
Assignment 3 - Solutions
Introduction to Linear Algebra

Material from Lectures 4 and 5
Due Thursday, January 26, 2023

4.1 (z1.08) Consider the matrix equation Ax = b, given by
[
3 −1 2
9 −3 2
1 −1 −1

] [
x
y
z

]
=
[

5
5
−3

]
. Use

Gaussian elimination on the augmented matrix [A | b] to solve for x, y, z.

Following the algorithm for Gausian elimination, notice that A21 = 9 and A11 = 3, so we
need to multiply the augmented matrix by the row operation that subtracts 3 times the
first row from the second row: 1 0 0

−3 1 0
0 0 1

3 −1 2 5
9 −3 2 5
1 −1 −1 −3

 =

3 −1 2 5
0 0 −4 −10
1 −1 −1 −3

 .

Although we have a 0 in row 2, column 2, since the goal is to solve for x, y, z, we can
continue without swapping rows. The next step is to subtract 1

3
of the first row from the

third row:  1 0 0
0 1 0
−1

3
0 1

3 −1 2 5
0 0 −4 −10
1 −1 −1 −3

 =

3 −1 2 5
0 0 −4 −10
0 −2

3
−5

3
−14

3

 .

Clearing “below the diagonal” is done, now we clear “above the diagonal.” First we get
a 0 in the row 3, column 3 position:1 0 0

0 1 0
0 − 5

12
1

3 −1 2 5
0 0 −4 −10
0 −2

3
−5

3
−14

3

 =

3 −1 2 5
0 0 −4 −10
0 −2

3
0 −1

2

 .

Next, we get a 0 in the row 1, column 3 position:1 1
2

0
0 1 0
0 0 1

3 −1 2 5
0 0 −4 −10
0 −2

3
0 −1

2

 =

3 −1 0 0
0 0 −4 −10
0 −2

3
0 −1

2

 .

Finally, we get a 0 in the row 1, column 2 position:1 0 −3
2

0 1 0
0 0 1

3 −1 0 0
0 0 −4 −10
0 −2

3
0 −1

2

 =

3 0 0 3
4

0 0 −4 −10
0 −2

3
0 −1

2

 .

This gives us that the solution is x = 1
4
, z = 10

4
= 5

2
, and y = 3

4
.
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4.4 (z1.09) Using Gauss–Jordan elimination, find the inverse matrix of A =
[
0 2 −1
1 0 −4
2 2 2

]
.

We apply row operations to the block matrix [A I] =
[
0 2 −1 1 0 0
1 0 −4 0 1 0
2 2 2 0 0 1

]
, as below.

swap the first and the second rows to get a first pivot:

1 0 −4 0 1 0
0 2 −1 1 0 0
2 2 2 0 0 1


subtract 2 times the first row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 2 10 0 −2 1


subtract the second row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 0 11 −1 −2 1


This finishes Gaussian elmination, so we proceeed with Gauss–Jordan elimination above
the diagonal.

subtract −1/11 times the third row from the second row:

1 0 −4 0 1 0
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


subtract −4/11 times the third row from the first row:

1 0 0 −4/11 3/11 1/11
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


multiply each row by the inverse of the pivots:

1 0 0 −4/11 3/11 1/11
0 1 0 5/11 −1/11 1/22
0 0 1 −1/11 −2/11 1/11


Hence the inverse of A is A−1 =

[
−4/11 3/11 1/11
5/11 −1/11 1/22
−1/11 −2/11 1/11

]
.
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5.2 (z1.10) Decompose A =

2 1 1
2 1 2
1 1 2

 into PA = LDU factorization.

First we clear below the diagonal. Attempting to get a 0 in the (2, 1)-position, we run
into a problem, as the second row has two zeros in front (instead of the desired one): 1 0 0

−1 1 0
0 0 1

2 1 1
2 1 2
1 1 2

 =

2 1 1
0 0 1
1 1 2

 .

So we undo this step, and swap the second and third rows. This will ensure that L is
indeed lower triangular at the end:1 0 0

0 0 1
0 1 0


︸ ︷︷ ︸

P

2 1 1
2 1 2
1 1 2

 =

2 1 1
1 1 2
2 1 2

 .

Now we proceed as usual, first clearing the (2, 1)-position: 1 0 0
−1

2
1 0

0 0 1


︸ ︷︷ ︸

E1

2 1 1
1 1 2
2 1 2

 =

2 1 1
0 1

2
3
4

2 1 2



Next we clear the (3, 1)-position, noticing that this clears the (3, 2)-position as well: 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸

E2

2 1 1
0 1

2
3
4

2 1 2

 =

2 1 1
0 1

2
3
4

0 0 1

 .

So far we have an equation E2E1PA = (upper triangular), but we need to get to PA =
(lower triangular)(upper triangular). This means moving E2, then E1 from the left to the
right, in the following way:

E2E1PA = (upper triangular) (given equation)

E−1
2 E2E1PA = E−1

2 (upper triangular) (multiply by E−1
2 on both sides)

IE1PA = E−1
2 (upper triangular) (definition of the inverse)

E1PA = E−1
2 (upper triangular) (properties of the identity)

E−1
1 E1PA = E−1

1 E−1
2 (upper triangular) (multiply by E−1

1 on both sides)

IPA = E−1
1 E−1

2 (upper triangular) (definition of the inverse)

PA = E−1
1 E−1

2 (upper triangular) (properties of the identity)

Inverses of elimination matrices are the reverse operations (adding instead of subtracting),
hence:

E−1
2 =

 1 0 0
0 1 0
−1 0 1

−1

=

1 0 0
0 1 0
1 0 1

 , E−1
1 =

 1 0 0
−1

2
1 0

0 0 1

−1

=

1 0 0
1
2

1 0
0 0 1

 .
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Multiplying these two together in the order E−1
1 E−1

2 gives the lower triangular matrix L
on the right:

E−1
1 E−1

2 =

1 0 0
1
2

1 0
0 0 1

1 0 0
0 1 0
1 0 1

 =

1 0 0
1
2

1 0
1 0 1

 = L.

We now have PA = L(upper triangular), but the upper triangular matrix does not have
1’s on its diagonal. That is, weneed to factor out the leading coefficient in each row:2 1 1

0 1
2

3
4

0 0 1


︸ ︷︷ ︸
upper triangular

=

2 0 0
0 1

2
0

0 0 1


︸ ︷︷ ︸

D

1 1
2

1
2

0 1 3
2

0 0 1


︸ ︷︷ ︸

U

.

Putting this all together, we finally have the necessary decomposition:1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P

2 1 1
2 1 2
1 1 2


︸ ︷︷ ︸

A

=

1 0 0
1
2

1 0
1 0 1


︸ ︷︷ ︸

L

2 0 0
0 1

2
0

0 0 1


︸ ︷︷ ︸

D

1 1
2

1
2

0 1 3
2

0 0 1


︸ ︷︷ ︸

U

.
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5.6 (z1.06, 1.11) Consider three points u = (1, 5),v = (2,−1),w = (8, 3) in R2. Let `1 be
the line through u and v, `2 be the line through u,w, and `3 be the line through v,w,
as in the diagram below.

u

v

w
`1

`2

`3

(a) Give the matrix equation for which the lines in the diagram above are the row
picture.

(b) Without solving this matrix equation, explain why the the equation has no solutions.

(c) Now suppose that u = (5, 1). Give the new matrix equation (the lines `1, `2, `3 are
constructed in the same way), and again, without solving it, explain why it has
infinitely many solutions.

(a) For the row picture, we need the equations of the lines. Since we have two points for
each line, we have the slope, and so the equation can be found by the point-slope
formula

x− x1

y − y1
=

x2 − x1

y2 − y1
or x− x1 = m(y − y1),

where m = x2−x1

y2−y1
is the slope, given the two points (x1, y1) and (x2, y2) on the line.

For `1, we have

x− 1

y − 5
=

2− 1

(−1)− 5
=⇒ x− 1 = −1

6
y +

5

6
=⇒ x +

1

6
y =

11

6
.

For `2, we have

x− 1

y − 5
=

8− 1

3− 5
=⇒ x− 1 = −7

2
y +

35

2
=⇒ x +

7

2
y =

37

2

For `3, we have

x− 2

y − (−1)
=

8− 2

3− (−1)
=⇒ x− 2 =

3

2
y +

3

2
=⇒ x− 3

2
y =

7

2
.

Putting this all together, the desired matrix equation is1 1
6

1 7
2

1 −3
2

[x
y

]
=

11
6
37
2
7
2

 .

(b) The matrix equation has no solutions because the three lines it represents (in the
row picture) do not all intersect in a single point. That is, no point in R2 is on all
three lines simultaneously, so no solution to the matrix equation exists.
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(c) For this part, we need to reconstruct `1 and `2. For the new `1, we have

x− 5

y − 1
=

2− 5

(−1)− 1
=⇒ x− 5 =

3

2
y − 3

2
=⇒ x− 3

2
y =

7

2
.

For the new `2, we have

x− 5

y − 1
=

8− 5

3− 1
=⇒ x− 5 =

3

2
y − 3

2
=⇒ x− 3

2
y =

7

2
.

The line `3 stays the same. The new matrix equation is1 −3
2

1 −3
2

1 −3
2

[x
y

]
=

7
2
7
2
7
2

 .

This matrix equation has infinitely many solutions, because the three lines `1, `2, `3
are now coincident, that is, they lie on top of each other. This follows from the
observation that the new coordinates (5, 1) of u are on `3, as in the picture below.

u

v

w
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