Homework 1 - Solutions

Introduction to Linear Algebra

Material from Lecture 1 Due Thursday, January 12, 2023

1.3 (\bigstar 1.01, 1.02) Let $\mathbf{v} \in \mathbf{R}^3$ be non-trivial, and let $\mathbf{w}, \mathbf{z} \in \mathbf{R}^3$ be non-trivial vectors both perpendicular to \mathbf{v} . Show that the halfway point between \mathbf{w} and \mathbf{z} is also perpendicular to \mathbf{v} .

Idea: Two vectors being perpendicular means their dot product is zero. Given that $\mathbf{v} \bullet \mathbf{w} = 0$ and $\mathbf{v} \bullet \mathbf{z} = 0$, we want to show that the dot product of \mathbf{v} with the halfway point between \mathbf{w} and \mathbf{z} is zero.

Solution: Since $\mathbf{w} = (w_1, w_2, w_3)$ and $\mathbf{z} = (z_1, z_2, z_3)$ are perpendicular to $\mathbf{v} = (v_1, v_2, v_3)$, we have that

$$0 = \mathbf{v} \bullet \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3,$$

$$0 = \mathbf{v} \bullet \mathbf{z} = v_1 z_2 + v_2 z_2 + v_3 z_3.$$

The halfway point between **w** and **z** is $\mathbf{h} = \frac{1}{2}(\mathbf{w} + \mathbf{z}) = \left(\frac{w_1+z_1}{2}, \frac{w_2+z_2}{2}, \frac{w_3+z_3}{2}\right)$, and for this vector

$$\mathbf{v} \bullet \mathbf{h} = (v_1, v_2, v_3) \bullet \left(\frac{w_1 + z_1}{2}, \frac{w_2 + z_2}{2}, \frac{w_3 + z_3}{2}\right)$$

= $v_1 \bullet \frac{w_1 + z_1}{2} + v_2 \bullet \frac{w_2 + z_2}{2} + v_3 \bullet \frac{w_3 + z_3}{2}$
= $\frac{1}{2} (v_1 w_1 + v_1 z_1 + v_2 w_2 + v_2 z_2 + v_3 w_3 + v_3 z_3)$
= $\frac{1}{2} ((v_1 w_1 + +v_2 w_2 + v_3 w_3) + (v_1 z_1 + v_2 z_2 + v_3 z_3))$
= $\frac{1}{2} (\mathbf{v} \bullet \mathbf{w} + \mathbf{v} \bullet \mathbf{z})$
= $\frac{1}{2} (\mathbf{0} + \mathbf{0})$
= $\mathbf{0}.$

That is, $\mathbf{v} \bullet \mathbf{h} = 0$, which means that \mathbf{v} and \mathbf{h} are perpendicular, as desired.

1.9 (¥1.01) Use the triangle inequality to show that vector \mathbf{v} is shorter than the sum of the lengths of the vectors $\mathbf{u}, \mathbf{w}, \mathbf{x}$. That is, show with the triangle inequality that $\|\mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\| + \|\mathbf{x}\|$.

Idea: Combine two triangle inequalities into one inequality.

In the second inequality, replace $\| \boldsymbol{u} + \boldsymbol{w} \|$ with the first inequality.

Solution: Note that another way to write \mathbf{v} is $\mathbf{u} + \mathbf{w} + \mathbf{x}$. By the triangle inequality on the vectors $(\mathbf{u} + \mathbf{w})$ and \mathbf{x} , we have

$$\|\mathbf{v}\| = \|(\mathbf{u} + \mathbf{w}) + \mathbf{x}\| \leq \|\mathbf{u} + \mathbf{w}\| + \|\mathbf{x}\|.$$

By the triangle inequality on the vectors $\mathbf{u} + \mathbf{w}$, we have

$$\|\mathbf{u} + \mathbf{w}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\|.$$

Putting these two lines together, we get that

$$\|\mathbf{v}\| \leq \|\mathbf{u} + \mathbf{w}\| + \|\mathbf{x}\| \leq \|\mathbf{u}\| + \|\mathbf{w}\| + \|\mathbf{x}\|,$$

as desired.