐⇒ 2axyb 6 x2b2 + y2a2 (cancelling)

⇐⇒ 0 6 x2b2 − 2axyb+ y2a2 (rearranging)

⇐⇒ 0 6 (xb− ya)2 (rearranging)

This last line is clearly a true statement, and since all operations were reversible, the first
line is also true.
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9.3 (z4.01) This question is about proving Euler’s formula cos(θ) + i sin(θ) = eiθ.

(a) Take the derivative of f(θ) = (cos(θ) + i sin(θ))e−iθ with respect to θ.

(b) Explain why the result of the previous step means that f(θ) is constant.

(c) Evaluate f at θ = 0 to find this constant from the previous step.

(d) Rearrange to get Euler’s formula.

(a) We use the product rule and the chain rule here:

d

dθ

(
(cos(θ) + i sin(θ))e−iθ

)
=

(
d

dθ
(cos(θ) + i sin(θ))

)
e−iθ + (cos(θ) + i sin(θ))

(
d

dθ
e−iθ

)
=

(
d

dθ
cos(θ) + i

d

dθ
sin(θ)

)
e−iθ + (cos(θ) + i sin(θ))

(
−ie−iθ

)
= (− sin(θ) + i cos(θ)) e−iθ + (cos(θ) + i sin(θ))

(
−ie−iθ

)
= − sin(θ)e−iθ + i cos(θ)e−iθ − i cos(θ)e−iθ + sin(θ)e−iθ

= 0.

(b) By the fundamental theorem of calculus, integrals and derivatives are inverses of
each other. Taking the derivative of 0 we get a constant C, and this consant must
be equal to f(θ).

(c) Following the prompt, we see

f(0) = (cos(0) + i sin(0))e−i0 = (1 + i · 0) · 1 = 1.

Since f(0) = 1, and since f(θ) is constant for all θ, it follows that f(θ) = 1.

(d) Following the prompt, we see

1 = (cos(θ)+i sin(θ))e−iθ ⇐⇒ 1

e−iθ
= cos(θ)+i sin(θ) ⇐⇒ eiθ = cos(θ)+i sin(θ),

which is Euler’s formula.
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