Assignment 4

Introduction to Linear Algebra

Material from Lectures 6 and 7 Due Thursday, February 2, 2023

- **6.2** ($\mathbf{\Psi}$ 2.02) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three different vectors in a vector space V. Consider the three spans $S_1 = \text{span}(\{\mathbf{u} \mathbf{v}\}), S_2 = \text{span}(\{\mathbf{u}, \mathbf{v}, \mathbf{w}\})$ and $S_3 = \text{span}(\{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}\})$.
 - (a) Show that $S_1 \subseteq S_2$.
 - (b) Show that $S_3 \subseteq S_2$.
 - (c) For $V = \mathbf{R}^3$, given an example of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ for which $S_2 = S_3$.
 - (d) For $V = \mathbf{R}^3$, given an example of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ for which all of S_1, S_2, S_3 are different.

6.3 (#2.01) Consider the set X of all functions $f : \mathbf{R} \to \mathbf{R}$.

- (a) If addition on X is defined as (f+g)(x) = f(x) + g(x) and multiplication is defined as (cf)(x) = f(cx), show that X can not be a vector space.
- (b) If multiplication is instead defined as (cf)(x) = cf(x), and addition is instead defined as (f + g)(x) = f(g(x)) show that X still can not be a vector space.

Hint: Show X is not a vector space with examples!

7.1 (¥1.12) Consider the matrix $A = \begin{bmatrix} 2 & 9 & 1 & 0 & 0 & 9 \\ 0 & -3 & 0 & 1 & 0 & -3 \\ 8 & -6 & 0 & 0 & 1 & 1 \end{bmatrix}$.

- (a) Construct the column space of A as a span of three vectors.
- (b) Construct the nullspace of A as a span of vectors.
- **7.6** (\bigstar 1.13) Let X be a set of 2 × 2 matrices defined in the following way:
 - $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in X$
 - if $M \in X$, then $MM^T \in X$
 - if $M, N \in X$, then $aM + bN \in X$, for any $a, b \in \mathbf{R}$

Using scalar multiplication and matrix addition as in $\mathcal{M}_{2\times 2}$, show that X is a vector subspace of $\mathcal{M}_{2\times 2}$.

Hint: Using the given facts, try to construct the four special matrices that generate $\mathcal{M}_{2\times 2}$.