
Assignment 4 - Solutions
Introduction to Linear Algebra

Material from Lectures 6 and 7
Due Thursday, February 2, 2023

6.2 (z2.02) Let u,v,w be three different vectors in a vector space V . Consider the three
spans S1 = span({u− v}), S2 = span({u,v,w}) and S3 = span({u + v,v + w}).

(a) Show that S1 ⊆ S2.

(b) Show that S3 ⊆ S2.

(c) For V = R3, given an example of u,v,w for which S2 = S3.

(d) For V = R3, given an example of u,v,w for which all of S1, S2, S3 are different.

(a) To show this, we need to show that every element in S1 can be expressed an element
in S2. An arbitrary element of S1 looks like a(u− v) for some a ∈ R. An arbitrary
element of S2 looks like bu + cv + dw for some b, c, d ∈ R. For the choices b = a,
c = −a, and d = 0, we get

bu + cv + dw = au + (−a)v + 0w = a(u− v),

which was the arbitrary element of S1 that we began with. Therefore S1 ⊆ S2.

(b) To show this, we need to show that every element in S3 can be expressed an element
in S2. An arbitrary element of S3 looks like a(u + v) + b(v + w) for some a, b ∈ R.
An arbitrary element of S2 looks like cu + dv + ew for some c, d, e ∈ R. For the
choice c = a, d = a + b, and d = b, we get

cu + dv + ew = au + (a + b)v + bw = a(u + v) + b(v + w),

which was the arbitrary element of S3 that we began with. Therefore S3 ⊆ S2.

(c) There are lots of examples, with the key being that one of u,v,w must be a linear
combination of the other two. For example, we could choose

u =

1
0
0

 ,v =

0
1
0

 ,w =

1
1
0

 =⇒ u + v =

1
1
0

 ,v + w =

1
2
0

 .

Since u = w − v (that is, u is a linear combination of v and w), it follows that
S2 = span({u,v,w}) = span({v,w}). Since u + v = w (by how the vectors are
defined) and (v + w) = v + w (that is, v + w is a linear combination of v and w),
it follows that S3 = span({u + w,v + w}) = span({v,w}). Hence S2 = S3.

(d) There are lots of examples, with the key being that none of u,v,w can be linear
combinations of the other two. For example, we could choose

u =

1
0
0

 ,v =

0
1
0

 ,w =

0
0
1

 =⇒ u− v =

 1
−1
0

 ,u+ v =

1
1
0

 ,v+w =

0
1
1

 .

The vector
[
0
0
1

]
is not in the span of

[
1
−1
0

]
, so S1 6= S2. The vector

[
0
1
0

]
is not in the

span of
[
1
1
0

]
and

[
0
1
1

]
, so S3 6= S2. Finally, the vector

[
0
1
1

]
is not in the span of

[
1
−1
0

]
,

so S1 6= S3.
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6.3 (z2.01) Consider the set X of all functions f : R→ R.

(a) If addition on X is defined as (f + g)(x) = f(x) + g(x) and multiplication is defined
as (cf)(x) = f(cx), show that X can not be a vector space.

(b) If multiplication is instead defined as (cf)(x) = cf(x), and addition is instead defined
as (f + g)(x) = f(g(x)) show that X still can not be a vector space.

Hint: Show X is not a vector space with examples!

(a) This is not a vector space, because scalar multiplication is not distributive over field
addition. For example, if f(x) = x2 − 1, a = 3, b = −2, then

(a + b)f(x) = (3 + (−2))f(x) = 1f(x) = f(1x) = x2 − 1,

af(x) + bf(x) = 3f(x) + (−2)f(x) = f(3x) + f(−2x) = (3x)2 − 1 + (−2x)2 − 1

= 9x2 + 4x2 − 2 = 13x2 − 2,

and these are clearly not the same function.

(b) This is not a vector space, because addition is not commutative. For example, if
f(x) = x2 and g(x) = 2x, then

f + g = f(g(x)) = f(2x) = 4x2,

g + f = g(f(x)) = g(x2) = 2x2,

which are clearly not the same function.
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7.1 (z1.12) Consider the matrix A =

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1

.

(a) Construct the column space of A as a span of three vectors.

(b) Construct the nullspace of A as a span of vectors.

We take advantage of the fact that there is a 3× 3 identity matrix in columns 3-5.

(a) The column space of A is the span of all the columns of A. Columns 1,2,6 can each
be constructed as linear combinations of columns 3,4,5, in the sense of2

0
8

 = 2

1
0
0

+8

0
0
1

 ,

 9
−3
−6

 = 9

1
0
0

−3

0
1
0

−6

0
0
1

 ,

 9
−3
1

 = 9

1
0
0

−3

0
1
0

+

0
0
1

 .

Hence the column space of A is

col(A) = span

2
0
8

 ,

 9
−3
−6

 ,

1
0
0

 ,

0
1
0

 ,

0
0
1

 ,

 9
−3
1

 = span

1
0
0

 ,

0
1
0

 ,

0
0
1

 .

(b) Consider columns 3,4,5 as our pivot columns. That is, columns 1,2,6 are free columns.
The first free column gives us the first vector generating the nullspace, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




1
0
−2
0
−8
0

 =

0
0
0

 .

The second free column gives us the second vector, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




0
1
−9
3
6
0

 =

0
0
0

 .

And the third free column gives us the third vector, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




0
0
−9
3
−1
1

 =

0
0
0

 .

These are all linearly independent, as witnessed by their rows 1,2,6, which are zeros
for all but exactly one vector. Hence

null(A) = span




1
0
−2
0
−8
0

 ,


0
1
−9
3
6
0

 ,


0
0
−9
3
−1
1



 .
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7.6 (z1.13) Let X be a set of 2× 2 matrices defined in the following way:

� [ 1 1
0 1 ] ∈ X

� if M ∈ X, then MMT ∈ X

� if M,N ∈ X, then aM + bN ∈ X, for any a, b ∈ R

Using scalar multiplication and matrix addition as in M2×2, show that X is a vector
subspace of M2×2.
Hint: Using the given facts, try to construct the four special matrices that generateM2×2.

The “four special matrices” mentioned are [ 1 0
0 0 ] , [ 0 1

0 0 ] , [ 0 0
1 0 ] , [ 0 0

0 1 ]. We construct each of
them using the three given rules.

The first and second rule with M = [ 1 1
0 1 ] give [ 1 1

0 1 ] [ 1 0
1 1 ] = [ 2 1

1 1 ] ∈ X.

The third rule with a = 1, M = [ 2 1
1 1 ], b = −1, N = [ 1 1

0 1 ] gives [ 2 1
1 1 ]− [ 1 1

0 1 ] = [ 1 0
1 0 ] ∈ X.

The second rule with M = [ 1 0
1 0 ] gives [ 1 0

1 0 ] [ 1 1
0 0 ] = [ 1 1

1 1 ] ∈ X.

The third rule with a = 1, M = [ 2 1
1 1 ], b = −1, N = [ 1 1

1 1 ] gives [ 2 1
1 1 ]− [ 1 1

1 1 ] = [ 1 0
0 0 ] ∈ X.

We have now shown one of the four special matrices is in X.

The third rule with a = 1, M = [ 1 0
1 0 ], b = −1, N = [ 1 0

0 0 ] gives [ 1 0
1 0 ]− [ 1 0

0 0 ] = [ 0 0
1 0 ] ∈ X.

We have now shown two of the four special matrices are in X.

The third rule with a = 1, M = [ 1 1
1 1 ], b = −1, N = [ 1 0

1 0 ] gives [ 1 1
1 1 ]− [ 1 0

1 0 ] = [ 0 1
0 1 ] ∈ X.

The third rule with a = 1, M = [ 0 1
0 1 ], b = −1, N = [ 0 0

1 0 ] gives [ 0 1
0 1 ]− [ 0 0

1 0 ] = [ 0 1
−1 1 ] ∈ X.

The second rule with M = [ 0 1
−1 1 ] gives [ 0 1

−1 1 ] [ 0 −1
1 1 ] = [ 1 1

1 2 ] ∈ X.

The third rule with a = 1, M = [ 1 1
1 2 ], b = −1, N = [ 1 1

1 1 ] gives [ 1 1
1 2 ]− [ 1 1

1 1 ] = [ 0 0
0 1 ] ∈ X.

We have now shown three of the four special matrices are in X.

The third rule with a = 1, M = [ 0 1
0 1 ], b = −1, N = [ 0 0

0 1 ] gives [ 0 1
0 1 ]− [ 0 0

0 1 ] = [ 0 1
0 0 ] ∈ X.

We have now shown all of the four special matrices are in X.

We now claim that X =M2×2. Indeed, any matrix [ a b
c d ] ∈M2×2 can be constructed

using rule 3 three times:[
a b
c d

]
= a

[
1 0
0 0

]
+

(
b

[
0 1
0 0

]
+

(
c

[
0 0
1 0

]
+ d

[
0 0
0 1

]))
.

Similarly, X is closed under scalar multiplcation by rule 3 using any number for a and
b = 0. The existence of the additive inverse and the additive identity follow as X is equal
toM2×2 as sets. Therefore X is a vector subspace ofM2×2, in fact it is equal toM2×2.
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