Assignment 11

Introduction to Linear Algebra

Material from Lectures 20 and 21 Due Thursday, March 30, 2023

20.1 ($\maltese 3.03$)Let $a, b, c, d \in \mathbf{R}$. Using elementary matrices (permutation, elimination, diagonal) to bring these matrices to triangular form, compute their determinants.

$$A = \begin{bmatrix} 0 & a & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & c \\ d & 0 & 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} a & b & a \\ a & c & a \\ a & d & a \end{bmatrix} \qquad C = \begin{bmatrix} a & b & c \\ b & 0 & b \\ c & b & a \end{bmatrix}$$

$$B = \begin{bmatrix} a & b & a \\ a & c & a \\ a & d & a \end{bmatrix}$$

$$C = \begin{bmatrix} a & b & c \\ b & 0 & b \\ c & b & a \end{bmatrix}$$

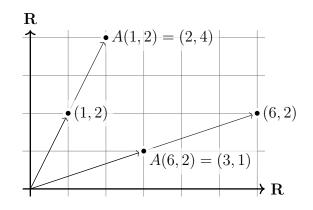
20.3 ($\maltese 3.04$) Let A be an $n \times n$ matrix, for some $n \in \mathbb{N}$.

- (a) Explain why $det(kA) = k^n det(A)$, for any real number k.
- (b) If A is skew-symmetric, explain why randomly choosing n in the range [1, 100] means det(A) = 0 exactly half of the time.
- (c) Suppose that A is a projection matrix, projecting from \mathbb{R}^n to an (n-1)-dimensional subspace of \mathbf{R}^n . Explain why $\det(A) = 0$.

21.5 (\(\mathbb{X} \) 3.05) Let λ, μ be real numbers, and $\mathbf{u} = \left[egin{smallmatrix} x \\ y \end{array} \right], \mathbf{v} = \left[egin{smallmatrix} z \\ w \end{array} \right] \in \mathbf{R}^2$ be two vectors.

- (a) Construct a 2×2 matrix with eigenpairs (\mathbf{u}, λ) and (\mathbf{v}, μ) .
- (b) What assumptions did you make in the first part to reach a conclusion?

21.6 (\mathbb{A} 3.06, 3.07) Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be the 2×2 matrix for which $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and $A \begin{bmatrix} 6 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. This is described in the picture below.



- (a) What is the eigensystem of A?
- (b) Express $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linear combinations of the eigenvectors of A.

1

- (c) Compute $A\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $A\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Use this to construct the matrix of A.
- (d) Using eigenvalues, explain why A is invertible.