
Assignment 11 - Solutions
Introduction to Linear Algebra

Material from Lectures 20 and 21
Due Thursday, March 30, 2023

20.1 (✠3.03)Let a, b, c, d ∈ R. Using elementary matrices (permutation, elimination, diagonal)
to bring these matrices to triangular form, compute their determinants.

A =


0 a 0 0
0 0 b 0
0 0 0 c
d 0 0 0

 B =

a b a
a c a
a d a

 C =

a b c
b 0 b
c b a


For the matrix A, we swap the 1st and 4th rows, then the 2nd and 4th rows, then the
3rd and 4th rows using permutation matrices:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸
determinant −1


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


︸ ︷︷ ︸
determinant −1


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


︸ ︷︷ ︸
determinant −1


0 a 0 0
0 0 b 0
0 0 0 c
d 0 0 0

 =


d 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c


︸ ︷︷ ︸
determinant dabc

Hence det(A) = −abcd. For the matrix B, we have to do row reduction with elimination
matrices. The last step assumes c − b ̸= 0. If c − b = 0, then the first row reduction
operation gives a row of zeros, and so the determinant is still 0.1 0 0

0 1 0
0 d−b

c−b
1


︸ ︷︷ ︸
determinant 1

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸
determinant 1

 1 0 0
−1 1 0
0 0 1


︸ ︷︷ ︸
determinant 1

a b a
a c a
a d a

 =

a b a
0 c− b 0
0 0 0


︸ ︷︷ ︸

determinant 0

Hence det(B) = 0. For the matrix C, we again use elimination matrices:1 0 0
0 1 0

0 − b− bc
a

−b2/a
1


︸ ︷︷ ︸

determinant 1

 1 0 0
0 1 0
− c

a
0 1


︸ ︷︷ ︸
determinant 1

 1 0 0
− b

a
1 0

0 0 1


︸ ︷︷ ︸
determinant 1

a b c
b 0 b
c b a

 =

a b c

0 − b2

a
b− bc

a

0 0 a− c2

a
− (b− bc

a
)2

−b2/a


To compute the determinant, we multiply the elements on the diagonal:

det(C) = a ·
(
−b2

a

)
·

(
a− c2

a
−

(b− bc
a
)2

−b2/a

)
=
(
−b2

)(
a− c2

a
− b2 − 2b2c/a+ b2c2/a2

−b2/a

)
=
(
−b2

)(
a− c2

a
+

a2b2 − 2ab2c+ b2c2

ab2

)
= −b2 · a

2b2 − b2c2 + a2b2 − 2ab2c+ b2c2

ab2

=
−2a2b2 + 2ab2c

a
= −2ab2 + 2b2c.
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20.3 (✠3.04) Let A be an n× n matrix, for some n ∈ N.

(a) Explain why det(kA) = kn det(A), for any real number k.

(b) If A is skew-symmetric, explain why randomly choosing n in the range [1, 100] means
det(A) = 0 exactly half of the time.

(c) Suppose that A is a projection matrix, projecting from Rn to an (n−1)-dimensional
subspace of Rn. Explain why det(A) = 0.

(a) Multiplication by a number is the same as multiplying by the identity matrix with
k all along the diagonal. Multiplicativity of the determinant gives the rest:

det(kA) = det



k 0 · · · 0
0 k · · · 0
...

...
. . .

...
0 0 · · · k

A

 = det



k 0 · · · 0
0 k · · · 0
...

...
. . .

...
0 0 · · · k


 det(A) = kn det(A).

(b) Since A is skew-symmetric, AT = −A. By properties of the determinant, det(AT ) =
det(A), and det(−A) = (−1)n det(A) by part (a) above. So for a skew-symmetric
matrix we must have det(A) = (−1)n det(A). When n is even, this statement is just
det(A) = det(A), which doesn’t give any information. When n is odd, this statement
is det(A) = − det(A), which only is true for 0. Hence when n is odd, and exactly
half of the integers in the range [0, 100] are odd, det(A) = 0.

(c) Since A is a pojection matrix, by Question 13.1 (from Homework 7), we know that
A2 = A. By the multiplicative property of the determinant, det(A2) = det(A ·A) =
det(A) det(A) = det(A)2. Then

det(A)2 = det(A) =⇒

{
det(A) = 1 if det(A) ̸= 0

det(A) = 0 if det(A) = 0.

If det(A) = 1, then the n-dimensional volume enclosed by Av1, . . . , Av2n is the same
as the n-dimensional volume encolused by v1, . . . ,v2n , the corners of the unit n-cube.
The statement says we are projecting to an (n−1)-dimensional subspace, which has
no n-dimensional volume, so det(A) ̸= 1. Hence det(A) = 0.

This statement may alternatively be shown by explaining why dim(col(A)) = n− 1,
and so by the rank-nullity theorem dim(null(A)) = 1. That means one of the columns
of A is a linear combination of the other ones, oe equivalently, one of the rows of AT

is a linear combination of the other ones. Row reduction on AT will give zero row,
and since only the sign of the determinant is affected by row reduction, det(AT ) = 0,
and so det(A) = 0.
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21.5 (✠3.05) Let λ, µ be real numbers, and u = [ xy ] ,v = [ zw ] ∈ R2 be two vectors.

(a) Construct a 2× 2 matrix with eigenpairs (u, λ) and (v, µ).

(b) What assumptions did you make in the first part to reach a conclusion?

(a) We approach this from the other side. Let A = [ a b
c d ] be the answer to this question,

which will then satisfy

A [ xy ] = λ [ xy ] ⇐⇒
[
ax+by
cx+dy

]
=
[
λx
λy

]
and A [ zw ] = µ [ zw ] ⇐⇒

[
az+bw
cz+dw

]
= [ µzµw ] .

We could do back substitution, or we could write this as a matrix equation:
x y 0 0
0 0 x y
z w 0 0
0 0 z w



a
b
c
d

 =


λx
λy
µz
µw

 .

Row reducing the augmented matrix we find solutions to a, b, c, d in the last column:
x y 0 0 λx
0 0 x y λy
z w 0 0 µz
0 0 z w µw

 RREF−−−−−→


1 0 0 0 µyz−λxw

yz−xw

0 1 0 0 µxz−λxz
xw−yz

0 0 1 0 µyw−λyw
yz−xw

0 0 0 1 µxw−λyz
xw−yz

 .

Hence the matrix 
µyz − λxw

yz − xw

µxz − λxz

xw − yz
µyw − λyw

yz − xw

µxw − λyz

xw − yz


will have eigenvector [ xy ] with eigenvalue λ, and eigenvector [ zw ] with eigenvector µ.

(b) The assumptions made were that the denominators cannot be zero, so that we can
divide by them. That is, we assumed xw − yz ̸= 0, or that xw ̸= yz.
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21.6 (✠3.06, 3.07) Let A : R2 → R2 be the 2× 2 matrix for which A [ 12 ] = [ 24 ] and A [ 62 ] = [ 31 ].
This is described in the picture below.

R

R

(1, 2)

A(1, 2) = (2, 4)

(6, 2)

A(6, 2) = (3, 1)

(a) What is the eigensystem of A?

(b) Express [ 10 ] and [ 01 ] as linear combinations of the eigenvectors of A.

(c) Compute A [ 10 ] and A [ 01 ]. Use this to construct the matrix of A.

(d) Using eigenvalues, explain why A is invertible.

(a) The eigensystem of A is given by the statement, as two different (linearly indepen-
dent) eigenvectors with different eigenvalue are given. The eigensystem is

{
([ 12 ] , 2) ,

(
[ 62 ] ,

1
2

)}
.

(b) We construct [ 10 ] and [ 01 ] from the given vectors, by clearing the rows with zeros:[
1
2

]
−
[
6
2

]
=

[
−5
0

]
=⇒

[
1
0

]
=

1

5

[
6
2

]
− 1

5

[
1
2

]
,

[
6
2

]
− 6

[
1
2

]
=

[
0

−10

]
=⇒

[
0
1

]
=

6

10

[
1
2

]
− 1

10

[
6
2

]
.

(c) Using the results from part (b), we get what we are asked:

A

[
1
0

]
= A

(
1

5

[
6
2

]
− 1

5

[
1
2

])
=

1

5
A

[
6
2

]
− 1

5
A

[
1
2

]
=

1

5

[
3
1

]
− 1

5

[
2
4

]
=

1

5

[
1
−3

]
,

A

[
0
1

]
= A

(
6

10

[
1
2

]
− 1

10

[
6
2

])
=

6

10
A

[
1
2

]
− 1

10
A

[
6
2

]
=

6

10

[
2
4

]
− 1

10

[
3
1

]
=

1

10

[
9
23

]
.

To get A, we evaluate what it does on an arbitrary vector [ xy ]. First note that

A

[
x
y

]
= A

([
x
0

]
+

[
0
y

])
= A

(
x

[
1
0

]
+ y

[
0
1

])
= xA

[
1
0

]
+ yA

[
0
1

]
,

and now we apply A to these vectors to get

x
1

5

[
1
−3

]
+ y

1

10

[
9
23

]
=

1

10

(
x

[
2
−6

]
+ y

[
9
23

])
=

1

10

[
2 9
−6 23

] [
x
y

]
.

Hence A = 1
10
[ 2 9
−6 23 ] =

[
1/5 9/10
−3/5 23/10

]
.

(d) The product of the eigenvalues is the determinant of the matrix. Since 1 · 1
2
= 1

2
,

the determinant is 1
2
. By Proposition 20.4 in the lecture notes, A is invertible iff

det(A) ̸= 0. Hence A is invertible.
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