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Preface

These notes were created to accompany the course Introduction to Linear Algebra for the BITL pro-
gram at RTU Riga Business School. They have been used in the Fall 2021 and Spring 2022 semesters.
The text may contain mistakes - please send any you find to janis.lazovskis@rbs.lv.

This course broadly follows Gilbert Strang’s Introduction to Linear Algebra. You are encouraged
to read the Preface to the textbook, available at math.mit.edu/linearalgebra before the first lecture.

Throughout the text, there are highlighted Definitions in green, Inquiries in blue, and Algo-
rithms in red. The definitions are meant as key points that should be understood, if nothing else.
The inquiries are meant as guiding questions to connect and unify ideas. The algorithms are meant
as step-by-step instructions for complicated ideas.

At the end of each lecture there are exercises, with some solution provided at the end of the text.
Exercises which require the use of a computer are marked with the symbol ./ .
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Part I

Row reduction

Lecture 1: Vectors

Chapters 1.1 and 1.2 in Strang’s “Linear Algebra”

� Fact 1: The dot product of a vector with itself is the square of its length.

� Fact 2: A plane in R3 is defined by an equation in x, y, z.

� Skill 1: Add vectors, multiply them by scalars, take their dot products.

� Skill 2: Compute the angle between vectors.

The first week will be a review of material you have seen before, but the setting may be broader, with
different emphasis, and with different examples.

1.1 The algebra of vectors

Definition 1.1: Let n ∈ N. A vector in Rn is an ordered set of n elements.

The zero vector , or a trivial vector , denoted 0, is vector for which all elements are 0. Vectors that
are not the zero vector are called nontrivial . A vector is usually thought of as a column of numbers,
or a point in n-dimensional space, or the arrow to that point. All notions of a vector will be used
interchangeably.

Example 1.2. The vector v = [ 3
1 ] in R2 can also be thought of as the arrow to (3, 1) or simply the

point (3, 1) itself.

R

R

(3, 1)

v

Multiplying the vector by elements of R we get other vectors “going in the same direction” as v.

R

R

v

2v

2
3v

−1
2v

0v

Definition 1.3: The numbers v1, . . . , vn ∈ R in the vector v = (v1, . . . , vn) ∈ Rn are called the
components of the vector v. For each component vi, there is a unique function πi : Rn → R
called the projection, with πi(v) = vi.
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Example 1.4. Projection and multiplication by a number can be rearranged.

v

π1(v)

π2(v)

2v

π1(2v)

π2(2v)

−1
2v

π1(−1
2v)

π2(−1
2v)

R

R

That is, πi(cv) = c · πi(v) for all real numbers c and indices i. We will consider projections in more
detail in Lecture 10.

Vectors are combined together in linear combinations.

Definition 1.5: A linear combination of vectors is a vector v ∈ Rn when it is expressed as
a sum of other vectors w1,w2, . . . ,wk ∈ Rn, and scalars a1, a2, . . . , ak ∈ R multiplying them.
That is,

v = a1w1 + a2w2 + · · ·+ akwk.

When k = 1, the linear combination of one vector a1w1 is called a multiple of the vector w1.

Example 1.6. Every vector in the plane is a linear combination of (at most) two vectors, representing
the x-direction and y-direction.

R

R

(3, 1)

(3, 0)

(0, 1)
v

w

u

v = w + u =

[
3
0

]
+

[
0
1

]
=

[
3 + 0
0 + 1

]
=

[
3
1

]

R

R

(3, 1)

(2, 2)(−2, 2)

(1,−1)

v

r
s

−1
2s

v = r− 1
2s =

[
2
2

]
− 1

2

[
−2
2

]
=

[
2− 1

2 · (−2)
2− 1

2 · 2

]
=

[
2 + 1
2− 1

]
=

[
3
1

]

The entries of vectors, and the numbers multiplying them, do not need to be numbers - they simply
need to be elements of a field , denoted F in general. Unless otherwise noted, we will always use the
field R.

Example 1.7. Some common examples of fields are Q,R,C.

� The set N is not a field because although 1 ∈ N, there is no x ∈ N for which 1 + x = 1 (the
additive identity does not exist).

� The set Z is not a field because although 2 ∈ Z, there is no number x ∈ Z for which 2x = 1
(multiplicative inverses do not exist).

Definition 1.8: The dot product , or inner product of two vectors v = (v1, . . . , vn) and w =
(w1, . . . , wn) ∈ Rn is the real number v •w := v1w1 + · · ·+ vnwn ∈ R.
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In other words, the dot product is a function Rn ×Rn → R.

Inquiry 1.9: Consider the vectors v = (1, 3,−1) and w = (2, 2, 0) in R3.

� Compute the dot products v •w,v • (2w), and v • (3w). What will be v • (cw), for any
real number c?

� Compute the projections πi(v + w) for i = 1, 2, 3. Do there exist vectors x,y with πi(x +
y) 6= πi(x) + πi(y)?

� Give an alternative definition of the dot product using the projection maps πi.

1.2 The geometry of vectors

A key idea of vectors and their linear combinations that that they fill a part of the space in which
they reside. The “part” of the space is another space itself.

Definition 1.10: A plane in R3 is all the points (x, y, z) ∈ R3 that satisfy an equation ax +
by+ cz = d, for some a, b, c, d ∈ R. A line in R3 is all the points in R3 that are in two different
planes that intersect.

We are often interested in planes that go through the origin (0, 0, 0). They have d = 0 for their
defining equation.

Example 1.11. Linear combinations can be described geometrically. For example:

� Linear combinations of (1, 1) and (0, 0) form the line y = x in the plane R2

� Multiples of (1, 1, 1) form a line in R3

� Linear combinations of (1, 1, 1) and (1, 1, 0) form the plane x− y = 0 in R3

� Linear combinations of (1, 1, 1), (1, 1, 0), and (0, 1, 1) fill all of R3. For example, 7
9
−5

 = −7

1
1
1

+ 14

1
1
0

+ 2

0
1
1

 .
� Linear combinations of (1, 1, 1), (1, 1, 0), (0, 1, 1), and (1, 0, 1) still fill all of R3. For example, 7

9
−5

 = −7

1
1
1

+ 14

1
1
0

+ 2

0
1
1

+ 0

1
0
1

 = −5

1
1
1

+ 13

1
1
0

+

0
1
1

−
1

0
1

 .

R

R y = x

R
R

R

(1, 1, 1)

R
R

R

x− y = 0
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Inquiry 1.12: Consider the vector v = (1, 1, 1) and the plane P defined by x+ y + z = 3.

� It is clear that the plane defined by 2x+ 2y + 2z = 6 is the same as P . In general, given
two planes defined by a1x+ b1y+ c1z = d1 and a2x+ b2y+ c2z = d2, how can you tell just
from these equations that they are “different”?

� The point v lies on the plane P but 0 = (0, 0, 0) does not. Can you find two different
planes that contain both (1, 1, 1) and (0, 0, 0)?

Example 1.13. Consider the following vectors in R2.

R

R

u

t

v

w x

z

Even though we have drawn five different vectors, there are several relationships among them:

v = u +
1

4
z, z = 2w− u, z + v = w + x.

These are not the only ones - there are many more.

Inquiry 1.14: In Example 1.13, the relationships given were among three or four vectors.

� Can any three of the vectors given there be related by an equation? What about any two?
Don’t use something trivial like 0u = 0v + 0w!

� Explain why every equation with four vectors (such as z + v = w + x) is made up of two
“smaller” equations with three vectors.

� Suppose you are given three vectors in R2. How can you know if there is a relationship
between them?

Definition 1.15: The dot product of a vector v with itself is the square of the norm, or length,
or distance of the vector v, denoted ‖v‖. That is,

‖v‖2 = v • v = v2
1 + v2

2 + · · ·+ v2
n, or ‖v‖ :=

√
v • v.

We know the inside of the square root will be nonnegative, as we are summing squares. The norm
satisfies the following properties, for any v ∈ Rn:

� Non-negative: ‖v‖ > 0

� Positive definite: ‖v‖ = 0 if and only if v = 0

� Multiplicative: ‖cv‖ = |c|‖v‖ for any c ∈ R

These properties follow immediately from the properties of the real numbers and the definition of the
norm above.

Definition 1.16: A vector v ∈ Rn is a unit vector if ‖v‖ = 1.
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Proposition 1.17. For any u,v nonzero in Rn:

1. The vector v
‖v‖ is a unit vector.

2. The angle θ between u and v is computed by the relation u•v
‖u‖‖v‖ = cos(θ)

3. The Cauchy–Schwarz inequality holds: |u • v| 6 ‖u‖‖v‖

4. The triangle inequality holds: ‖u + v‖ 6 ‖u‖+ ‖v‖

Proof. To prove 1., we need to show that the norm of v
‖v‖ is 1. This follows aswwww v

‖v‖

wwww2

=
v

‖v‖ •
v

‖v‖ =
1

‖v‖2 (v • v) =
1

‖v‖2 ‖v‖
2 = 1.

To prove 2., we use the law of cosines on the triangle formed by the origin 0, u and v:

θ

R

R

u

v

‖u− v‖2 = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)
(u− v) • (u− v) = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)

u • u− 2u • v + v • v = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)
−2u • v

−2‖v‖‖u‖ = cos(θ)

To prove 3., use the fact that cos(θ) 6 1, then take the absolute value of the equation from part 2.
To prove 4., we can either draw a parallelogram and notice that the diagonal is u + v, and that it is
shorter than the sum of the sides, which are u and v. Or we can use algebra and part 3.

R

R

u

v

v

u
u + v

‖u + v‖2 = (u + v) • (u + v)
= u • u + 2u • v + v • v
6 ‖u‖2 + 2|u • v|+ ‖v‖2
6 ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2
= (‖u‖+ ‖v‖)2

As a result of part 2. of the proof above, if u is perpendicular to v, then θ = π/2, and so cos(θ) = 0.
That is, u is perpendicular to v if and only if u • v = 0.

Definition 1.18: Two non-zero vectors v, w are parallel if there exists c ∈ R6=0 with v = cw. If
c = 1, then the two vectors are colinear . In the opposite case, when the dot product v •w = 0,
the vectors are called perpendicular , or orthogonal .

Sometimes “parallel” is used when c > 0 and “anti-parallel” for c < 0. We will see orthogonality
later in Lecture 9.

1.3 Exercises

Exercise 1.1. Consider the four vectors v =

 0
6
−1

, w =

−3
−4
−5

, z =

0
0
1

, y =

−5
5
−4

. Find a, b, c ∈ R

with av + bw + cz = y.
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Exercise 1.2. Check that the dot product from Definition 1.1 is distributive over vector addition.
That is, show that v • (u + w) = v • u + v •w, for any u,v,w ∈ Rn.

Exercise 1.3. Let v = (1, 1, 1), w = (2,−2, 0) and z = (−3, 1, 2) be vectors in R3.

1. Using a linear equation in three variables, describe the plane of points R3 that are equidistant
from v and w.

2. Using two equations, describe the line of points in R3 that are equidistant from v, w, z. Hint:
A line is the intersection of two planes.

Exercise 1.4. Let S be the subset [−5, 5]× [−3, 3] ⊆ R2.

1. Identify all the points in S that correspond to linear combinations a [ 3
0 ] + b

[−1
2

]
, for a, b ∈ Z.

2. Which of the points from part (a) lie a distance of more than 2 but less than 3 from the origin?

Exercise 1.5. The proof of Proposition 1.17 used the “law of cosines”, which itself was not proved,
so we prove it here. Consider the triangle below:

b

ca

C A

B

D

1. Find the formulas for cos(C) and sin(C) in the triangle BCD.

2. Rewrite cos(C) from above so it has the number b = AC. Use the fact that CD = AC − b.

3. Express the Pythagorean theorem of triangle ABD.

4. Replace the sides from part (c) with the formular from parts (a) and (b). Simplify to get the
law of cosines.

Exercise 1.6. Let v ∈ R3 be non-trivial, and let w, z ∈ R3 be non-trivial vectors perpendicular to
v. Show that the halfway point between w and z is also perpendicular to v.

Exercise 1.7. This question is about orthogonality of vectors in Euclidean space Rn.

1. Find u,v,w ∈ R3 nonzero for which u is perpendicular to v, v is perpendicular to w, and u is
perpendicular to w.

2. Find u,v,w ∈ R3 nonzero for which u is perpendicular to v, v is perpendicular to w, and u is
colinear to w.

3. Bonus: Explain why it is not possible to have u,v,w,x ∈ R3 nonzero with every pair of vectors
orthogonal to each other.

Exercise 1.8. This question is about the Cauchy–Schwarz inequality, |v ·w| 6 ‖v‖ · ‖w‖.

1. Suppose that there exists c ∈ R\{0} with w = c ·v. Show that the Cauchy–Schwarz inerquality
holds with equality.

2. Suppose that the Cauchy–Schwarz inequality holds with equality. Show that there exists c ∈
R \ {0} with w = c · v.

10



Exercise 1.9. Use the triangle inequality to show that vector v is shorter than the sum of the lengths
of the vectors u,w,x. That is, show with the triangle inequality that ‖v‖ 6 ‖u‖+ ‖w‖+ ‖x‖.

x

v

u

w

11



Lecture 2: Matrices

Chapter 1.3 in Strang’s “Linear Algebra”

� Fact 1: Matrix multiplication is associative and distributive, but not commutative

� Fact 2: Not every matrix has an inverse.

� Skill 1: Perform common operations (addition, multiplication, transpose) with matrices and
vectors

� Skill 2: Multiply block matrices with each other

2.1 Types of matrices

Definition 2.1: Let m,n ∈ N. An m× n matrix over R is an ordered set M of m · n elements.

� The space of all m× n matrices over R is denotedMm×n(R) or simplyMm×n, when the
field is not relevant or clear from context.

� The size, or dimensions of a matrix, is the pair (m,n). By convention, the number of rows
comes first.

The elements of a matrix are called its entries. The entry in row i, column j is called the
ij-entry.

Comparing Definition 2.1 with Definition 1.1, we see that a vector in Rn is just a n× 1 (or 1× n)
matrix. Similarly to vectors, the elements of matrices may be over other fields, not necessarily R.
Two matrices of particular importance are the zero matrix 0 (all entries are zero) and the identity
matrix I (all entries are zero except the diagonal, which is all 1’s), given by

0 :=


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , I :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
The identity matrix is square, but the zero matrix does not have to be square. Sometimes to emphasize
the size of the matrix, we write 0n and In for matrices with n rows and n columns. For an m × n
matrix A, the entry in row i and column j is denoted Aij or (A)ij or A(i, j) or aij . That is,

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .
Sometimes instead of given specfic numbers for constructing a matrix, you are given other matrices.

Definition 2.2: A matrix M ∈ Mm×n is a block matrix if its entries are matrices instead of
numbers

Example 2.3. For example, if A ∈M2×3, B ∈M2×5, C ∈M3×3, and D ∈M3×5, then[
A B
C D

]
∈M5×8 and

[
C 0
I D

]
∈M6×8

12



are both block matrices. The identity I and zero 0 matrices are used without specifying their size as
blocks in a block matrix. As before, the matrix I will always be square, but 0 can be any shape.

Finally, there are three special types of square matrices:
∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗


upper triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


lower triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗


diagonal matrix

aij = 0 if i 6= j

The symbol “∗” represents any number, and they do not all have to be the same. The two on the left
are called triangular matrices. We will see several times over why these are special.

2.2 Operations on matrices

Definition 2.4: There are several common matrix operations.

� sum: the sum of A ∈Mm×n and B ∈Mm×n has ij-entry (A+B)ij = Aij +Bij

� product : the product of A ∈Mm×n and C ∈Mn×m has ij-entry (AB)ij =
∑n

k=1AikBkj

� Hadamard product : the Hadamard product, or entry-wise product, of A ∈ Mm×n and
B ∈Mm×n has ij-entry (A ◦B)ij = AijBij

Example 2.5. In the special case that a matrix A ∈ Mm×n is being mutiplied by a vector x ∈ Rn,
we will have that the result Ax will be a vector in Rm, with (Ax)i =

∑m
j=1Aijxj . For example,

[
2 3 −1
8 −2 0

] 3
1
−2

 =

[∑2
j=1A1jx1∑2
j=1A2jx2

]
=

[
2 · 3 + 3 · 1 + (−1) · (−2)
8 · 3 + (−2) · 1 + 0 · (−2)

]
=

[
11
22

]
.

Remark 2.6. Matrix addition has the following properties, for A,B,C are matrices of the appropriate
size, c ∈ R, and x a vector:

� addition is commutative: A+B = B +A

� addition is assocative: A+ (B + C) = (A+B) + C

� multiplication by a number is distributive over addition: c(A+B) = cA+ cB

� multiplication by a matrix is distributive over addition: C(A+B) = CA+CB and (A+B)C =
AC +BC

� multiplication by a matrix or vector is assocative: A(BC) = (AB)C and A(Bx) = (AB)x

Multiplication of matrices is not always commutative: AB 6= BA.

Example 2.7. The identity (also called the multiplicative identity) and zero (also called the additive
identity) matrices have special properties with addition and multiplication. For any A ∈Mm×n:

� the product of A with I is A itself: AI = IA = I

� the product of A with 0 is is 0: A0 = 0A = 0

13



� the sum of A and 0 is A itself: A+ 0 = 0 +A = A

In the second property, the zero matrix 0 does not have the same size every time it is used.

Remark 2.8. When multiplying block matrices, extra care has to be taken with non-commutativity.
For example, if A,B,C are matrices, then[

A I
B C

] [
I C
D D

]
=

[
A+D AD +D
B + CD BC + CD

]
.

The lower right entry cannot be simplified as C(B+D), because it is not always true that BC = CB.

Definition 2.9: Let A be an m×n matrix. The transpose of A is written AT , and has ij-entry
(AT )ij = Aji.

The transpose plays well with matrix operations:

(A+B)T = AT +BT ,

(Ax)T = xTAT ,

(AB)T = BTAT .

These results follow from how the sum and product were defined in Definition 2.4.

Definition 2.10: Let A be an n × n matrix. The inverse of A is a matrix B for which AB =
BA = I.

Note that the inverse of a matrix A does not always exist. When it does, it is usually denoted
A−1. As a result of the first property from Example 2.7, the inverse of the identity matrix is itself:
II = I, so I−1 = I.

Example 2.11. If A ∈ Mn×n is a diagonal matrix with nonzero entries on its diagonal, then its
inverse is the same, but with reciprocals on the diagonal:

A =


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

 , A−1 =


1
a11

0 0 · · · 0

0 1
a22

0 · · · 0

0 0 1
a33

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ann

 .

Inquiry 2.12: Consider the diagonal matrix and its inverse from Example 2.11.

� If A =
[

3 d
0 −2

]
and d = 0, what is A−1? What if d 6= 0?

� Let B =
[

3 0 0
0 −5 d
0 0 −1

]
, with d 6= 0. Find B−1. Hint: (B−1)ij = 0 iff Bij = 0.

� Let C =

[
3 0 0 0
0 −5 d 0
0 0 −1 0
0 0 0 3

]
with d 6= 0. Find C−1.

� Generalize the above example with Cij = d 6= 0 instead of C23, with the condition that
i < j (that is, Cij is above the diagonal). What if Cij is below the diagonal?

If A ∈ Mm×n and m 6= n, then there may be a matrix B ∈ Mn×m for which AB = I, but not
necessarily BA = I, in which case B is called a right inverse of A. We will later see algorithms that
compute the inverse, for now we just look at some examples.

14



Example 2.13. The inverse of the difference matrix is a sum matrix . That is, for

A =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , B =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ,
we have AB = I. Both of these matrices are triangular, or more specifically, lower triangular. These
matrices get their names from what they do to a vector x = (x1, x2, x3, x4):

Ax =


x1

x2 − x1

x3 − x2

x4 − x3

 , Bx =


x1

x2 + x1

x3 + x2 + x1

x4 + x3 + x2 + x1

 .

Definition 2.14: Let A ∈ Mm×n be a matrix, and x ∈ Rn, b ∈ Rm be vectors. The equation
Ax = b is a matrix equation, and consists of m individual equations:

Ax = b ⇐⇒

a11x1 + a12x2 + · · · a1nxn = b1
a21x1 + a22x2 + · · · a2nxn = b2

...
am1x1 + am2x2 + · · · amnxn = bm.

Finding the inverse of a matrix A is related to finding the solution x to a matrix equation Ax = b.
Indeed, if A has an inverse, then we immediately see that

A−1(Ax) = A−1b ⇐⇒ A−1Ax = A−1b ⇐⇒ Ix = A−1b ⇐⇒ x = A−1b.

Inquiry 2.15: Let A be a matrix.

� Suppose you know that A [ 2
4 ] = [ 2

0 ] and A
[−1
−4

]
= [ 0

2 ]. What is the inverse matrix A−1?
Hint: If Ax = b, then putting x as the first column of a 2 × 2 matrix [ x ∗ ], we get
A [ x ∗ ] = [ b ∗ ].

� In general for A ∈ Mm×n, suppose that for any vector b ∈ Rm, you are able to find
x ∈ Rn, which depends on b, such that Ax = b. Explain which vectors b you would
choose to construct the inverse of the matrix A.

� Is the collection of vectors b from the previous part unique? Is there a minimum number
of vectors? Give two different collections of vectors b that would work.

Example 2.16. The cyclic matrix C does not have an inverse. That is, there is no vector x for which

Cx =

 1 0 −1
−1 1 0
0 −1 1

x1

x2

x3

 =

x1 − x3

x2 − x1

x3 − x2

 =

a1

a2

a3

 = a,

for any chosen a. It is immediate that a = 0 has a solution, when x1 = x2 = x3. But it is also
immediate that a = (1, 2, 3) is not a solution, because adding the three equations

x1 − x3 = 1, x2 − x1 = 2, x3 − x2 = 3,

gives 0 on the left side and 6 on the left. In this situation, we say:

� when a1 + a2 + a3 = 0, there is a solution to Cx = a, or equivalently,
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� all linear combinations x1c1 + x2c2 + x3c3 lie on the plane given by a1 + a2 + a3 = 0,

where C = [c1 c2 c3]. If we consider a1, a2, a3 as changing along the x, y, z axes,respectively, we see
the collection of linear combinations x1c1 + x2c2 + x3c3 is indeed a plane:

a1

a2

a3

(1, 0,−1)

2.3 Exercises

Exercise 2.1. A non-square matrix A may have (non-square) matrices B,C for which AB = I and
CA = I, in which case we call B a right inverse and C a left inverse for A. Let A =

[
1 0 −2
3 −1 1

]
.

1. Construct a right inverse for A, that is, a 3 × 2 matrix B for which AB = I. Make it so that
BA 6= I.

2. Try to construct a left inverse for A, that is, a 3× 2 matrix C for which CA = I. Is it possible?

Exercise 2.2. Let A,B,C,D be n×n matrices that are invertible. Find the inverses of the following
block matrices.

1.

[
I 0
0 D

]
2.

[
I B
0 D

]
3.

[
A 0
I D

]
Exercise 2.3. Recall the definition of the inverse of a matrix A, which is a matrix B for which AB =
BA = I. Show that B is unique. That is, show that if there exists a matrix C with AC = CA = I,
then C = B.

Exercise 2.4. This question is about triangular matrices.

1. Show that the product of two lower triangular matrices is lower triangular.

2. Show that the product of two upper triangular matrices is upper triangular. The concept of a
transpose, introduced in the next lecture, will make this computation easier, given your work
from part (a).

3. What form will the product of a lower triangular with an upper triangular matrix have? Can
you come up with an example where the result is a diagonal matrix, but the original matrices
are not diagonal?
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Lecture 3: Elimination

Chapters 2.1-2.4 in Strang’s “Linear Algebra”

� Fact 1: Row operations are matrix multiplications.

� Fact 2: Solving a matrix equation can be understood in terms of the rows or the columns.

� Skill 1: Draw the row and column pictures for 2× 2 matrix equations.

� Skill 2: Identify pivots (or their non-existence) and multipliers in matrix equations.

� Skill 3: Construct the inverse of a matrix.

This lecture reviews how to solve linear systems, and goes into more detail. Recall the three elementary
row operations, which will be here presented as matrix multiplication:

multiply a row by a nonzero number:

swap two rows:

add a multiple of one row to another row:

 1 0 0
0 2 0
0 0 1

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 1 7 3 4
0 4 −2 6
−1 2 5 2


 1 0 0

0 0 1
0 1 0

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 1 7 3 4
−1 2 5 2
0 2 −1 3


 1 0 1

0 1 0
0 0 1

 1 7 3 4
0 2 −1 3
−1 2 5 2

 =

 0 9 8 6
0 4 −2 6
−1 2 5 2


The reason for interpreting these as matrix operations is to formalize the algorithm that row reduces
a matrix and to build the inverse of a matrix.

3.1 The row and column pictures

The main object of study for this lecture is the matrix equation Ax = b, where A ∈ Mm×n, b ∈ Rn

and x is a column of n variables x1, . . . , xn. You should understand this equation in two ways:

� by the columns of A: a linear combination of the n columns of A produces the vector b

� by the rows of A: the m equations from the m rows of A describe m planes meeting at the point
x ∈ Rn

Note that the word plane comes from a flat surface living in space (that is, R3)1.

Example 3.1. Let A =
[

3 2
1 −2

]
= [ a1 a2 ] and b = [ 11

1 ], with x = [ xy ]. As columns of A, we have a
linear combination

xa1 + ya2 = b, or x

[
3
1

]
+ y

[
2
−2

]
=

[
11
1

]
.

The solution to the matrix equation is the pair of coefficients x, y that satisfy the matrix equation.
That is, we want to find how far along a1 we need to go, so that going a certain distance along a2 will

1It is more precise to say hyperplane to describe all the points in Rn satisfying a single equation. See Definition 3.4.
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lead us to b. We find a solution [ xy ] = [ 3
1 ]:

R

R

a1

a2

b

3a1

1a2

As rows of A, we have two equations 3x + 2y = 11 and x − 2y = 1, which we may interpret as lines
in R2. This looks like the following picture (note that these are not the same lines as in the previous
picture):

R

R

x− 2y = 1

3x+ 2y = 11

The two lines intersect at (x, y) = (3, 1), which is the solution x that solves the given matrix equation
Ax = b. Both the column and row pictures give the same answer! This is good.

Remark 3.2. For the previous example, in the row picture:

� If the two lines were parallel and not colinear, there would be no solutions, because the lines
would not intersect. For example, if instead of 3x+ 2y = 11 we had x− 2y = −1.

� If the lines were parallel and colinear, there would be infinitely many solutions, because the lines
would intersect at all points. For example, if instead of 3x+ 2y = 11 we had 2x− 4y = 2.

Inquiry 3.3: Follow the set up for drawing Ax = b from Example 3.1 for this inquiry.

� Draw the row and column pictures for A = I ∈M2×2 and b =
[

3
−4

]
. What is the solution

x?

� Draw the row and column pictures for A =
[−1 1

2 −4

]
and b = [ 0

0 ]. What is the solution x?

� What if A =
[−1 1

2 −2

]
for the previous point? Is there more than one solution?

� Interpret Ax = 0 having more than one solution, as a relationship between the columns
(or rows) of A.

We now set up a specific algorithm (this will be the Gaussian elimination algorithm you may have
seen earlier) for finding the solution vector x to a matrix equation Ax = b.

18



Definition 3.4: Let Ax = b be a matrix equation with A ∈ Mm×n and b ∈ Rm. The
augmented matrix associated to this equation is the m× (n+ 1) matrix

[
A b

]
=


a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
...

...
...

. . .
...

...
am1 am2 am3 · · · amn bm

 .
Sometimes the line separating the last two columns is not drawn. Each line i = 1, . . . ,m of the
augmented matrix represents an equation

ai1x1 + ai2x2 + ai3x3 + · · ·+ ainxn = bi

in n variables x1, . . . , xn and defines a hyperplane in Rn.

As you saw in Inquiry 3.3, having A = I in your matrix equation makes it very easy to solve. That
will be our goal now - to modify the matrix equation so that we get I instead of A. Firest, we need
to make sure that this does not change the solution to the equation.

Example 3.5. Consider the augmented matrix
[

3 2 11
1 −2 1

]
from Example 3.1. To get the first two

columsn to be [ 1 0
0 1 ], we first will make the (2, 1)-entry equal to zero. In the row picture, this means

we are making the second equation flat (it will not change as x changes). The intersection of the two
lines stays the same:

R

R

x− 2y = 1

3x+ 2y = 11

R

R

y = 1

3x+ 2y = 11

Here we added −1
3 of the first line to the second line:[

1 0
−1
3 1

]
·
[
3 2 11
1 −2 1

]
=

[
3 2 11
0 −2− 2

3 1− 11
3

]
=

[
3 2 11
0 −8

3
−8
3

]
,

so technically the second equation is −8
3y = −8

3 . Multiplying the second row by −3
8 gives the equation

as we would like it to be: [
1 0
0 −3

8

]
·
[
3 2 11
0 −8

3
−8
3

]
=

[
3 2 11
0 1 1

]
.

Adding −2 of the second line to the first line makes the (2, 1)-entry 0, and makes the two lines
perpendicular:

R

R

y = 1

x = 3
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The matrix multiplication corresponding to this will give us 3x = 9, so we simplify as well:

−2 times second row plus first row:

[
1 −2
0 1

]
·
[
3 2 11
0 1 1

]
=

[
3 0 9
0 1 1

]
1

3
times first row:

[
1
3 0
0 1

]
·
[
3 0 9
0 1 1

]
=

[
1 0 3
0 1 1

]
We put all the matrices together from tall the steps:[

1
3 0
0 1

] [
1 −2
0 1

] [
1 0
0 −3

8

] [
1 0
−1

3 1

]
︸ ︷︷ ︸

row operations

[
3 2 11
1 −2 1

]
︸ ︷︷ ︸

[A | b]

=

[
1 0 3
0 1 1

]
︸ ︷︷ ︸

[I | c]

.

Inquiry 3.6: This inquiry is about extending Example 3.5.

� Multiply together the row operation matrices to get a matrix B. Compute BA and AB.
What do you get? What can you conclude about B?

� Repeat the steps and draw the pictures for the example, but use the column perspective
instead of the row perspective.

3.2 Gaussian and Gauss–Jordan elimination

We now formalize Example 3.5 into a proper algorithm that transforms the augmented matrix [A | b]
into the augmented matrix [I | c], or at least as close as possible (it may be that some elements on
the diagonal of I may be zero instead of 1):

Algorithm 1 (The Gaussian algorithm):

1. Look at the (1, 1)-entry A11.

(a) If A11 6= 0:

i. Make all entries below A11 zero: add −A21
A11

of row 1 to row 2.

ii. Add −A31
A11

of row 1 to row 3, and keep going until everything below A11 is zero.

(b) If A11 = 0:

i. Swap row 1 and row 2 so that the new (1, 1)-entry is not zero, and start from the
beginning.

ii. If the first entry of row 2 is zero, swap row 1 with row 3 (or keep going down
until the first element of some row is nonzero).

2. Look at the (2, 2)-entry A22.

(a) Repeat steps (a) and (b) above with A22 instead, to get zeros below A22.

3. Repeating this for every, the matrix A should have become upper triangular. That is, the
(i, j)-entry should be 0 for i > j.

4. Multiply each row by the reciprocal of its first nonzero term.
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Definition 3.7: The above algorithm is Gaussian elimination. For each row i of the augmented
matrix [A | b], before any operations are done with row i,

� if Aii 6= 0, then Aii is the ith pivot ; if Aii = 0, then the ith pivot does not exist,

� if Aii 6= 0, for each k > i, the ratio −Aki
Aii

is the ki-multiplier `ki.

Each step of Gaussian elimination is performed by an elementary matrix :
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



swaps rows 1 and 3

permutation matrix


1 0 0 0
0 1 0 0
−2

5 0 1 0
0 0 0 1



subtracts `31 = 2
5 times

row 1 from row 3

elimination matrix


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10



multiplies row 4 by 1
10

diagonal matrix

Permutation matrices that swap rows k and i are denoted Pki. Elementary matrices that subtract
`ki times row i from row k are denoted Eki.

In general, any n × n matrix that is just I with the rows rearranged is a permuation matrix .
The steps of Gaussian elimination performed in the revrse order, starting from the bottom left and
clearing zeros above each pivot is called Gauss–Jordan elimination. Together the two are simply called
elimination.

Example 3.8. Let Ax = b be a matrix equation with A =
[

0 6 −2
4 8 −4
−2 2 7

]
and b =

[
2
8
12

]
. For the

associated augmented matrix, the first pivot seems to be zero, but we cannot have that, so we swap
the second row with the first row. Elementary matrices are given on the right. 0 6 −2 2

4 8 −4 8
−2 2 7 12

 0 can not be a pivot

 4 8 −4 8
0 6 −2 2
−2 2 7 12

 swap first two rows, 4 is first pivot previous matrix multiplied by

0 1 0
1 0 0
0 0 1


4 8 −4 8

0 6 −2 2
0 6 5 16

 −1

2
is multiplier `31, 6 is second pivot previous matrix multiplied by

1 0 0
0 1 0
1
2 0 1


4 8 −4 8

0 6 −2 2
0 0 7 14

 1 is multiplier `32, 7 is third pivot previous matrix multiplied by

1 0 0
0 1 0
0 −1 1



This is now a system Ux = c, for U =
[

4 8 −4
0 6 −2
0 0 7

]
and c =

[
8
2
14

]
. The letter “U” is used for “upper

triangular”. We then have three equations:

4x+ 8y − 4z = 8,

6y − 2z = 2,

7z = 14.

To find the vector x which solves this system, we can continue with Gauss–Jordan elimination, or we
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can use back substitution from the bottom row up to find z = 2, y = 1, x = 2.

Remark 3.9. As observed in Inquiry 3.6, the elementary matrices together form the inverse. Below
are some common inverses.

� The inverse of a 2× 2 matrix exists if and only if ad− bc 6= 0:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
� The inverse of a diagonal matrix exists iff the entries on the diagonal are nonzero:

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn


−1

=


1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
0 0 1/d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/dn


� Similarly, the inverse of an upper triangular matrix exists iff the entries on the diagonal are

nonzero. If some are zero, it immediately means we are missing some pivots (as everything
below the diagonal is zero).

Taking the inverse of a product of matrices reverses their order: (AB)−1 = B−1A−1. This follows as

AB(B−1A−1) = A(BB−1)A−1 (commutativity of multiplication)

= AIA−1 (definition of inverse)

= (AI)A−1 (commutativity of multiplication)

= AA−1 (property of identity matrix)

= I (definition of inverse)

Example 3.10. Let A =
[

4 8 −4
0 6 −2
−2 2 1

]
, for which we want to find the inverse. To do this, we work with

the block matrix [A I], and on it we do not only Gaussian elimination on the matrix, as in Example 3.8,
but also Gauss–Jordan elimination, which clears the matrix above the pivots. Elementary matrices
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are given on the left. 4 8 −4 1 0 0
0 6 −2 0 1 0
−2 2 1 0 0 1

 4 is first pivot

4 8 −4 1 0 0
0 6 −2 0 1 0
0 6 −1 1/2 0 1

 −1

2
is multiplier `31, 6 is second pivot

 1 0 0
0 1 0

1/2 0 1


4 8 −4 1 0 0

0 6 −2 0 1 0
0 0 1 1/2 −1 1

 1 is multiplier `32, 1 is third pivot

1 0 0
0 1 0
0 −1 1


4 8 −4 1 0 0

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 0
0 1 2
0 0 1


4 8 0 3 −4 4

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 4
0 1 0
0 0 1


4 0 0 13/3 −8/3 20/3

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above second pivot

1 −8/6 0
0 1 0
0 0 1


1 0 0 13/12 −2/3 5/3

0 1 0 −1/6 −1/6 −1/3
0 0 1 1/2 −1 1

 multiply by the pivot reciprocals

1/4 0 0
0 1/6 0
0 0 1


We have now reached the matrix [I A−1]. To see the submatrix on the right is really the inverse, first
multiply the elementary matrices together to get E. Above we showed that

E[A I] = [I B]

for some matrix B (which we are trying to show is the inverse of A). Block multiplication tells us that

E[A I] = [EA EI] = [EA E] =⇒ EA = I and E = B.

It follows that BA = I, which means that B is the inverse of A.

Remark 3.11. We now have a new, equivalent definition of A ∈ Mn×n not having an inverse: If
elimination of [A I] results in [J B], where J is almost I, but has some zeros on the diagonal, then A
has no inverse.

Inquiry 3.12: This inquiry is about elimination using block matrices. Let A,B ∈ M2×2 have
inverses.

� Let C =
[
A 0
0 I2

]
be a block matrix. Find the inverse 4× 4 matrix C−1.

� Let D =
[
A 0
0 B

]
be a block matrix. Find the inverse matrix D−1.

� Will
[
A B
0 B

]
have an inverse? How do you know? What about

[
A I2
I2 B

]
?

3.3 Exercises

Exercise 3.1. Consider the matrix equation Ax = b, given by
[

3 −1 2
6 −2 −1
1 −1 −1

] [
x
y
z

]
=
[

5
−2
−3

]
.

1. Do Gaussian elimination on the augmented matrix [A | b] to clear values below the diagonal.
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2. Do Gauss–Jordan elimination on the result from part 1. to clear values above the diagonal.
What is the solution to the equation?

3. Multiply the elementary matrices you created in parts 1. and 2. together to find the inverse
matrix A−1. Note that you need to multiply by diagonal matrices to make the diagonal entries
be 1.

Exercise 3.2. Construct a 3× 3 matrix A which has:

1. pivots 1,2,3

2. pivots 1,2,3 and multipliers `32 = 4, `31 = 5 and `21 = 6

3. only two pivots 1 and 2, but no zeros in any positions

Exercise 3.3. Let A be a 3× 3 matrix.

1. Find the pivots when A has each of the following forms. The numbers a, . . . , i are all nonzero.a b c
d e f
g h i


all pivots

0 b c
0 e f
0 h i


no first pivot

a b c
d bd/a f
d bd/a i


no second pivot

0 b c
0 e ce/b
0 e ce/b


no first or third pivot

2../ Write a function that takes in such a matrix and returns a list of the three pivots. You may
assume that all of the pivots exist.

3../ Run your function on 1000 random 3× 3 matrices with entries in the range [−1, 1]. What is the
range and the average of all the pivots? How often do you get a zero?

In Python, you may use consider A as a list of lists [[a,b,c],[d,e,f],[g,h,i]].

Exercise 3.4. This question is about the three permutation matrix examples given in Definition ??.

1. Is the product of all three a permutation matrix?

2. Are the inverses of each still permutation matrices?

Exercise 3.5. Suppose that Ai ∈ Mn×n has an inverse A−1
i , for i = 1, . . . , k. What is the inverse of

the k-fold product A1A2 · · ·Ak?

Exercise 3.6. Using Gauss–Jordan elimination, find the inverse matrix of A =
[

0 2 −1
1 0 −4
2 2 2

]
.
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Lecture 4: Factorization

Chapters 2.5-2.7 in Strang’s “Linear Algebra”

� Fact 1: Every matrix A can be decomposed as A = LU into lower and upper triangular factors.

� Fact 2: Inverses of elementary matrices are elementary matrices.

� Skill 1: Decompose A and PA as LU and LDU .

� Skill 2: Identify when Ax = b has no solutions or infinitely many solutions.

This lecture is about factorization, or decomposition, for a square matrix A ∈ Mn×n. Similarly to
factoring an integer as the product of two factors (such as 12 = 3 · 4), we will factor A as the product
of two triangular matrices. We will do this in four ways:

A = LU, A = LDU, PA = LU, PA = LDU.

The matrix L is lower triangular, U is upper triangular, D is diagonal, and P is a permutation matrix.
The first two ways are for matrices that do not require row swaps when doing elimination, otherwise
row swaps are caputred in the permutation matrix P .

4.1 Lower and upper factors

To get the lower factor L and the upper factor U , we apply the Gaussian and Gauss–Jordan algorithms
from Section 3.2. First we make an observation about the inverse of elementary matrices.

Remark 4.1. The elementary matrix Eki from Gaussian elimination representing the row operation
that substracts `ki times row i from row k is just the identity with −`ki in the (ki)-position. Its inverse
is similarly the identity, but with `ki in the same (ki)-position:

E31 =


1 0 0 0
0 1 0 0
−2

5 0 1 0
0 0 0 1

 , E−1
31 =


1 0 0 0
0 1 0 0
2
5 0 1 0
0 0 0 1

 , E31E
−1
31 = E−1

31 E31 = I.

The same works if −`ki is above the diagonal for Gauss–Jordan elimination (that is, k < i).

Inquiry 4.2: Consider Remark 4.1 about the inverses of elementary matrices. Let A ∈M4×4.

� Let E32 be an elementary matrix with the multiplier −`32 = 2 in the (3, 2)-position. What
row reduction (elimination) step does the multiplication E32A represent?

� Give an example of A so that (E32A)32 = 0.

� Does the inverse matrix E−1
32 represent a row operation? If yes, which one?

Example 4.3. Let A =
[

3 0 −1
0 2 0
0 4 1

]
, which is eliminated as: 1 0 0

0 1 0
0 −2 1


︸ ︷︷ ︸

E32

3 0 −1
0 2 0
0 4 1


︸ ︷︷ ︸

A

=

3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

A1︸ ︷︷ ︸
Gaussian elimination

,

 1 0 1
0 1 0
0 0 1


︸ ︷︷ ︸

E13

3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

A1

=

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

A2

.

︸ ︷︷ ︸
Gauss–Jordan elimination
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This is the end of elimination, because we have a diagonal matrix. The first multiplier was `32 = 2 and
the second multiplier was `13 = −1. The decomposition comes from putting these two steps together
and taking inverses:

E13E32A = A2

E32A = E−1
13 A2

A = E−1
32 E

−1
13 A2

3 0 −1
0 2 0
0 4 1


︸ ︷︷ ︸

A

=

1 0 0
0 1 0
0 2 1


︸ ︷︷ ︸

E−1
32︸ ︷︷ ︸
L

1 0 −1
0 1 0
0 0 1


︸ ︷︷ ︸

E−1
13

3 0 0
0 2 0
0 0 1


︸ ︷︷ ︸

A2︸ ︷︷ ︸
U

=

 1 0 0
0 1 0
0 2 1


︸ ︷︷ ︸

L

 3 0 −1
0 2 0
0 0 1


︸ ︷︷ ︸

U

Remark 4.4. We make several observations about the A = LU decomposition:

� The lower triangular matrix L represents the steps of Gaussian elimination, and has 1’s on the
diagonal.

� The upper triangular matrix U represents the steps of Gauss–Jordan elimination, and has the
pivots of A on the diagonal.

Inquiry 4.5: This is about extending A = LU into A = LDU .

� In the A = LU factorization from Example 4.3, the upper triangular matrix U has numbers
that are not 1’s on the diagonal. Do the row reduction steps on U that make all ements
on the diagonal be 1. What are the corresponding elementary matrices?

� Express U from the previous point as U = DU ′, where D is diagonal and U ′ is upper
triangular with 1’s on the diagonal.

� Generalize the above point: If U =
[ u11 u12 u13

0 u22 u23
0 0 u33

]
with nonzero diagonal elements, decom-

pose it as U = DU ′.

Remark 4.6. Elimination is the same for a matrix A or an augmented matrix [A b], but the lack of
pivots for the augmented matrix indicates one of two situations: if elimination produces a row with

� all zeros except the last entry: then there are no solutions, because it implies an equation such
as 0x+ 0y + 0z = 1, or 0 = 1.

� all zeros: then there are inifinitely many solutions, because we then only have n − 1 equations
but still n unknowns, so one of the unknowns can be freely chosen.

The implication is that if we applied the elimination algorithm to just the matrix A, then we would
get a row of zeros in both cases.

Definition 4.7: A matrix A ∈Mm×n is singular if elimination returns at least one row of zeros.
If there are no zero rows after elimination, then A is non-singular .

Example 4.8. Consider the matrix equation from Ax = b from Example 3.1, but change it slightly:[
3 2
−3 −2

]
[ xy ] = [ 11

1 ]. For elimination we subtract −1 times the first row from the second row:[
1 0
1 1

] [
3 2 11
−3 −2 1

]
=

[
3 2 11
0 0 12

]
.

In the row picture, we are looking for the intersection of 3x + 2y = 11 and 0x + 0y = 12, or 0 = 12.
Since 0 = 12 is a contradiction, no solution exists. Alternatively, if we changed both A and b to the
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equation
[

3 2
−3 −2

]
[ xy ] =

[
11
−11

]
, then the same step of Guassian elimination would give a full row of

zeros: [
1 0
1 1

] [
3 2 11
−3 −2 −11

]
=

[
3 2 11
0 0 0

]
.

The row picture asks for the intersection of 3x+ 2y = 11 and 0x+ 0y = 0. We quickly see that every

vector x =
[

x
1
2

(11−3x)

]
, for any x ∈ R, will satisfy the equation Ax = b. Hence we have infintely many

solutions.

Inquiry 4.9: Consider the matrix equation Ax = b, for A =
[

3 2
1 −2

]
and b = [ 11

1 ].

� Decompose A into its lower and upper factors LU .

� Do the same as above, but attempt to decompose the augmented matrix [A b]. Can you
find “upper” and “lower” factors as well?

� Interpret the lower and upper factors by the row picture, as two pairs of lines in R2. Is
there a relationship betwen the original row picture for the complete equation Ax = b?
This was discussed in Example 3.1.

The elimination algorithm from Section 3.2 was made more complicated by the fact that not all
pivots may exist, in which case we need to swap rows so that we do not divide by zero. We now
consider this type of elimination.

4.2 Row swaps and permutation matrices

The algorithm in Section 3.2 indicated to swap rows when there are zeros in the pivot positions when
we reach them. However, to get tp the desired decomposition PA = LU , we need to put all the
matrices representing row swaps together - so every time we get to a pivot that doesn’t exist (is zero),
we swap rows for the original matrix, and start from the beginning.

Example 4.10. Let A =
[

3 2 −1
6 4 0
0 4 1

]
, for which Gaussian elimination begins as: 1 0 0

−2 1 0
0 0 1


︸ ︷︷ ︸

E21

3 2 −1
6 4 0
0 4 1


︸ ︷︷ ︸

A

=

 3 2 −1
0 0 2
0 4 1


︸ ︷︷ ︸

A1

,

 1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P23

3 2 −1
0 0 2
0 4 1


︸ ︷︷ ︸

A1

=

 3 2 −1
0 4 1
0 0 2


︸ ︷︷ ︸

A2

.

The numbers to be used for pivots are highlighted - note the problem in A1, which we resolve by a
row swap. Continuing elimination from here, we would end up with something like EPE′A = An,
where E and E′ are elementary matrices and P is the row swap matrix. Rearranging for A is not as
nice in this case, so we apply the row swap P23 at the very beginning, 1 0 0

0 0 1
0 1 0


︸ ︷︷ ︸

P23

3 2 −1
6 4 0
0 4 1


︸ ︷︷ ︸

A

=

3 2 −1
0 4 1
6 4 0


︸ ︷︷ ︸

PA

,

and now apply the usual elimination steps.
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Inquiry 4.11: Note that at the end of Gaussian elimination, you have a diagonal matrix on
the left side, and you know inverses of diagonal matrices. This inquiry explores the elimination
steps from Example 4.10.

� Continue the elimination algorithm from A2 until you get a diagonal matrix. Multiply its
inverse to get an inverse for A (this will be the product of the elementary matrices).

� Begin with PA instead of A, and apply the elimination algorithm to it, until you get a
diagonal matrix. As before, multiply the diagonal by its inverse to get an inverse for A.

� Compare the two inverse you got for A - are they the same? Are the elementary matrices
involved in construction of the inverse the same? What are the similarities?

Remark 4.12. If swapping rows does not give you enough pivots, it may be that you will get a row of
zeros, as described in Example 4.8. In this case elimination will still give you the LU -decomposition,
but the difference will be that you have to stop elimination before you get a diagonal matrix. 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

E21

 3 2 −1
6 4 0
−3 −2 2


︸ ︷︷ ︸

A

=

 3 2 −1
0 0 2
−3 −2 2


︸ ︷︷ ︸

A1

,

 1 0 0
0 1 0
1 0 1


︸ ︷︷ ︸

E31

 3 2 −1
0 0 2
−3 −2 2


︸ ︷︷ ︸

A1

=

 3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

A2

,

and swapping the second and third rows gives us
[

3 2 −1
0 0 3
0 0 2

]
, which still does not have enough piv-

ots. However, multiplying by the inverses of the elementary matrices we applied still gives an LU -
decomposition: 3 2 −1

6 4 0
−3 −2 2


︸ ︷︷ ︸

A

=

 1 0 0
0 1 0
−1 0 1


︸ ︷︷ ︸

E−1
31

1 0 0
2 1 0
0 0 1


︸ ︷︷ ︸

E−1
21︸ ︷︷ ︸

L

3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

A2︸ ︷︷ ︸
U

=

 1 0 0
2 1 0
−1 0 1


︸ ︷︷ ︸

L

 3 2 −1
0 0 2
0 0 3


︸ ︷︷ ︸

U

.

You now have all the tools you need to decompose the matrices A and PA as LU or LDU . We
finish off the lecture with some useful types of matrices.

Definition 4.13: Let A be an n×m matrix.

� The matrix A is symmetric if m = n and Aij = Aji for all i, j.

� The matrix A is skew-symmetric if m = n and Aij = −Aji for all i, j.

Observe that another way to express that A is symmetric is to say that A = AT , and another way to
express that A is skew-symmetric is to say A = −AT . Note that if A ∈ Mn×n is symmetric, then its
decomposition into A = LDU has L = UT .

Remark 4.14. The transpose can be thought of as a function Mm×n → Mn×m. As noted in
Definition 2.9, if plays nicely with the addition, multiplication, and inverse functions. Moreover, the
dot product of two vectors from Definition 1.1 can be thought of as matrix multiplication, if we use
the transpose:

v •w = vT ·w

∈ Rn ∈ Rn ∈M1×n ∈Mn×1

(1)
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This is why we need to be careful with the multiplication symbol ·, always being aware of the sizes of
objects we are working with. That is because multiplying the other way w ·vT gives an n×n matrix,
which is called the outer product :

v =


1
2
3
4

 ∈ R4, vTw =
[
1 2 3 4

] 
1
−1
2
−2

 = 1 · 1 + 2 · (−1) + 3 · 2 + 4 · (−2) = −3 ∈ R =M1×1

w =


1
−1
2
−2

 ∈ R4, wvT =


1
2
3
4

 [1 −1 2 −2
]

=


1 −1 2 −2
2 −2 4 −4
3 −3 6 −6
4 −4 8 −8

 ∈M4×4

Example 4.15. Taking the transpose of a product of a matrix with a vector is just like taking the
tranpose of two matrices. Using the property from Equation (1) and the observations in Remark 4.14,
we see some interesting results. For A ∈Mm×n and x,y ∈ Rn, we have

Ax • y = (Ax)Ty = xTATy = xT (ATy) = x • (ATy).

4.3 Exercises

Exercise 4.1. Consider the matrix factorization 6 0 −2
1 3 4
−3 −8 2


︸ ︷︷ ︸

A

=

1 0 0
a 1 0
b c 1


︸ ︷︷ ︸

L

6 0 −2
0 2 13/3
0 0 113/9


︸ ︷︷ ︸

U

.

The values a, b, c are determined by the multipliers from row operations to clear the entries below the
pivots. What are these values?

Exercise 4.2. Decompose A =

3 1 1
3 1 3
1 1 3

 into PA = LDU factorization.

Exercise 4.3. Decompose the matrix A from Example 3.8 as PA = LDU .

Exercise 4.4. Suppose that A ∈Mn×n is a product of elementary matrices, that is, A = E1·E2 · · ·Ek,
where Ei is one of the three types of elementary matrices given in Definition 3.7 . Explain why A is
invertible.
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Part II

Vector spaces

Lecture 5: Vector spaces: column space and nullspace

Chapters 3.1 and 3.2 in Strang’s “Linear Algebra”

� Fact 1: A vector space is something like Rn.

� Fact 2: The column space and nullspace of any matrix are vector spaces.

� Skill 1: Determine if something is a vector space and subspace.

� Skill 2: Construct the column space and nullspace of a matrix as spans.

This lecture serves two purposes: to introduce the very powerful topic of vector spaces, and to provide
two concrete examples of such vector spaces. These two examples will justify the phrase “to be in the
solution space” of an equation Ax = b.

5.1 Vector spaces

Recall from Lecture 2 that a field is a set with nice properties, such as R,Q,C. Fields have addition
and multiplication built into them. We now define a set that has new properties.

Definition 5.1: Let V be a set and F a field. The elements of F are called scalars. The set V
is a vector space if there are two operations

� addition +: V × V → V ,

� scalar multiplication · : F× V → V ,

that satisfy the follow properties, for every u,v,w ∈ V and a, b ∈ F:

1. addition has an identity element: there exists 0 ∈ V with 0 + v = v

2. addition has inverse elements: there exists −v ∈ V with v + (−v) = 0

3. scalar multiplication has an identity element: there exists 1 ∈ F with 1v = v

4. addition is commutative: u + v = v + u

5. addition is associative: u + (v + w) = (u + v) + w

6. scalar multiplication is distributive over addition: a(u + v) = au + av

7. scalar multiplication is distributive over field addition: (a+ b)v = av + bv

8. field multiplication is compatible with scalar multiplication: (ab)v = a(bv)

If V is a vector space and W ⊆ V is a subset of V and is a vector space on its own, with the same
two operations satisfying the same properties, then W is a subspace of V . It is immediate that every
vector space is a subspace of itself, so whenever W ⊆ V is a subspace and W 6= V , we say W is a
proper subspace of V .

Example 5.2. We consider some basic examples of vector spaces.
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� The empty set ∅ is not a vector space, because vector space must contain the zero vector.

� The set V = {0} is a vector space, called the trivial or zero vector space.

� The spaceM2×2 is a vector space, with addition being matrix addition, and scalar multiplication
the usual scalar multiplication over R. This space is 4-dimensional, though we will see the notion
of dimension next lecture.

� For V = R2, the set W = {c(2, 1) : c ∈ R} ⊆ V , which is all the multiples of v = (2, 1), is a
subspace of R2. The set U = {c(2, 1)+(0, 1) : c ∈ R} ⊆ V , which is the same as W but shifted
up by 1 unit, is not a vector space, as (0, 0) 6∈ U .

R

R

(0, 0)

W

U

Inquiry 5.3: This inquiry generalizes the notion of a vector space, continuing with the last
example in Example 5.2. The set U there looked like it should be a vector space - every element
of U can be expressed as u = c(2, 1) + (0, 1). Define vector addition and scalar multiplication
on U , for F = R, by

U × U → U,
(u1,u2) 7→ (c1 + c2)(2, 1) + (0, 1),

R× U → U,
(a,u1) 7→ ac1(2, 1) + (0, 1),

where u1 = c1(2, 1) + (0, 1) and u2 = c2(2, 1) + (0, 1).

� Check that multiplication distributes over addition. That is, check that property 7. is
satisfied.

� Find the additive identity, additive inverse, multiplicative identity on U so that properties
1.-3. are satisfied.

� Explain why U , with this vector space structure, is not a subspace of R2.

� Instead of (0, 1) at the beginning, put (−2, 0) in its place. What changes? Can any vector
be chosen here? Which vector would you choose?

This type of structure is called an affine space.

Remark 5.4. We make some observations about vector spaces and subspaces.

� Every vector space and subspace must contain the zero vector.

� Any line through the origin is a subspace of Rn.

� A subspace containing u and v must contain every linear combination au + bv.

Example 5.5. Combining the above remark and Example 5.2, we see that U = {all upper triangular
matrices

[
a b
0 d

]
} ⊆ M2×2 is a subspace of M2×2, as is D = {all diagonal matrices

[
a 0
0 d

]
} ⊆ M2×2.

Moreover, D is a subspace of U .
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Definition 5.6: Let V be any vector space, such as Rn, and X = {v1, . . . ,vk} ⊆ V any
collection of elements of V . Then the space of all linear combinations of elements of X, written

span(X) =

{
n∑
i=1

civi : ci ∈ F

}
.

This space is called the span of the vectors in X.

With the span, we can describe a very large vector space by using a small number of vectors.
Finding the smallest number of vectors will play an important role in future lectures.

Proposition 5.7. For V a vector space and X = {v1, . . . ,vk} ⊆ V , the span of X is a vector space
and a subspace of V .

Proof. To see span(X) is a vector space, note that every element in span(X) is a vector in V . Adding
two elements in span(X) keeps us in the span:

a + b =
n∑
i=1

aivi +
n∑
i=1

bivi =
n∑
i=1

(ai + bi)vi ∈ span(X).

Scalar multiplication works similarly. The identity and inverse elements are the same as in V , and
clearly the zero element is in span(X), by choosing all the coefficients ci = 0. Hence span(X) ⊆ V is
a subspace.

Note that the above result follows immediately from Example 5.2, which said that all multiples
of a single vector is a vector space, and by repeated application of Definition 5.9, which will say that
V +W is a vector space, for any vector spaces V , W .

Example 5.8. Two dimensional Euclidean space R2 can be described in several ways as a span:

� R2 = span
(
[ 1

1 ] ,
[

1
−1

]
,
[−1
−1

])
because [ xy ] = x−y

2 [ 1
1 ] + x−y

2

[
1
−1

]
− y

[−1
−1

]
� R2 = span ([ 3

3 ] , [ 0
4 ]) because [ xy ] = x

3 [ 3
3 ] + 3y−x

12 [ 0
4 ].

Definition 5.9: Let V,W be two vector spaces. Their direct sum, or simply sum, is the vector
space

V ⊕W := {(v,w) : v ∈ V,w ∈W},
with vector addition and scalar multiplication defined component-wise. That is, (v1,w1) +
(v2,w2) = (v1 + v2,w1 + w2) and c(v,w) = (cv, cw). If there exists a vector space U with
V,W ⊆ U , then we have the vector space

V +W := {v + w : v ∈ V,v ∈W}.

In this case, we have all linear combinations of vectors from both spaces. This is called the
subspace generated by U and V . It is the smallest subspace containing U ∪V , which itself is not
necessarily a subspace.

Note that V ⊕W and V +W are vector spaces, but V ∪W is not. These three spaces are not the
same, in fact V ⊕W is never equal to V +W (though there may be a nice function between the two.

Example 5.10. We note some common examples of vector spaces generated by other spaces:

� The vector space generated by V and any of its subspaces W is the original space: V +W = V

� The vector space generated by two spans is the span of the union:

span({v1,v2}) + span({w1,w2}) = span({v1,v2} ∪ {w1,w2}) = span({v1,v2,w1,w2})
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See Exercise 5.6 for more details on why the union of two vector spaces V ∪W is not the same as +.

Inquiry 5.11: Let V be a vector space, X = {v1, . . . ,vk} ⊆ V , and let S be the span of X.

� Explain why X is always a subset of S, and why V is never a proper subset of S.

� When V =M2×2 and X =
{

[ 1 1
0 1 ] , [ 0 1

1 0 ] ,
[−1 0

0 1

]}
, prove that S 6= V by finding an element

in V \ S.

� How big does X have to be for S to be all of V ? Is there a limit to how small it can be?

When S = V , we say that V is spanned by X.

5.2 The column space of a matrix

A big reason we are talking about vector spaces is that the matrix product Ax from the matrix
equation Ax = b, over all possibilities x, describes a vector space. This space has a particular name.

Definition 5.12: For an m× n matrix A, the column space of A, denoted col(A), is the set of
all vectors v ∈ Rm that are linear combinations of the columns of A. That is,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , col(A) =

c1


a11

a12
...

am1

+ c2


a12

a22
...

am2

+ · · ·+ cn


a1n

a2n
...

amn

 : ci ∈ R

 .

Since every element in col(A) is a linear combination of vectors, col(A) is a subspace of Rm.

Example 5.13. Consider A =
[

3 −1 −2 4
0 2 −2 1

]
, for which

col(A) =

{
c1

[
1
0

]
+ c2

[
−1
2

]
+ c2

[
−2
−2

]
+ c2

[
4
1

]
: ci ∈ R

}
.

Note that [ 5
6 ] ∈ col(A), as [

5
6

]
= −5

[
1
0

]
+ 0

[
−1
2

]
− 3

[
−2
−2

]
+ 0

[
4
1

]
.

Inquiry 5.14: Let A ∈Mm×n.

� Show that [ 3
4 ] ∈ col

([
2 −1 1
0 1 1

])
.

� Suppose that v = c1v1 + · · ·+ cnvn ∈ col(A). Explain why Ax = v has a solution. What
is it?

� Suppose that x = (x1, . . . , xn) solves the equation Ax = b. Explain why b ∈ col(A).

� Explain why 0 ∈ col(A). Hint: What is a solution to Ax = 0?

Example 5.15. Consider the following matrices:

I =

[
1 0
0 1

]
A =

1 2 3
2 4 6
3 6 9


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The column space col(I) is all of R2, since any vector (a, b) ∈ R2 can be described as a [ 1
0 ] + b [ 0

1 ],
which is a linear combination of the columns of I. The column space of A is all multiples of the vector[

1
2
3

]
, since the second and third rows are multiples of the first row.

5.3 The nullspace of a matrix

Another big reason we are talking about vector spaces is another link to the matrix equation Ax = b,
in the special case that b = 0. All the vectors x satisfying this equation form a vector space. Note
that all the vectors satisfying Ax = b did not form a vector space for arbitrary b - the column space
was the space of all vectors Ax, not just x.

Definition 5.16: For an m× n matrix A, the nullspace of A is the set

null(A) = {x ∈ Rn : Ax = 0}.

The nullspace is a vector space. The nullspace lives inside Rn, but the column space lives in Rm.
To find the nullspace of A, we use Gaussian and Gauss–Jordan elimination on A. We may perform
row swaps at the beginning or in the middle of elimination, it will not change the result.

Example 5.17. The nullspace of the matrix A =
[

2 −1
4 −2

]
consists of the vectors in x ∈ R2 for which

Ax = 0. The second row is a multiple of the first (and the second column is a multiple of the first) ,
so the nullspace is all pairs (x1, x2) for which 2x1 − x2 = 0, or x1 = x2/2. Choosing x2 = 1 (though
we could choose any other value) we get x1 = 1/2, so the nullspace is

null

([
2 −1
4 −2

])
=

{[
x2/2
x2

]
: x2 ∈ R

}
= span

([
1/2
1

])
.

The choice (1/2, 1) was a special solution, but there are many other solutions.

Remark 5.18. Elimination on a matrix does not change its nullspace. We can see this by considering
the original equation Ax = 0 and the elminiated equation EAx = 0. Since E is an elmentary matrix,
it has an inverse, so Ax = E−10 = 0. Hence x satisfies the first equation iff it satisfies the second
equation.

Example 5.19. We describe how to compute the nullspace by way of an example, onA =
[ 2 −2 2 4 8

1 5 −3 0 1
3 3 −1 −5 6

]
.

We begin with Gaussian elmination to get zeros below the first pivot. The multipliers are given below,
and zeros of pivot columns are highlighted:

`21 =
1

2
, `31 =

3

2
:

 2 −2 2 4 8
0 6 −4 −2 −3
0 6 −4 −11 −6

 .
We continue to get a zero below the second pivot:

`32 = 1 :

 2 −2 2 4 8
0 6 −4 −2 −3
0 0 0 −9 −3

 .
The third pivot is −9. Now we move upward and clear the entries above the third pivot: 2 −2 2 0 20/3

0 6 −4 0 −7/3
0 0 0 −9 −3

 .
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Next, get a zero above the second pivot: 2 0 2/3 0 53/9
0 6 −4 0 −7/3
0 0 0 −9 −3

 .
Finally, multiply through by the pivot reciprocals to get pivots that are 1: 1 0 1/3 0 53/18

0 1 −2/3 0 −7/18
0 0 0 1 1/3

 .
We pause this example for a few comments.

Definition 5.20: The form of A in the example above is called the reduced row echelon form,
or RREF , of A. More specifically:

� columns 1,2,4 are the pivot columns,

� columns 3,5 are the free columns.

In the equation Ax = 0, for x = (x1, x2, x3, x4, x5), the variables x1, x2, x4 are the pivot variables
and x3, x5 are the free variables.

We continue solving for the nullspace null(A) from Example 5.19. It is defined as a linear com-
bination of as many vectors as there are free columns. Each free column gives a nonzero x that will
be in the nullspace, by setting that free variable to 1, all other free variables to 0, and choosing the
earlier pivot variables to be the negative entries in those rows:

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3



−1/3
2/3
1
0
0


︸ ︷︷ ︸

s1

=

0
0
0

 ,
 1 0 1/3 0 53/18

0 1 −2/3 0 −7/18
0 0 0 1 1/3



−53/18

7/18
0
−1/3

1


︸ ︷︷ ︸

s2

=

0
0
0

 .

The two vectors s2, s2 are the special solutions for the nullspace of A. Hence the nullspace is

null(A) = {c1s1 + c2s2 : c1, c2 ∈ R} =

c1


−1/3
2/3
1
0
0

+ c2


−53/18

7/18
0
−1/3

1

 : c1, c2 ∈ R

 ,

so for example, something like 
−108

18
6
−13
36

 = 6


−1/3
2/3
1
0
0

+ 36


−53/18

7/18
0
−1/3

1


is in the nullspace.
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Algorithm 2 (Computing the nullspace): To compute the nullspace of A ∈ Mm×n, we do
Gaussian and Gauss–Jordan elimination so that all columns with pivots have 1’s as the only
entry.

1. Perform Gauss–Jordan elimination on A to clear all entries below the pivots. The matrix
is now A′.

2. Perform Gaussian elimination on A′ to clear all above below the pivots. The matrix is
now A′′.

3. Multiply A′′ by diagonal matrices to make all the pivots 1’s.

4. Suppose columns c1, . . . , ck are pivot columns, and columns f1, . . . , f` are free columns.

(a) The nullspace will be a span (v1, . . . ,v`) of as many vectors as free columns. The
vector vi ∈ Rk+` has:

(b) entry 1 in row fi and entry 0 in all other rows fj 6=i

(c) entry in row cj the same, but negative, as the entry in column fi and row j of A′′

Remark 5.21. Note that the pivot columns create an identity matrix in RREF of A, which were
highlighted in green and yellow in the main example above. Similarly, the free variable rows in the
special solutions create an identity matrix.

Inquiry 5.22: Consider the matrix A =
[ 3 6 −1 0 1

9 18 −3 2 0
0 0 −5 1 1

]
.

� Compute null(A) as the span of vectors.

� Construct a matrix B for which null(A) = col(B).

� Compute col(A) as the span of vectors.

� Do you have to use all the columns of A? That is, are some columns linear combinations
of others? Try to use as few columns of A as possible to express col(A) as a span.

5.4 Exercises

Exercise 5.1. Check that the subspace W ⊆ V from in the fourth example in Example 5.2 satisfies
the conditions of being a vector space from Definition 5.1.

Exercise 5.2. Let V = span({u,v,w}) and W = span({u + v,v + w}). Show that W ⊆ V .

Exercise 5.3. Consider the set X of all functions f : R→ R.

1. If addition on X is defined as usual, with f + g = f(x) + g(x), but multiplication is defined as
cf = f(cx), show that X is not a vector space.

2. If multiplication is defined as usual, with cf = cf(x), but addition is defined as f + g = f(g(x)),
but show that X is not a vector space.

Exercise 5.4. Construct the nullspace of A =

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1

 as a span of vectors.

Exercise 5.5. Let V be a vector space.

1. Explain why span(V ) = V and span({0}) = {0}.
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2. For V = R3, give an example of A,B ∈ M3×3 with col(A) = V and null(B) = V . Explain why
A and B can not be the same matrix.

Exercise 5.6. Consider the following vector spaces:

V = span


1

1
0

 ,
0

1
1

 , W = span


1

0
1

 ,
 0
−1
0

 .

1. Show that R3 is a subspace of V +W by describing an arbitrary vector (x, y, z) ∈ R3 as a linear
combination of the elements of V and W .

2. Show that V ∪W 6= V +W by finding a vector in V +W that is not in V ∪W .

Exercise 5.7. Create a matrix with no zero columns that has:

1. size 3×3 and column space the xy-plane (that is, all linear combinations of (1, 0, 0) and (0, 1, 0))

2. size 3× 4 and column space the xy-plane

3. size 2 × 2, column space all of R2, not a multiple of I2, and no zero entries. Describe [ 1
0 ] and

[ 0
1 ] as linear combinations of the columns.

Exercise 5.8. Let I be the 2 × 2 identity matrix. For each of the following matrices, bring it to
RREF and drescribe its nullspace as a span of vectors.

A =
[
I I

]
B =

[
I I
0 I

]
C =

[
I I
I I

]
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Lecture 6: Completely solving Ax = b

Chapter 3.3 in Strang’s “Linear Algebra”

� Fact 1: The complete solution to Ax = b consists of the particular solution and linear combina-
tions of the special solutions.

� Fact 2: The rank of a matrix is the number of pivots. It can not be larger than the number of
rows or columns.

� Skill 1: Construct the complete solution to any matrix A ∈Mm×n.

� Skill 2: Identify the row rank, column rank, rank of a matrix.

Previously we saw how to solve Ax = 0, by doing elimination until we get an upper triangular matrix
Rx = 0, whose solutions x are the same solutions that solve the first equation. In this lecture we
generalize to finding soluetions to Ax = b, where b is not necessarily the zero vector.

6.1 Rank and the particular solution

We begin with the example from the previous lecture,

A =

2 −2 2 4 8
1 5 −3 0 1
3 3 −1 −5 6

 ,
 1 0 1/3 0 53/18

0 1 −2/3 0 −7/18
0 0 0 1 1/3

 , EA = R

for some product of elimination matrices E. The columns 1,2,4 are the pivot columns and the columns
3,5 are the free columns (this is true for both R and A). It is immediate that columns 1,2,4 of R can
not be written one as a linear combination of the others - that is, these three columns are linearly
independent . Again, this is true for both R and A.

Definition 6.1: The rank of a matrix A ∈Mm×n is denoted rank(A), and is equivalently

� the number of pivots of A, or

� the number of columns in A that are not linear combinations of other rows.

If rank(A) = min(m,n), then A is said to have full rank .

Reducing the matrix A to RREF reveals which columns are combinations of others. Since only
row operations were performed, any linear relationships among the columns are preserved.

Example 6.2. When a matrix has rank 1, all the columns are multiples of the first one. For example,

A =

1 2 3
1 2 3
1 2 3

 RREF−−−−−→

 1 2 3
0 0 0
0 0 0


has rank one, and its column space is all the multiples of (1, 1, 1). To find its nullspace, we look at its
RREF, which has special solutions 1 2 3

0 0 0
0 0 0

 −2
1
0

 =

0
0
0

 ,
 1 2 3

0 0 0
0 0 0

 −3
0
1

 =

0
0
0

 ,
hence the nullspace of A is the span of

[−2
1
0

]
and

[−3
0
1

]
.
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Remark 6.3. A rank 1 square n× n matrix may be expressed as a product of a n× 1 vector with a
1× n vector, since all the columns are multiples of the first column. For example,

A =

1 2 3
1 2 3
1 2 3

 =

1
1
1

 [1 2 3
]

= vwT .

Example 6.4. The identity matrix I has full rank. The zero matrix 0 has rank 0.

Inquiry 6.5: Consider the matrix A =
[
a b c
b c b
c a a

]
.

� Find values of a, b, c for which A has rank 0,1, 2, 3.

� Suppose another column was added at the end of A to make
[
a b c 0
b c b 0
c a a 0

]
. Explain why your

answers to the first part above would not change using this matrix.

Definition 6.6: The number of special solutions to Ax = 0 is called the nullity of A.

The nullity is the number of free columns of A, and the smallest number of vectors that can be
used to define null(A) as a span. If A ∈ Mn×n is square, then using the fact that the rank is the
number of pivot columns, we immediately get that

rank(A) + nullity(A) = n, (2)

a very powerful equation, more of which we will see later. This is called the rank-nullity theorem.

Example 6.7. Recall Example 5.19 from Lecture 5. Suppose that instead of Ax = 0, we considered
Ax = b, which, after elimination, would become Rx = d = [d1 d2 d3]T . The vector x = 0 is not a
solution anymore, but we can find a quick solution by setting the variables corresponding to the free
columns equal to 0:

 1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3



x1

x2

0
x4

0

 =

d1

d2

d3

 is solved by
x1 = d1,
x2 = d2,
x3 = d3.

The vector (d1, d2, 0, d3, 0) is called a particular solution to Ax = b. This particular solution solves
not only Rx = d, but also Ax = b, because if A = ER, for some elimination matrix E, then d = Eb.

Remark 6.8. What we have done so far can be summarized as follows:

� The special solutions x = s1, s2 solve Ax = 0

� The particular solution x = p solves Ax = b

Finally, the complete solution to the system Ax = b is the sum of the particular and special solutions.
That is, x = p + c1s1 + c2s2 solves the system, for any c1, c2 ∈ R, because

A(p + c1s1 + c2s2) = Ap + c1As1 + c2As2 = b + c1 · 0 + c2 · 0 = b.
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Algorithm 3 (Finding the complete solution): Consider the matrix equation Ax = b.

1. Compute the nullspace of [A | b]. That is, find the special solutions s1, . . . , sk by doing
elimination on the augmented matrix [A | b].

2. Elimination on [A | b] produces the matrix [R | d]. Construct the particular solution p
from d as in Example 6.7.

3. The complete solution to Ax = b is x = p + c1s1 + · · ·+ cksk, for all ci ∈ R.

Example 6.9. Consider the matrix equation Ax = b, in the form

[
4 −8 2
−10 12 1

]
︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

[
6
−16

]
︸ ︷︷ ︸

b

RREF−−−−−→
[

1 0 −1
0 1 −3/4

] x1

x2

x3

 =

[
7/4
1/8

]
.

The complete solution to this equation is x =

7/4
1/8
0

+ c1

 1
3/4
1

, for any c1 ∈ R.

plane 4x− 8y + 2z = 6

plane −10x+ 12y + z = −16

special solution s1

particular solution p

vectors x that solve Ax = b

This equation represents two planes intersecting in space, as in the picture above. The particular
solution is a point on the line of intersection and the special solution is a vector in the direction of
the line. The line of intersection is all the vectors x that make Ax = b true. In other words, it the
nullspace shifted by the vector p, hence it is an affine space.

In the example above, the two planes are defined by the initial equation. After row reduction, we
have two different planes which still have same intersection. Compare this with the 2-dimensional row
picture presented in Example 3.5.

Inquiry 6.10: Consider the nullspace null(A) from Example 6.9.

� Write the nullspace null(A) as the span of a single vector.

� Let S be the set of all solutions x to the equation Ax = b. Explain why S is not a vector
space in the same way that null(A) is a vector space.

� Using Inquiry 5.3, explain why S still has some vector space structure. This type of space
is an space.
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6.2 Different types of complete solutions

Now we consider the implications for the complete solution given the rank of the matrix. Recall from
Definition 6.1 that A ∈Mm×n has full rank if it has A has min(m,n) pivots.

Definition 6.11: Let A ∈Mm×n.

� If each row of A has a pivot (so A has m pivots), then A has full row rank .

� If each column of A has a pivot (so A has n pivots), then A has full column rank .

Example 6.12. Consider the following types of common situations for rank, for A ∈ Mm×n. If A
has more rows than columns (so m > n) and has full column rank, then in row reduced echelon form
A looks like the block matrix

[
I
0

]
, where I is of size n×n and the zero matrix 0 has size (m−n)×n.

Then:

• all columns of A are pivot columns,

• there are no free variables, so there are no special solutions,

• the nullspace contains only the zero vector null(A) = {0},
• if Ax = b has a solution, there is one unique solution.



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



Analogously, If A has more columns than rows (so n > m) and has full row rank, then in row reduced
echelon form A looks like the block matrix [I 0], where I is of size m×m and the zero matrix 0 has
size m× (n−m). Then:

• all rows of A have pivots, so there are no zero rows,

• there are n−m special solutions,

• the column space is all of Rm,

• Ax = b has a solution for any vector b


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



Example 6.13. The equation Ax = b with A an m × 3 matrix with full column rank represents
m planes intersecting in 3-dimensional space R3. If the planes all intersect in one point, there is a
solution to this equation.

� For 1 6 m < 3 and m randomly chosen planes, it is impossible for them to intersect in one point.

� For m = 3 and three randomly chosen planes, they will almost always intersect in one point.

� For m > 3 and m randomly chosen planes, they will almost never intersect in one point.

The general theory behind these claims has to do with general position of points in R3, and the fact
that three points are necessary to define a plane.
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Inquiry 6.14: Let A ∈Mm×n and b ∈ Rm. Find an example of A and b so that Ax = b has:

� exactly one solution, with m = n = 2;

� no solutions, with m = n = 2;

� exactly one solution, with m = 3, n = 2;

� no solutions, with m = 3, n = 2;

� infinitely many solutions, with m = 2, n = 3.

� Explain why Ax = b can not have exactly one solution if n > m. That is, show that if it
has one solution, it has infinitely many.

Remark 6.15. We can summarize every matrix A ∈Mm×n as one of the following four situations.

� rank(A) = m, rank(A) = n: Then A is square and invertible, and Ax = b has exactly 1 solution.

� rank(A) = m, rank(A) < n: Then A is wider than it is taller, and Ax = b has infinitely many
solutions.

� rank(A) < m, rank(A) = n: Then A is taller than it is wider, and Ax = b has 0 or 1 solution,
depending on what the bottom row(s) of [A | b] look like in RREF.

� rank(A) < m and rank(A) < n: Then A can have any shape, but it is not full rank, and Ax = b
has either 0 or infintely many solutions.

6.3 Exercises

Exercise 6.1. Consider the two vectors v = [a a a a]T and w = [1 1 1 1]T . What will be the rank of
the 4× 4 matrix vwT ? Your answer should depend on a.

Exercise 6.2. Find the complete solution to Ax = b, for

A =

[
3 0 −9 −3 0
6 0 −21 0 2

]
, x =


x1

x2

x3

x4

x5

 , b =

[
9
−1

]
.

Exercise 6.3. Suppose you know that the solution to a matrix equation Ax = b, where A ∈ M2×3,
is the vector

x =

 7
4
−2

+ c

−3
1
0

 ,
for any c ∈ R.

1. Construct one possible matrix A and vector b for which this could be the solution.

2. Do the same as above, but make it so that A has no zero entries.

Exercise 6.4. For the following matrices A,B, find the ranks of ATA, AAT , BTA, BBT :

A =

[
2 0 3
−1 1 3

]
, B =


−1 3
9 0
7 0
−3 1

 .
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Lecture 7: Independence, basis, dimension

Chapter 3.4 in Strang’s “Linear Algebra”

� Fact 1: A basis of a vector space V is a smalest possible set of vectors that spans V

� Fact 2: Bases of V are not unique. The size of a basis is unique - it is the dimension of V .

� Skill 1: Identify linearly independent subsets in a given set of vectors.

� Skill 2: Extend a set of vectors of V to a basis of V .

� Skill 3: Express the same vector in different bases.

We have now arrived at the next big theme of this course: dimension.

7.1 Linear independence

Recall that the rank of a matrix A was the number of pivots A had, or the number of columns of A
that are not linear combinations of the other columns. A more precise way to say the second approach
is with linear independence.

Definition 7.1: Let {v1,v2, . . . ,vn} ⊆ Rm be the columns of a matrix A ∈ Mm×n. These
vectors are linearly independent if, equivalently,

� the only solution to Ax = 0 is x = 0, or

� x1v1 + x2v2 + · · ·+ xnvn = 0 implies xi = 0 for all i, or

� the nullspace of A is only the zero vector, that is, null(A) = {0}.

If a set of vectors is not linearly independent, then the set is linearly dependent .

Every set of vectors is either linearly independent or linearly dependent, there is no in-between. We
often say “the vectors are linearly independent” instead of “the set of vectors is linearly independet”,
but both are correct uses of the term.

Example 7.2. Slight changes in the matrix entries can lead to big differences:

� The vectors [ 1
1 ] and [ 2

2 ] are linearly dependent, because [ 1 2
1 2 ]

[−2
1

]
= [ 0

0 ].

� The vectors [ 1
1 ] and [ 2

2.001 ] are linearly independent, because attempting to solve Ax = 0 will
lead to x = 0.

Inquiry 7.3: Recall the three different ways to express linear independence.

� Pick any 3 vectors in R2. Explain why they must be linearly dependent. Hint: put them
as columns in a matrix and say something about its nullspace.

� Does the above work for any 4, 5, . . . vectors in R2? What about any 2 vectors?

� Try to generalize the above points into a statement like: “Any set of more than vectors
in will be linearly .”

Recall the span of a collection of vectors from Definition 5.6 and Inquiry 5.11, and the columns of a
matrix spanning its column space, as well as the vectors from special solutions spanning the nullspace.
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Definition 7.4: Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . If V = span(S),

� S is called a spanning set of V , and

� S is called a minimal spanning set of V if for every other spanning set S′ of V , the size of
S is less than or equal to the size of S′.

Example 7.5. Minimal spanning sets are common.

� The vector space R3 has a minimal spanning set in
[

1
0
0

]
,
[

0
1
1

]
,
[

0
0
1

]
.

� The pivot columns of a matrix form a minimal spanning set for its column space.

The idea of a minimal spanning set from Definition 7.4 can be made more precise with the idea of
linear independence from Definition 7.1.

Definition 7.6: Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . The set S is a basis for V
if, equivalently,

� S is a minimal spanning set for V , or

� S spans V , and S is linearly independent, or

� every v ∈ V can be written uniquely as v = a1v1 + · · ·+ anvn, for ai ∈ R.

Example 7.7. The standard basis for R3 consists of the vectors
[

1
0
0

]
,
[

0
1
1

]
,
[

0
0
1

]
. In general, the

standard basis for Rn consists of the n column vectors of the n×n identity matrix, and they are often
denoted e1, . . . , en: 

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 =

 | | | |
e1 e2 e3 · · · en
| | | |

 .
The standard basis is not the only basis for Rn, and the columns of every full rank n× n matrix will
give a basis for Rn.

Example 7.8. Let A ∈Mm×n.

� A basis for the nullspace null(A) is the set of special solutions to Ax = 0.

� A basis for the column space col(A) is the pivot columns of A - this is not necessarily all the
columns of A.

Algorithm 4 (Find linearly independent vectors in a set): Given a set of vectors in Rn,
we can find which of them are linearly independent by either:

� making them columns of a matrix, doing elimination (with row swaps), and taking the
positions of the pivot columns, or,

� making them rows of a matrix, doing elimination (without row swaps), and taking the
positions of pivots rows.
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Inquiry 7.9: Consider the vectors u1 =
[

1
0
1

]
,u1 =

[
0
1
1

]
,u3 =

[−1
1
1

]
,v =

[
1
2
4

]
in R3.

� Show that {u1,u2,u3} is a linearly independent set.

� Express v as a linear combination of u1,u2,u3.

Suppose that v = a1u1 + a2u2 + a3u3 for some real numbers a1, a2, a3 (not necessarily the ones
you got above).

� Without using the definition of a basis (Definition 7.6), but instead using the the first
definition of linear independence (Definition 7.1), explain why the ai must be the same
numbers you got above.

Hint: subtract your way to write v from the v = a1u1 + a2u2 + a3u3 way to write v.

Example 7.10. Consider the following three vectors in R4:

u =


3
2
7
1

 , v =


1
−1
2
3

 , w =


5
5
12
5

 .
As columns of a matrix, we quickly eliminate entries below the diagonal to identify the the first two
as pivot columns and the last as a free column:

3 1 5
2 −1 5
7 2 12
1 3 5

 G.E.−−−−→


3 1 5
0 −5/3 13/3
0 0 0
0 0 0

 .
So u,v are indepdent, and w is a linear combination of u and v. Alternatively, we can make them
rows of a matrix, and the perform Gaussian elimination (without row swaps). That will give us zero
rows, which will correspond to linearly dependent vectors:3 2 7 1

1 −1 2 3
5 5 12 5

 G.E.−−−−→

3 2 7 1
0 −5/3 −1/3 8/3
0 0 0 0

 .
As in the first approach, we get that w depends on u and v. Hence {u,v} is a basis for the vector
space V = span(u,v,w).

7.2 Dimension and extending to a basis

The key idea from the first part of this lecture is that rhe word basis is another name for minimal
spanning set . It is often difficult to consider all possible spanning sets, so we use the word basis much
more often. Keep in mind three important things:

� bases are not unique,

� every basis of a vector space must have the same number of vectors, and

� every vector space has a basis.

The last conclusion is based on a fundamental (and unproven!) cornerstone of mathematics called the
axiom of choice. A special case is investigated in Inquiry 7.11.
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Inquiry 7.11: Consider the vector space R4 with its four standard basis vectors e1, . . . , e4, as
given in Example 7.7. Consider u = [ 1 2 3 4 ]T ,v = [ 0 1 −1 2 ]T ∈ R4

� Explain why {u,v} cannot be a basis of R4. Is it linearly (in)dependent?

� Explain why {u,v, e1, e2, e3, e4} cannot be a basis of R4. Is it a linearly (in)dependent?

� Find a linearly independent subset of {u,v, e1, e2, e3, e4} that contains u and v.

The last point is called extending a set to a basis.

Remark 7.12. As mentioned in Definition 7.6, given a basis for a vector space V , every vector in V
can be expressed uniquely as a linear combination of vectors of that basis. For some vector space it is
very obvious:  4

−2
8

 = 4

1
0
0

− 2

0
1
0

+ 8

0
0
1

 .
However, if we have a different basis, how can we figure out what the linear combination is in the
other basis? This is where the change of basis matrix appears. Suppose that B and B′ are bases for
V , with

B = {v1, . . . ,vk}, B′ = {w1, . . . ,wk}, v ∈ V.
The coefficients for expressing v in the basis B are in the solution vector x to [v1 · · · vk]x = v.
Similarly, the coefficients for expressing v in the basis B′ are in the solution vector y to [w1 · · · wk]y =
v. These two vectors are related by the equation

y =

 | |
a1 · · · ak
| |


︸ ︷︷ ︸

change of basis matrix

x, where vi =

 | |
w1 · · · wk

| |

ai.

Example 7.13. Consider the two bases B =
{

[ 1
1 ] ,
[

1
−1

]}
and B′ =

{
[ 3

7 ] ,
[−2
−4

]}
of R2. To construct

the change of basis matrix from B to B′, we need to express every vector of B as a linear combination
of vectors in B′. We do this by sight:[

1
1

]
= −

[
3
7

]
− 2

[
−2
−4

]
,

[
1
−1

]
= −3

[
3
7

]
− 5

[
−2
−4

]
,

Hence the change of basis matrix from vectors in the basis B to vectors in the basis B′ is

A =

[
−1 −3
−2 −5

]
.

For example, taking the vector [
−1
−13

]
= −7

[
1
1

]
+ 6

[
1
−1

]
in the basis B, we have the coefficient vector x =

[−7
6

]
. The coefficient vector y in the basis B′ is

given by computing

y =

[
−1 −3
−2 −5

] [
−7
6

]
=

[
7− 18
14− 30

]
=

[
−11
−16

]
, meaning

[
−1
−13

]
= −11

[
3
7

]
− 16

[
−2
−4

]
.

Note that the inverse of A will take us back to coefficients in the basis B.
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Definition 7.14: Let V be a vector space. The dimension of V is the number of vectors in any
basis of V . It is denoted dim(V ).

This assumes the previously mentioned very important point: all vector spaces have a basis, which
needs the axiom of choice.

Example 7.15. We have already seen dimension, but under different names.

� The dimension of Rn is n.

� The dimension of the column space of A is the rank of A.

� The dimension of the nullspace is the nullity of A.

Recall the definition of U ⊕ V and U + V from Definiton 5.9. There we saw that if U = span(B) and
V = span(B′), then U + V = span(B ∪B′). A similar statement holds for dimension.

Remark 7.16. Let V be a vector space with subspaces U,W .

� The intersection U ∩W is a subspace of V

� The sum + of vector spaces satisfies dim(U +W ) = dim(U) + dim(W )− dim(U ∩W )

� The sum ⊕ of vector spaces satisfies dim(U ⊕W ) = dim(U) + dim(W )

The third statement does not need that U,W be subspaces of the same space. Statements like this do
not exist for the union of vector spaces spaces, because that is not necessarily a vector space.

Remark 7.17. Let V be a vector space and U ⊆ V . If dim(U) = dim(V ), then U = V . This follows
by taking the basis u1, . . . , un of U , and asking if there are any vectors in V which cannot be expressed
as linear combinations of the ui. If no, then the spaces are the same. If there exists some v, then
u1, . . . ,un,v is a linearly independent set of n+ 1 vectors in V , which is impossible.

Definition 7.18: Let V be a vector space with dim(V ) = n, and U ⊆ V a subspace of dimension
dim(U) = k. The codimension of U in V is codim(U) = n− k.

For example, lines are codimension 1 in R2, but codimension 2 in R3. The set of points in Rn

that satisfy one linear equation (that goes through the origin) is codimension 1.

Example 7.19. The space of n × n matrices has dimension n2. It has as a subspace the space of
n×n upper triangular matrices, which has dimension n(n+ 1)/2. For n = 2, a basis for each of these
spaces is [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
in the first case, and [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
in the second case.

7.3 Exercises

Exercise 7.1. Find all sets of size 3 from the vectors below that are linearly independent:1
0
1

 ,
0

1
0

 ,
2

0
1

 ,
2

0
2

 ,
3

0
2

 .
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Exercise 7.2. For a 2× 2 matrix, linear independence on the columns only depends on if one column
is a multiple of the other.

(a)./ Generate 10 000 random 2 × 2 matrices, with real number entries in the range [−5, 5]. How
many have column space dimension 1?

(b)./ Repeat the same as in part (a), but use integer entries in the range [−5, 5]. How many have
column space dimension 1? Bonus: How many would you expect to have dimension 1?

Exercise 7.3. Consider the basis B for R3 and a vector v,

B =


1

2
3

 ,
−1

1
−1

 ,
3

0
6

 , v =

−3
−1
5

 .
Express v in terms of B.

Exercise 7.4. Consider the plane P = {(x, y, z) ∈ R3 : 2x − 4y − 5z = 0}, which is a subspace of
R3. What is its basis?

Exercise 7.5. Find the change of basis matrix from
{

[ 3
2 ] ,
[−1

1

]}
to
{[−2

3

]
, [ 0

5 ]
}

.

Exercise 7.6. Prove the claims from Remark 7.16.

Exercise 7.7. This question is about vector spaces of matrices, where matrix addition and scalar
multiplication are defined as usual.

1. Give a basis for the space of diagonal 3×3 matrices and a basis for the space of skew-symmetric
3× 3 matrices.

2. For n ∈ N, what is the dimension of the space of n × n diagonal matrices and what is the
dimension of the space of n× n skew-symmetric matrices?

3. Show by example that the set of all invertible 2×2 matrices does not form a vector space. Show
that all linear combinations of invertible 2× 2 matrices describe the set M2×2.
Hint: Construct the basis matrices of M2×2 as linear combinatons of invertible matrices.
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Lecture 8: The four fundamental subspaces associated to a matrix

Chapter 3.5 in Strang’s “Linear Algebra”

� Fact 1: A line in R2 is given by one equation, in R3 by two equations.

� Fact 2: Every matrix with m rows splits up Rm into the column space and the left nullspace.

� Fact 3: Every matrix with n columns splits up Rn into the row space and the nullspace.

� Skill 1: Find the intersection of two planes.

� Skill 2: Describe a hyperplane as a span of vectors.

With this lecture we take the column space and nullspace to the transpose matrix, and describe strong
relationships among these spaces.

8.1 Lines, planes, and hyperplanes

Since we will be discussing spaces and their relationships with each other in this lecture, we begin
with a comparison relating two similar lines.

Example 8.1. Consider the two lines L,M ⊆ R2 given below.

R

R

(0, 0)

L

R

R

(0, 0)

M

Each of these lines can be considered in similar ways. Each is:

� the line y = x/4

� the pairs (x, y) that satisfy 1
4x− y = 0

� the nullspace of [ 1 −4 ]

� the set of vectors x for which [ 1 −4 ] x = 0

� a vector subspace of R2

� a vector space of dimension 1

� the line y = x/4 + 1

� the pairs (x, y) that satisfy 1
4x− y = −1

� not the nullspace of any matrix

� the set of vectors x for which [ 1 −4 ] x = −4

� not a vector subspace of R2

� an affine space of dimension 1

The line M can be considered as a vector space, using a different addition and multiplication than in
R2. This is the same affine space structure seen before in Inquiry 5.3 and Example 6.9.
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Note that the vectors in L do not span all of R2, but if we add another line at a different angle than
L, also going through the origin, vectors from both lines together will span R2.

R

R

(0, 0)

(4, 1)

(3, 2) (5, 2)
one line: neither of the two lines go through [ 5

2 ]

two lines: there is a unique solution to [ 4 3
1 2 ] [ ab ] = [ 5

2 ]

The reason for going through all the different perspectives in Example 8.1 was to connect visual
with algebraic intution. We go one step further, into the third dimension, with the following example.

Example 8.2. Consider the two planes in R3 given below. Note that their intersection is a line.

z = 10x− 2y

z = −3x+ 7y

Both planes go through the origin (0, 0, 0). To find the vector along the line of intersection, we need
both equations to be satified at the same time. That is, we want to solve the matrix equation

[
10 −2 1
−3 7 1

]xy
z

 =

[
0
0

]
. Notice

[
10 −2 1
−3 7 1

]
RREF−−−−−→

[
1 0 9/64
0 1 13/64

]
,

so the nullspace of the matrix on the left is the span of the single vector [−9 −13 64 ]T . Unlike in R2, a
line in R3 can not be described by a single equation. We either use two equations (of the two planes),
or a single vector. Finally, we observe that to describe a plane as a span of vectors, we also use the
nullspace:

null
([

10 −2 1
])

= null
([

1 −1/5 1/10
])

= span

1/5
1
0

 ,
−1/10

0
1

 .

These are the two vectors whose span is the plane z = 10x− 2y.

50



Definition 8.3: A hyperplane in Rn is the set of points that satisfies a single equation a1x1 +
· · ·+ anxn = 0.

� For n = 1, a hyperplane in R1 is a point .

� For n = 2, a hyperplane in R2 is a line.

� For n = 3, a hyperplane in R3 is a plane.

A hyperplane is an (n− 1)-dimensional (or codimension 1) subspace of Rn.

Inquiry 8.4: Consider the vector v = [ 1 2 −3 ]T ∈ R3.

� Construct a 2× 3 matrix A so that v is in the nullspace of A. Explain why v is in the left
nullspace of AT .

� Find two planes in R3 so that their intersection is v.

� Construct a 3× 3 matrix B so that col(B) = span(v). What is the nullspace of B?

8.2 The four fundamental subspaces

Let A ∈Mm×n, and let R ∈Mm×n be the result of applying Guassian and Gauss–Jordan elimination
to A. We have seen two related vector spaces:

� the column space col(A) 6= col(R), which is the span of the columns

� the nullspace null(A) = null(R), which is the span of the (special) solutions to Ax = 0 or Rx = 0

We now introduce two other spaces, which are related to the above two by the transpose of A.

Definition 8.5: Let A ∈Mm×n.

� The row space, denoted row(A), is the span of the rows of A.

� The left nullspace is the span of the solutions to xTA = 0.

Together these four vector spaces are the four fundamental subspaces.

Remark 8.6. The left nullspace has no special way to write it. Observing that (xTA)T = ATx, we
see that the left nullspace of A is the vector space null(AT ). With this, we see several other relations
among the four fundamental spaces:

row(A) = col(AT ), row(AT ) = col(A), null(A) =

(
left null-

space of AT

)
, null(AT ) =

(
left null-

space of A

)
.

Remark 8.7. The previous remark makes it clear that the row space and left nullspace are vector
spaces. Below we put together all the relationships among these four subspaces, for A ∈Mm×n.

1. subspace relations:

� col(A) ⊆ Rm and null(AT ) ⊆ Rm are subspaces

� col(AT ) ⊆ Rn and null(A) ⊆ Rn are subspaces

2. dimension relations:

� dim(col(A)) = dim(col(AT )) = rank(A) = rank(AT )
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� dim(col(A)) + dim(null(AT )) = m

� dim(col(AT )) + dim(null(A)) = n

The last statement is called the rank-nullity theorem, which we already saw just after Definition 6.6.
We now look at more relations among these vector spaces.

Inquiry 8.8: Consider the matrix A =
[

2 0 −1
1 −2 1

]
.

� Describe the column space of A as the span of two nonzero vectors.

� Suppose your answer to the above was col(A) = span(u,v). Compute ATu and ATv.
Explain why, in general, if v ∈ col(A) is non zero, then ATv 6= 0.

� Describe the left nullspace of A. Why does it only contain the zero vector?

� Construct a 2× 3 matrix whose column space is 1-dimensional and whose left nullspace is
1-dimensional.

Remark 8.9. Vectors in the column space of A are perpendicular to vectors in the left nullspace. For
example, consider the matrix

A =

[
1 2 3
2 4 6

]
, col(A) = span

{[
1
2

]
,

[
2
4

]
,

[
3
6

]}
= span

{[
1
2

]}
.

The left nullspace is

null(AT ) = null

1 2
2 4
3 6

 = null

1 2
0 0
0 0

 = span

{[
−2
1

]}
.

Taking the dot product of the basis vectors, we find

[
1 2

] [−2
1

]
= −2 + 2 = 0,

and so every vector in col(A) is perpendicular to every vector in null(AT ).

Inquiry 8.10: Consider the vector v = [ 1 0 −1 0 ]T ∈ R4, and let A ∈M4×4.

� Suppose that [ 1 0 0 0 ]T ∈ col(A) and [ 0 0 −1 0 ] ∈ null(A). Is v in either the column space
or the nullspace? Does it have to be?

� Find two vectors in R4 that are perpendicular to v. Explain why this gives you a 4 × 2
matrix that contains v in its left nullspace.

Example 8.11. For a practical application of these spaces, consider the following two matrices, both
representations of the directed graph below. In Ainc, the rows correspond to edges, and the columns
correspond to vertices: each row has a −1 for the vertex where the edge starts and a 1 for the vertex
where the edge ends. This is called an incidence matrix . In Aadj , (i, j)-entry is 1 if there is a directed
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edge from vi to vj , and 0 otherwise. This is called the adjacency matrix .

Ainc =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 Aadj =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0


v1

v2 v3

v4

e2

e3

e5

e1

e4

Bringing the matrix (Ainc)
T to row reduced echelon form gives informsation about the row space of

Ainc and the left nullspace of Ainc. The linearly independent rows of Ainc are the rows corresponding
to the edges e2, e2, e4, and these edges form a spanning tree of the graph. The dependent row 3,
corresponding to edge e3, is dependent because adding it would create a cycle in the graph (among
v1, v2, v3), and cycles contain redundant information, so we want to get rid of cycles. Similarly we get
a cycle if we add row 5, corresponding to edge e5, because then we have a cycle of four edges.

8.3 Exercises

Exercise 8.1. Find a basis for the column space, nullspace, row space, and left nullspace of

A =


0 1 a 0 a 0
0 0 1 b 0 b
0 0 0 1 c c
0 0 0 0 0 0

 ,
for a, b, c ∈ R. Do the bases change if any of a, b, c are zero?

Exercise 8.2. Let A =

0 1 0
0 0 1
0 0 0

. Describe the four fundamental subspaces of A, A + I, and

A+A2.

Exercise 8.3. Let u = [ 1
2 ] and v = [ 3

4 ].

1. Construct a 2× 4 matrix A for which col(A) = span({u,v}).

2. Find a basis for the column space and row space of uvT + (uvT )2.
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Lecture 9: Orthogonality

Chapter 4.1 in Strang’s “Linear Algebra”

� Fact 1: Two orthogonal subspaces are orthogonal complements if their dimensions sum up to
the dimension of the space they are in.

� Fact 2: The column space is the orthogonal complement to the left nullspace, and the nullspace
is the orthogonal complement to the row space.

� Skill 1: Determine if the columns of a matrix are orthogonal.

� Skill 2: Determine if two subspaces are orthogonal.

The vector space pairs column space / nullspace and row space / left nullspace are special because
of the relationship of each element of the pair to the other. In this lecture we will generalize this
relationship.

9.1 Orthogonal spaces

Recall from Lecture 1 that two vectors u,v ∈ Rn are orthogonal if u •v = uTv = 0. Note that in this
case we have something that looks like the Pythagorean theorem:

‖u + v‖2 = (u + v) • (u + v) = u • u + 2 u • v︸ ︷︷ ︸
0

+v • v = ‖u‖2 + ‖v‖2.

If u,v are orthogonal and both have length 1, then they are called orthonormal

Definition 9.1: Two subspaces U, V ⊆ Rn are orthogonal if every pair of vectors u ∈ U,v ∈ V
is orthogonal. We say that “U is orthogonal to V ” and “V is orthogonal to U”, which both
mean the same thing.

Example 9.2. Consider the following subspaces of Euclidean space.

R

R

U

V

R

RR

V
U

R

RR

V
U

lines at 90◦ to each other in
R2 are orthogonal

a line coming out of a plane
in R3 at 90◦ is orthogonal to

the plane

two planes in R3 that
“intersect at 90◦” are not

orthogonal

Two planes “intersecting at 90◦” does not make sense, because any angle can be found between the
two planes with vectors in them. The planes intersect in a 1-dimensional vector subspace (the x-axis),
and the inner product of [ 1 0 0 ]T with itself is not zero.
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Inquiry 9.3: In Example 9.2 above, the third example with two planes looks like it “should”
describe a perpendicular intersection.

� Construct bases for U and for V of two vectors each. Make it so that the bases have a
common vector.

� Take the symmetric difference of the two basis sets. What is the angle between the two
vectors?

Give a proper description of what the “perpendicular feeling” in the picture is, using bases.

Example 9.4. For A ∈Mm×n, the nullspace null(A) and the row space row(A) are orthognal to each
other. Recall that x ∈ null(A) if Ax = 0. Another way of saying this is, for ri ∈ Rn a row of A, that

− r1 −
− r2 −

...
− rm −

x =


r1 • x
r2 • x

...
rm • x

 =


0
0
...
0

 ,
and since the row space row(A) = span({r1, . . . , rm}), we see that v • x = 0 for any v ∈ row(A) and
for any x ∈ null(A). Applying the same observation to the transpose AT , we see that the left nullspace
of A (which the nullspace of AT ) is orthogonal to the column space of A (which is the row space of
AT ).

Inquiry 9.5: This inquiry uses Python, and follows the Pyhton notebook on the course website.

� Generate 100 real-valued vectors R2, with entries in the range [0, 5]. How many pairs are
orthogonal? How many have inner product very close to zero?

� Generate 100 integer-valued vectors R2, with entries in {0, 1, 2, 3, 4, 5}. How many pairs
are orthogonal? How many would you expect to be orthogonal?

� Generalize the previous point to R3.

Remark 9.6. To check that two vector spaces are orthogonal, it suffices to check that every pair of
elements u ∈ B, v ∈ B′ are orthogonal, for B a basis of U and B′ a basis for V .

We now consider orthogonality in the context of particular matrices.

Example 9.7. The matrix Rθ :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is called the rotation matrix , since the angle between

v ∈ R2 and Rθv ∈ R2 is exactly θ. The columns of Rθ are orthogonal, as

[
cos(θ) sin(θ)

] [− sin(θ)
cos(θ)

]
= − cos(θ) sin(θ) + sin(θ) cos(θ) = 0,

for any angle θ. The columns are also orthonormal, as

[
cos(θ) sin(θ)

] [cos(θ)
sin(θ)

]
= cos2(θ) + sin2(θ) = 1,

[
− sin(θ) cos(θ)

] [− sin(θ)
cos(θ)

]
= sin2(θ) + cos2(θ) = 1.

Example 9.8. Consider a matrix A ∈ M3×6 as below. It does not have all orthogonal rows and
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columns, as row reduction shows we have only two pivots, meaning the row rank = column rank is 2:

A =

1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 RREF−−−−−→

1 2 0 1 2
0 0 1 1 1
0 0 0 0 0

 , AT =


1 1 2
2 2 4
3 4 8
4 5 10
5 6 12

 RREF−−−−−→


1 0 0
0 0 0
0 1 2
0 0 0
0 0 0

 .
That is, columns 1 and 3 of A describe the 2-dimensional column space orthogonal to the 1-dimensional
left nullspace of row 3. Analogously, columns 2,4,5 ofA describe the 3-dimensional nullspace orthogonal
to the row space of rows 1 and 2 of A:

col(A) = span


1

1
2

 ,
3

4
8

 is orthogonal to null(AT ) = span


 0
−2
1

 ,

null(A) = span




−2
1
0
0
0

 ,

−1
0
−1
1
0

 ,

−2
0
−1
0
1


 is orthogonal to row(A) = span




1
2
3
4
5

 ,


1
2
4
5
6


 .

We are left with a 2 × 2 invertible submatrix of A, hiding in the intersection of the pivot rows and
pivot columns. This submatrix is important for finding left and right inverses of non-square matrices,
and for singular value decomposition, which we will see later in the course.

A =

 1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 , Ainv =

[
1 3
1 4

]
.

9.2 Orthogonal relationships

Definition 9.9: If two subspaces U, V ⊆ Rn are orthogonal and dim(U) + dim(V ) = n, then
each is the orthogonal complement of the other in Rn. That is, U is the orthogonal complement
of V , written U = V ⊥, and V is the orthogonal complement of U , written V = U⊥.

Remark 9.10. Recall the concept of codimension from Definition 7.18. The codimension of a space
is equal to the dimension of its orthogonal complement. That is, codim(U) = dim(U⊥).

Remark 9.11. It follows that, whenever we have orthogonal complements U = V ⊥, with U, V ⊆ Rn

subspaces, then:

� U + V = Rn, or in other words,

� any x ∈ Rn can be expressed as a sum x = u + v of two elements, u ∈ U and v ∈ V .

Theorem 9.12. Let U, V be subspaces of Rn. Then

1. (U⊥)⊥ = U

2. (U + V )⊥ = U⊥ ∩ V ⊥

3. (U ∩ V )⊥ = U⊥ + V ⊥

Proof. We only prove the second point, you will prove the other points in your homework. Recall
that U + V = {u + v : u ∈ U,v ∈ V }. Take u ∈ U , v ∈ V , and x ∈ (U + V )⊥. To see that
(U + V )⊥ ⊆ U⊥ ∩ V ⊥, notice that u,v ∈ U + V , hence

u • x = 0 =⇒ x ∈ U⊥, v • x = 0 =⇒ x ∈ V ⊥,

56



and so x ∈ U⊥ ∩V ⊥. Since the vectors were arbitrary, we get that (U +V )⊥ ⊆ U⊥+V ⊥. To see that
U⊥ ∩ V ⊥ ⊆ (U + V )⊥, take y ∈ U⊥ ∩ V ⊥, which means that both y ∈ U⊥ and y ∈ V ⊥. Consider the
arbitrary element u + v ∈ U + V , for which

y • (u + v) = y • u + y • v = 0 + 0 = 0,

meaning that y ∈ (U+V )⊥. Again, since the vectors are arbitrary, it follows that U⊥∩V ⊥ ⊆ (U+V )⊥.
Combining these two statements, we get that (U + V )⊥ = U⊥ ∩ V ⊥.

Example 9.13. Combining Example 9.4 and the rank-nullity theorem from Lecture 8, for A ∈Mm×n
we see that

� the nullspace and row space are orthogonal complements: null(A) = row(A)⊥

� the left nullspace and column space are orthogonal complements: null(AT ) = col(A)⊥

That is, along with Remark 9.11, any x ∈ Rn can be written as a sum x = xr+xn, where xr ∈ row(A)
and xn ∈ null(A). It follows that no row of A can be in the nullspace of A.

Inquiry 9.14: Let V be a vector space and U,W ⊆ V subpaces, with U = W⊥.

� If dim(V ) = n and dim(U) = dim(W ), explain what k must be, in terms of n.

� You are given that U = span(u1, . . . ,ui) and W = span(w1, . . . ,wj). Explain the rela-
tionship between i, j, n.

We finish this lecture with an observation about bases of Rn.

Remark 9.15. Recall that to be a basis of Rn, a set of vectors has to be linearly independent and
had to span Rn. It follows that:

� If a set of n vectors is linearly independent, it spans Rn.

� If n vectors span Rn, they must be linearly independent.

The second fact comes from considering an n× n matrix A whose columns span Rn, or equivalently,
where for every b ∈ Rn there is a unique solution x in Ax = b. If we argue that the columns are
linearly dependent, then there must be at least one special solution, and so infinitely many solutions
to Ax = b, but this contradicts what we originally assumed.

9.3 Exercises

Exercise 9.1. Confirm the observation from Remark 9.6. That is, let B = {u1, . . . ,uk} be a basis
for a vector space U ⊆ Rn, and let B′ = {v1, . . . ,v`} be a basis for a vector space V ⊆ Rn. If you
know that ui · vj = 0 for all i, j, check that u • v = 0 for arbitrary elements u ∈ U and v ∈ V .

Exercise 9.2. Check that the claim about the angle between v and Rθv from Example 9.7 is indeed
true.

Exercise 9.3. Let A ∈ Mm×n. Show that there is a bijective function f : row(A) → col(A). Hint:
use orthogonality and the decomposition of vectors described in Example 9.13.

Exercise 9.4. Let U, V be subspaces of Rn.

1. Show that (U⊥)⊥ = U .

2. Show that (U ∩ V )⊥ = U⊥ + V ⊥.
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3. Suppose there exist matrices A,B with U = col(A) and V = col(B). Find a matrix C for which
null(C) = (U + V )⊥.
Hint: construct C as a block matrix.

Exercise 9.5. Consider the following two planes, as subspaces of R3:

P1 = {x = (x1, x2, x3) ∈ R3 : 3x1 − 4x2 + x3 = 0},
P2 = {x = (x1, x2, x3) ∈ R3 : 5x1 − 10x3 = 0}.

1. Find normal vectors n1 and n2 to the planes P1 and P2, respectively.

2. Find bases B1 and B2 for the planes P1 and P2, respectively.
Hint: the basis of a plane is the nullspace of the defining equation.

3. Construct a 2× 3 matrix A1 whose row space is P1. Show that the nullspace of A1 is the span
of n1.

4. Construct a 3× 2 matrix A2 whose column space is P2. Show that the left nullspace of A2 the
span of n2.
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Lecture 10: Projections

Chapter 4.2 in Strang’s “Linear Algebra”

� Fact 1: A projection of a vector is another vector.

� Fact 2: Projections are “best approciximations”

� Skill 1: Compute the projection of vectors onto subspaces.

We continue our study of orthogonality by describing how it affects arbitrary vectors, not just ones in
the vector subspaces being considered.

10.1 Projecting onto lines

To project a vector v ∈ R3 onto some other vector w ∈ R3 (or onto some plane P going through the
origin), means to create a new vector that points in the same direction as w (or lies in P ), and is “as
close as possible” to the first vector v.

R

R

R

Pspan(w)
•v••

•

Since both w and P are subspaces of R3, projections can be understood in (at least) two ways:

1. the projection of v is the part of v that lies in the subspace to which you are projecting

2. the projection of v produces another vector v′, so projecting is simply multiplying by some
appropriate matrix A: Av = v′

Both of these approaches are correct.

Example 10.1. Projecting v ∈ R3 onto the y-axis is multiplying v by
[

0 0 0
0 1 0
0 0 0

]
. Projecting v onto the

xy-plane is multiplying v by
[

1 0 0
0 1 0
0 0 0

]
.

In general, projecting a vector u onto a vector v uses the formula for the angle between them, from
Proposition 1.17. Given two such arbitrary vectors, we want to compute the vector p, which goes in
the direction of v, and is one side of a right triangle with u as hypotenuse.

R

R

u

v

p
θ

cos(θ) =
u • v

‖u‖‖v‖ =
adjacent

hypotenuse
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Since the hypotenuse has length ‖u‖, the adjacent, which is p, must have length u•v
‖v‖ . The vector v

may not have unit length, but the vector v
‖v‖ does, and it goes in the same direction as v. Hence p

may be expressed as
u • v

‖v‖ ·
v

‖v‖ =
u • v

‖v‖2 v =
u • v

v • v
v.

Definition 10.2: The projection of u onto v is the vector

projv(u) =
u • v

v • v
v. (3)

The difference u− projv(u) is called the error vector .

Example 10.3. We note two trivial examples of projections.

� Projecting u onto a line which is orthogonal to u gives the zero vector. This makes sense,
because u • v = 0 for all v in this line. In this case the error vector is equal to u.

� Projecting u onto the line on which u already lies gives back u. This also makes sense, because
the line is all vectors cu, for c ∈ R, and for v = cu, the expression u•v

v•v becomes 1
c , and 1

cv = u.
In this case the error vector is the zero vector.

Considering the dot product as multiplication of matrices, Equation (3) becomes

uTv

v • v
v =

vTu

v • v
v = v

vTu

v • v
=

vvTu

v • v
=

1

v • v
vvT︸ ︷︷ ︸

P

u. (4)

The matrix P is the rank one projection matrix . The idea for it being rank one is that the projection
goes to a 1-dimensional subspace, a line.

Inquiry 10.4: This inquiry continues the ideas from Example 10.3 above

� Explain what properties of scalar, vector, or matrix operations are being used for each
equality in Equation (4).

� Let P =
[
a b
b c

]
∈ M2×2 be a symmetric matrix. Using Equation (4), explain what condi-

tions must be true for a, b, c ∈ R for P to represent a projection matrix.

Remark 10.5. The error vector e = u−p from Definition 10.2 is also a type of projection, but onto
a different vector, one that is orthogonal to v and p.

u

v

w

p

e

To get a matrix for the projection of u onto w, we want the result to be e = u − p. Since p = Pu,
we quickly see that e = (I − P )u. Hence the projection matrix is I − P .

10.2 Projecting onto subspaces

Next we consider the more general situation of projection a vector onto a subspace. Since all vector
spaces have a spanning set, we consider a subspace to be a span of vectors. Combining these vectors
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as columns of a matrix, we get the column space.

Definition 10.6: Let V = span{v1,v2, . . . ,vk} ⊆ Rn, and let A be the matrix with these
vectors as its columns. For any u ∈ Rn, the projection of u onto V is the vector

projV (u) = A(ATA)−1AT︸ ︷︷ ︸
P

u.

We assume the vi are linearly independent, as otherwise ATA does not have an inverse. If the vi
are not independent, remove the vectors that depend on others (this does not change the span).

The motivation for this expression is slightly more tedious, and comes from observing that for p = Ax
the projection (for some appropriate x), the vector u−Ax is orthogonal to the column space of A.

Remark 10.7. Since V ⊥ is the orthogonal complement of V , by Remark 9.11, every u ∈ Rn can be
expressed as u = v + v′, where v ∈ V and v′ ∈ V ⊥. Since matrix multiplication is linear, and using
the trivial projections from Example 10.3, it follows that

projV (u) = projV (v + v′) = projV (v) + projV (v′) = v + 0 = v,

projV ⊥(u) = projV ⊥(v + v′) = projV ⊥(v) + projV ⊥(v′) = 0 + v′ = v′,

and so we always have v = projV (v) + projV ⊥(v) for any v ∈ Rn. This gives a matrix for projecting
onto the orthogonal complement, as

projV ⊥(u) = u− projV (u) = u−A(ATA)−1ATu = (I −A(ATA)−1AT )︸ ︷︷ ︸
P

u.

Inquiry 10.8: Let V = R2, choose two perpendicular vectors v1,v2 ∈ R2, and compute the
two projection matrices P1 = projspan(v1) and P2 = projspan(v2). Let w ∈ R2 be a non-trivial
linear combination of both of the vectors.

� Explain why P1P2w = P2P1w = 0. Is P1P2 = P2P1 = 0?

� Explain why P1P1w = P1w and P2P2w = P2w. Is P1P1 = P2P2 = I?

See Exercise 10.1 for more guidance.

10.3 Exercises

Exercise 10.1. Show that projecting twice onto a line is the same as projecting once. That is, if P
is the projection matrix from Equation (4), show that P 2 = P .

Exercise 10.2. Let v = (1, 1, 1) ∈ R3.

1../ Take random vectors in the unit square in R3, and plot the average error, up until 1000 vectors,
when projecting to v.

2. What does this number converge to?

3. Bonus: Prove this limit.

Exercise 10.3. Find the projection of v = (−3,−1, 6) onto the plane 3x+4y−9z = 0 and its normal
vector.

Exercise 10.4. Let v = (x, y, z, w).

1. What matrix M projects v onto the xy-plane to produce (x, y, 0, 0)? That is, find M for
Mv = (x, y, 0, 0).
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2. What matrix N cycles the axes to produce (w, x, y, z)? That is, find N for Nv = (w, x, y, z).

Exercise 10.5. The set U ⊆ Rn is a subspace with basis u1, . . . ,uk. These basis vectors are the
columns of the n× k matrix A. For any v ∈ Rn, define the reflection of v in U to be the vector

reflU (v) := v− 2projU⊥(v).

1. Construct the matrix of reflU .

2. Show that reflU preserves length, that is, show that ‖reflU (v)‖ = ‖v‖ for all v ∈ Rn.
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Lecture 11: The least squares approximation

Chapter 4.3 in Strang’s “Linear Algebra”

� Fact 1: The least squares approximation is a vector x̂ that is “the closest solution to” Ax = b
when b 6∈ col(A)

� Fact 2: If Ax = b does not have a solution, then ATAx = b will have a solution, as long as the
rows of A are linearly independent.

� Skill 1: Find the least squares solution to a matrix equation with no solution.

� Skill 2: Find the degree-d polynomial that approximates a collection of points in R2.

One of the main applications of projections is finding the the closest solution to a linear system that
has no exact solution.

11.1 Least squares for lines

When given points in the plane R2, it is often assumed there is some underlying relationship among
the points. To discover this relationship from the points, some approximation must be made, becaused
the points are never arramnged in a neat pattern.

Example 11.1. Consider the points (1, 4), (7, 1), (5, 3) ∈ R2. Is there a line y = ax+ b goes through
all of them? If yes, which one is it? If no, why?

R

R

There is no such line, because any two of the points determine a line that does not intersect the third
point. We are equivalently asking for a solution to three equations, or to a linear system.

4 = a+ b
1 = 7a+ b
3 = 5a+ b

1 1
7 1
5 1


︸ ︷︷ ︸

A

[
a
b

]
=

4
1
3

  1 1 4
7 1 1
5 1 3

 G.E.−−−−→

 1 1 4
0 −6 −27
0 0 1



Note that [ 4 1 3 ]T is not in the column space of the matrix A, since the auigmented matrix by Gaussian
elimination gives the contradictory equation 0 = 1 in the last row. However, we still want to find a
line that is “as close as possible”, and projections help us do that.

Remark 11.2. Above we had a matrix equation Ax = b for which b 6∈ col(A). However, we can
project b onto col(A), which will guarantee a solution. That is, we can always write b = p + e, where
p ∈ col(A) and e is orthogonal to col(A).
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Definition 11.3: Let A ∈ Mm×n and b ∈ Rm, with b = p + e and p ∈ col(A). The least
squares solution to Ax = b is a vector x̂ that, equivalently,

� makes the distance between Ax and b as small as possible

� makes the number ‖Ax− b‖ as small as possible

� is the solution to Ax = p

In practice, we minimize ‖Ax− b‖2 instead of ‖Ax− b‖, since square roots are hard to deal with.
It does not matter which expresion we minimize, because a < b iff a2 < b2 for a, b nonnegative. The
first approach to finding the least squares solution is to use calculus, because that is how to find the
minimum of a quadratic function.

Example 11.4. Using the equation Ax = b fom Example 11.1, we have

‖Ax− b‖2 =

wwwwww
1 1

7 1
5 1

[a
b

]
−

4
1
3

wwwwww
2

=

wwwwww
 a+ b

7a+ b
5a+ b

−
4

1
3

wwwwww
2

=

wwwwww
 a+ b− 4

7a+ b− 1
5a+ b− 3

wwwwww
2

,

which simplifies to

M(a, b) = (a+ b− 4)2 + (7a+ b− 1)2 + (5a+ b− 3)2. (5)

To find its minimum, we take the derivative. Since this is a function in two variables, we have two
derivatives to take.

∂M

∂a
= 2(a+ b− 4) + 2(7a+ b− 1)(7) + 2(5a+ b− 3)(5) = 150a+ 26b− 52

∂M

∂b
= 2(a+ b− 4) + 2(7a+ b− 1) + 2(5a+ b− 3) = 26a+ 6b− 16

Having these derivatives be zero produces a new matrix equation to solve:[
150 26
26 6

] [
a
b

]
=

[
52
16

]
:

[
150 26 52
26 6 16

]
RREF−−−−−→

[
1 0 −13

28
0 1 131

28

]
We now see the line y = −13

28x+ 131
28 is the best approximation:

R

R

zoom in−−−−−−→

R

R

(5, 3)

y = ax+ b

The vertical distances from the points to the line have been minimized. Indeed, for example with
(5, 3), minimizing the vertical distance between it and the line y = ax+ b means making the value

‖(5, 5a+ b)− (5, 3)‖2 = ‖(5− 5, 5a+ b− 3)‖2 = (5− 5)2 + (5a+ b− 3)2 = (5a+ b− 3)2

as small as possible, which is exactly the third term in M(a, b) from Equation (5).
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Inquiry 11.5: This question is about least squares approximations.

� You already know that two points in R2 define a unique line. Explain why the method
provided in Example 11.4 will produce this unique line.

� Suppose you are given three points above are above each other, such as (1, 2), (1, 4), and
(1, 6). Explain why the described method will fail. How would you fix it?

� Explain why there is no problem with the task above if a fourth point is added at a different
x-value.

Remark 11.6. The “distance” from a point to the line can be throught of as the shortest length - not
always the vertical distance. This is sometimes called the perpendicular distance, and will be solved
by the method presented later in Lecture 22.

The second approach is to observe that for b = p + e, the error vector e is in the left nullspace of
A, since the column space and left nullspace are orthogonal complements.

Theorem 11.7. Let A ∈Mm×n. If b 6∈ col(A), then

1. the equation Ax = b has no solution, and

2. the equation ATAx = ATb does have a solution.

The justification for the second point of this statement is given in the folowing inquiry.

Inquiry 11.8: This inquiry explains the reasoning behind Theorem 11.7. Let Ax = b be a
matrix equation with b 6∈ col(A), and b = p + e, where p = projcol(A)(b).

� Explain why the error vector e ∈ null(AT ). Hint: use orthogonal complements.

� What does ATb simplify to, when b is replaced by p + e? Use what you showed above.

� Convince yourself that ATp ∈ col(AT ). Explain why this means that ATp 6∈ null(A).

� Show that if x ∈ null(A), then x ∈ null(ATA). Hint: use orthogonal complements.

� Show that if x ∈ null(ATA), then x ∈ null(A). Hint: use the positive definiteness of the
norm.

� Put everything together to get that ATp ∈ col(ATA). Explain why this means that
ATAx = ATb has a solution.

For points 4 and 5, see Exercise 11.2 for more guidance.

11.2 Least squares for higher degree polynomials

Suppose we want to generalize the previous section, and find a quadratic function that goes through
three points in the plane R2. Quadratics have the form y = ax2 + bx+ c, so there are three variables
a, b, c that need to be found.

Example 11.9. Three points always have a unique quadratic going through them (which can be
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found by back-substitution), so we add another point (8, 2) for increased difficulty.

R

R

4 = a+ b+ c
1 = 49a+ 7b+ c
3 = 25a+ 5b+ c
2 = 64a+ 8b+ c


1 1 1
49 7 1
25 5 1
64 8 1


︸ ︷︷ ︸

A

ab
c


︸︷︷︸
x

=


4
1
3
2


︸︷︷︸
b

The process then is very similar, except we have three variables:

M(a, b, c) = ‖Ax− b‖2 = (a+ b+c−4)2 +(49a+7b+c−1)2 +(25a+5b+c−3)2 +(64a+8b+c−2)2.

Taking the derivative in all three variables gives

∂M

∂a
= 14246a+ 1962b+ 278c− 512,

∂M

∂b
= 1962a+ 278b+ 42c− 84,

∂M

∂c
= 278a+ 42b+ 8c− 20,

which, when placed into a system, leads to the solutions a = 1
372 , b = −241

620 , c = 2068
465 , as shown in the

plot above.

Definition 11.10: Let p1 = (x1, y1), . . . ,pn = (xn, yn) ∈ R2. The degree-d polynomial a0 +
a1x + a2x

2 + · · · + adx
d that approximates the points pi is the least squares solution to the

matrix equation 
1 x1 x2

1 · · · xd1
1 x2 x2

2 · · · xd2
...

...
...

. . .
...

1 xn x2
n · · · xdn



a0

a1
...
ad

 =


y1

y2
...
yn


The matrix on the left is called the Vandermonde matrix. This is the same as we used before,
but with rows rearranged (the solution will be the same).

Example 11.11. Suppose that we have four points in the plane. The degree 1, 2, and 3 appoximations
to the four points are given below. Note that individually, the points do not get close to the higher
degree approximations, but the degree 3 approximation does go through all of them.
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Inquiry 11.12: Let p1, . . . ,pn ∈ R2.

� Explain what condition must hold for the degree-(n − 1) polynomial given by Definition
11.10 to go through every one of the points perfectly.

� Let ε > 0 be a very small value, such as 1
1000 . Let n = 8, with pi = (i, ε) for i = 1, 2, 3, 4,

and pi = (i,−ε) for i = 5, 6, 7, 8. Explain which degree-d approximation, for d = 1, . . . , 7,
is the “best” approximation for these points.

11.3 Exercises

Exercise 11.1. Using the setup from Example 11.1, finished in Example 11.4, to come to the same
conclusion (that is, the same best fit linear equation), but use the projection matrix instead of partial
derivatives.

Exercise 11.2. Let A ∈Mm×n. Show that A and ATA have the same nullspace.

Exercise 11.3. Consider the set of six points P = {p1, . . . , p6} ⊆ R2, with:

p1 = (−1, 3), p2 = (4, 6), p3 = (3, 1), p4 = (−2,−3), p5 = (6,−7), p6 = (−6, 4).

1. Either using the projection matrix or partial derivatives, find the line y = ax+b that is the least
squares approximation to the points.

2. Find a point p7 ∈ R2 such that the least squares approximation to P is the same as to P ∪{p7}.
Hint: Don’t redo all your work! Use an observation from partial derivatives.

3. Let c ∈ R. Find a point p8 ∈ R2 such that the least squares approximation to P ∪ {p8} has
slope c.

Exercise 11.4. ./ Write a function in Python that takes two inputs:

� a list of points in R2,

� a positive integer d,

and returns the degree-d least squares approximation to the input points. You may use the solve

command from numpy.linalg or scipy.linalg .

Exercise 11.5. Consider the following collection of four points P = {p1, p2, p3, p4} ⊆ R3:

p1 = (1,−2,−4), p2 = (0, 5, 5), p3 = (−6,−7, 2), p4 = (1, 4,−1).

1. Generalize the least squares approach and find the closest plane H in R3 to the points in P
(instead of the closest line in R2).

2. Project the points in P onto the plane H from part 1.
Warning: The plane H will not go through the origin. You need to shift everything first.

Exercise 11.6. Find the least squares degree 1,2,3,4 polynomials that approximate the points

(−7, 2), (−6,−2), (−2,−1), (0, 3), (3, 0), (4, 1).

Plot all the functions and points together to confirm that the higher degree polynomials are better
approximations to the points.

Exercise 11.7. Any line in R3 may be given (not uniquely) by `(t) = (a1, a2, a3)t+ (b1, b2, b3).

1. Given two such arbitrary lines, find the location of the points on each which minimize the
distance between them.

2../ Take 1000 pairs of such random lines and find the average and standard deviation of the minimum
distance between the lines.
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Lecture 12: The Gram–Schmidt process

Chapter 4.4 in Strang’s “Linear Algebra”

� Fact 1: Every basis can be made into an orthonormal basis.

� Fact 2: The result of the Gram–Schmidt process depends on the order of the vectors input.

� Skill 1: Apply the Gram–Schmidt process to a set of vectors.

� Skill 2: Factorize a matrix A with linearly independent columns as A = QR, with A having
orthonormal columns.

12.1 Orthonormalizing a basis

We previously saw orthogonality and orthonormality in Section 9. We revisit it here from the per-
spective of bases. Recall that for a set of vectors B = {v1, . . . ,vk} to be orthonormal , they need to be
orthogonal (that is, vi · vj = 0 whenever i 6= j), and they need to be of unit length (that is ‖vi‖ = 1
for all i).

Remark 12.1. Placing orthonormal vectors v1, . . . ,vk ∈ Rn as columns in a matrix A will always

give ATA = I. For example, taking two orthonormal vectors
[√

3/2
1/2

]
and

[
−1/2√

32

]
in R2 as columns of

a matrix will show this property, as well as when we consider them as lying in the xy-plane of R3.

R

R

R

R

R

[√
3/2 1/2

−1/2
√

3/2

]
︸ ︷︷ ︸

AT

[√
3/2 −1/2

1/2
√

3/2

]
︸ ︷︷ ︸

A

=

[
1 0
0 1

]

[√
3/2 1/2 0

−1/2
√

3/2 0

]
︸ ︷︷ ︸

AT

√3/2 −1/2

1/2
√

3/2
0 0


︸ ︷︷ ︸

A

=

[
1 0
0 1

]

The key idea here is that even though there are many different pairs of orthonormal vectors, they all
have the common property that they multipy with their transpose to the identity matrix.

Example 12.2. We have already seen the rotation matrix Rθ :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
from Example 9.7 in

Lecture 9 has orthonormal columns:

RTθ Rθ =

[
1 0
0 1

]
.

Every single permutation matrix also has orthogonal columns:
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


︸ ︷︷ ︸

PT


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

P

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Remark 12.3. Whenever A ∈ Mm×n has orthonormal columns, the lengths of v and Av are the
same, for any v ∈ Rn. This follows directly from Remark 12.1:

‖Av‖2 = (Av) • (Av) = (Av)T (Av) = (vTAT )Av = vT (ATA)v = vT Iv = vTv = v • v = ‖v‖2.

Inquiry 12.4: Let V be a vector space, and U ⊆ V a subspace with basis vectors u1, . . . ,uk.
Suppose that the basis vectors are orthonormal.

� How does the formula for the projection matrix P simplify, when projecting onto U? See
Definition 10.6.

� Let v ∈ V . Express the projection projU (v) as a linear combination of the basis vectors
u1, . . . ,uk of U .

We are considering all the impacts of having an orthonormal basis, because a very helpful sim-
plification to many problems is to have an orthnormal basis. The basis you are given may not be
orthonormal, so you have to orthnormalize it. This process of making the basis orthonormal is the
Gram–Schmidt process.

Example 12.5. In the plane R2, every pair of vectors that do not lie on the same line form a basis
for the plane. However, some pairs of vectors u,v are more special than others - those which lie at a
90◦ angle to each other. Equivalently, it is those pairs u,v for which proju(v) = projv(u) = 0.

R

R
R

R

R

H

Vectors perpendicular to each other are much easier to deal with, so we try to only work with those.
This is the case also for subspaces of vector spaces, for example the plane H defined by 2x+3y−2z = 0
in R3. To find the two basis vectors of this plane, we compute a nullspace:

H = null
([

2 3 −2
])

= null
([

1 3
2 −1

])
= span

−3
2

1
0

 ,
1

0
1

 .

These two vectors in the span are not orthogonal to each other, as

−3
2

1
0


︸ ︷︷ ︸

u

•

1
0
1


︸︷︷︸
v

= −3

2
6= 0. In the plane H:

vu

v′

We would like to make them orthogonal to get a nicer basis. All that we need is to make v orthogonal
to u, and recalling that everything in the orthogonal complement of span(u) will fulfill this criteria,
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we simply project v onto span(u)⊥. Following the formula in Remark 10.5, this new vector is

v′ = projspan(u)⊥(v) = (I−P )v = v−v • u

u • u
u =

1
0
1

− −3/2

9/4 + 1

−3
2

1
0

 =

1
0
1

−−6

13

−3
2

1
0

 =

1− 9
13

6
13
1

 =

 4
13
6
13
1

 .
The two vectors u,v′ still span H, but now we have the added benefit of orthogonality:

u • v′ =

−3
2

1
0

 •
 4

13
6
13
1

 = − 6

13
+

6

13
= 0.

Algorithm 5 (The Gram–Schmidt Process): Suppose you have a set v1, . . . ,vn ∈ V of
linearly independent vectors. The Gram–Schmidt pocess will first create a set of orthogonal
vectors w1, . . . ,wn ∈ V , and then a set of orthonormal vectors q1, . . . ,qn ∈ V . They will have
all the same span: span(v1, . . . ,vn) = span(w1, . . . ,wn) = span(q1, . . . ,qn).

� Let w1 = v1

� For each i = 2, . . . , n:

– Let wi = vi −
(

projwi−1
(vi) + · · ·+ projw1

(vi)
)

.

� The orthonormal set of vectors is qi = wi
‖wi‖ .

Inquiry 12.6: Let V be a vector space and u,v ∈ V be linearly independent vectors.

1. What will be the output of the Gram–Schmidt process when it is run on v, 2v, 3v?

2. What will be the output of the Gram–Schmidt process when it is run on v,u,v + u?

3. Explain why running the Gram–Schmidt process on the two sets v,u,v+u and v,u+v,u
in that order will give the same result.

Example 12.7. Consider the vectors v1,v2,v3,v4 ∈ R4, placed as columns in the matrix
1 2 0 2
2 0 1 1
0 2 1 1
1 0 1 2


︸ ︷︷ ︸

A

RREF−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

These vectors form a basis, but the basis is clearly not orthnormal. If it were, the computations below
should give values 1 on the diagonal and 0 everywhere else:

1 2 0 1
2 0 2 0
0 1 1 1
2 1 1 2


︸ ︷︷ ︸

AT


1 2 0 2
2 0 1 1
0 2 1 1
1 0 1 2


︸ ︷︷ ︸

A

=


6 2 3 4
2 8 2 4
3 2 3 4
4 4 4 10

 6= I4.

Exercise 12.2 works through the Gram–Schmidt process on these vectors.

70



Inquiry 12.8: The three vectors u =

1
0
1

 ,v =

 0
−1
1

 ,w =

 1
−2
0

 span all of R3.

� Run the Gram–Schmidt process on u,v,w, in that order, and then on the different order
u,w,v. You may use a computer.

� Why are the results different? Is the span of the resulting vectors different?

� How do you think the two results are related?

If possible, visualize the locations of the vectors on a computer.

12.2 Factorizing and extending

As now is very common, we consider vectors as columns of matrices. Given some vectors as columns
in A, and the resulting orthonormal vectors in Q, a natural question arises: How are A and Q related?

Proposition 12.9. There exists a matrix R for which A = QR, or R = QTA, and it is given by

R =


− q1 −
− q2 −
− q3 −
− q4 −


 | | | |

v1 v2 v3 v4

| | | |

 =


qT1 v1 qT1 v2 qT1 v3 qT1 v4

0 qT2 v2 qT2 v3 qT2 v4

0 0 qT3 v3 qT3 v4

0 0 0 qT4 v4

 .
The proof of this statement follows immediately by observing that the construction of the qi meant

that qi • vj = 0 whenever j < i. Indeed, we first note that qi •wj = 0 whenever i 6= j, since the qi
point in the same direction as the wi. So for example,

q4 • v3 = q4 •
(
w3 + projw1

(v3) + projw2
(v3)

)
= q4 •w3︸ ︷︷ ︸

0

+ q4 • projw1
(v3)︸ ︷︷ ︸

0 because q4•w1=0

+ q4 • projw2
(v3)︸ ︷︷ ︸

0 because q4•w2=0

= 0.

Remark 12.10. Recall that to find the least squares solution to Ax = b, we projected b onto col(A)
as p. Since

Ax = b = p︸︷︷︸
in col(A)

+ e︸︷︷︸
orthogonal to col(A)

has no solution, but
ATAx = ATb = ATp︸︷︷︸

in col(ATA)

+ATe︸︷︷︸
0

does, least squares was about solving ATAx = ATb. Using the result from Proposition 12.9, this
equation becomes

ATAx = ATb

(QR)T (QR)x = (QR)Tb

RTQTQRx = RTQTb

RTRx = RTQTb (since QTQ = I)

Rx = QTb (since R and RT have inverses)

x = R−1QTb (since R has an inverse)

which requires much less multiplications for a computer to do that x = (ATA)−1ATb.
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Inquiry 12.11: Consider the vector space of all functions [0, 1]→ [0, 1], similar to Exercise 5.3,
with the “dot product” defined by f • g =

∫ 1
0 f(x)g(x) dx.

� Are the two functions x, x2 linearly independent? Are they orthogonal?

� Run the Gram–Schmidt process on x, x2 to get an orthonormal set of functions.

� Changing the space to set of all functions [0, 2π] → [0, π], check that sin(x), cos(x) are
orthogonal.

Remark 12.12. The Gram–Schmidt process is useful for extending a basis. That is, given an or-
thonormal basis for U ⊆ V , we can extend the basis to a basis for all of V by simply running the
Gram–Schmidt process on the vectors in the given basis, and add as many vectors from V as necessary.
For example, given

V = R4 = span




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 and U = span




1
0
−1
0

 ,


2
2
2
1


 ⊆ V,

we can extend the two vectors in the basis of U to a basis of V . Since the given basis vectors of U are
orthogonal (but not orthonormal), the first part of Gram–Schmidt process will not affect them. Since
V = R4 is 4-dimensional, we know two facts:

� two vectors are not enough for a basis of V , so

[
1
0
−1
0

]
,

[
2
2
2
1

]
is too small to be a basis, and

� six vectors are too many for a basis of V , so

[
1
0
−1
0

]
,

[
2
2
2
1

]
,

[
1
0
0
0

]
,

[
0
1
0
0

]
,

[
0
0
1
0

]
,

[
0
0
0
1

]
is too big to be a

basis.

To find an orthonormal basis of V that contains the two basis vectors of U , simply run the Gram–
Schmidt process on all six vectors, beginning with the two from the basis of U .

12.3 Exercises

Exercise 12.1. Check that the columns of the 2×2 rotation matrix (introduced in Lecture 9.1) and of
the 3×3 permutation matrices (introduced in Lecture ??) are all orthogonal. Are they orthonormal?

Exercise 12.2. Apply the Gram-Schmidt process to the vectors


1
2
0
1

 ,


2
0
2
0

 ,


0
1
1
1

 ,


2
1
1
2

.

Exercise 12.3. Consider the 2-dimensional subspace H ⊆ R4 defined by

H =

{
(x, y, z, w) ∈ R4 :

2x+ 3y − w = 0,
y − z + 2w = 0.

}
1. Express H as a span of two vectors.

2. Apply the Gram–Schmidt process to the two vectors from above to get H as a span of two
orthonormal vectors.

3. The space R4 has the xy-plane as a 2-dimensional subspace, with basis

[
1
0
0
0

]
,

[
0
1
0
0

]
. Give the

change of basis matrix from the two vectors in part 2. to these two vectors.
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Lecture 13: Generalized distances

Chapter IV.10 in Strang’s “Learning from Data”

� Fact 1: The inner product generalizes the concept a distance for other spaces.

� Fact 2: (Relative) positions of points cna be recovered knowing just the distances between them.

� Skill 1: Compute the length of, angle between, and projections of vectors in arbitrary inner
product spaces.

� Skill 2: Construct the position matrix knowing just the distance matrix.

We now take a small detour from Strang’s Linear Algebra and work with the material from Strang’s
Learning from Data. The topic follows the topics of the previous lectures, expanding on the idea of
orthogonality and unit length in different vector spaces.

13.1 Functions on spaces

Definition 13.1: Let V be a vector space. An inner product on V is a function 〈 · , · 〉 : V 2 → R
such that for all v,u,w ∈ V and all c ∈ R,

� (positive definite) 〈v,v〉 > 0 with 〈v,v〉 = 0 if and only if v = 0

� (symmetric) 〈v,u〉 = 〈u,v〉

� (multiplicative) 〈cv,u〉 = c〈v,u〉 = 〈v, cu〉

� (bilinear) 〈v + u,w〉 = 〈v,w〉+ 〈u,w〉

A vector space V that has an inner product is called an inner product space. Given any two
vectors u,v in an inner product space V ,

� they are orthogonal if 〈u,v〉 = 0,

� the angle θ ∈ [0, 2π) between them is given by cos(θ) = 〈u,v〉
‖u‖‖v‖ .

Recall that the only required operations for a vector space were scalar multiplication and vector
addition (a dot product was not required).

We have already seen an example of the inner product in the dot product of two vectors. Just like
there, every inner product has a notion of distance associated to it: the norm, or length, of v in an
inner product space V is

‖v‖ =
√
〈v,v〉 =

√
v • v.

Example 13.2. There are many examples of inner product spaces besides Rn with the dot product.

� The space Mm×n of all m× n matrices over R is an inner product space when using 〈A,B〉 :=
trace(ATB). The trace is the sum of the entries on the diagonal.

� The space C[0, 1] of all continuous functions with domain [0, 1] and inner product

〈f, g〉 :=

∫ 1

0
f(x)g(x) dx

is an inner product space. Adjusting the domain to any interval [a, b] ⊆ R still makes this an
inner product space.
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Inquiry 13.3: This inquiry is about the properties of an inner product space V given in Defi-
nition 13.1. Using them, show that:

� 〈0,v〉 = 〈v, 0〉 for all v ∈ V

� the only vector in V that is orthogonal to itself is 0

� the parallelogram equality holds: ‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2)

Theorem 13.4. The inner product 〈 · , · 〉 in any inner product space V 3 v,w satisfies:

� the Cauchy–Schwarz inequaity: |〈v,w〉| 6 ‖v‖‖w‖ with equality iff v and w are linearly dependent

� the triangle inequality: ‖v + w‖ 6 ‖v‖+ ‖w‖

Example 13.5. Using the first point of Theorem 13.4, we can show that the functions sin(x) and
cos(x) are linearly independent in C[0, 2π], and that sin(x) and 2 sin(x) are linearly dependent.

sin(x)

2 sin(x)

cos(x)

π

4

π

2

3π

4

π

5π

4

3π

2

7π

4

2π

-2

-1

1

2

We find that

〈sin(x), cos(x)〉 =

∫ 2π

0
sin(x) cos(x) dx =

∫ 2π

0

sin(2x)

2
dx =

− cos(4π)

4
− − cos(0)

4
= 0,

‖sin(x)‖2 =

∫ 2π

0
sin2(x) dx =

∫ 2π

0

1− cos(2x)

2
dx = π −

(
sin(4π)

4
− sin(0)

4

)
= π,

‖cos(x)‖2 =

∫ 2π

0
cos2(x) dx =

∫ 2π

0

cos(2x) + 1

2
dx =

(
sin(4π)

4
− sin(0)

4

)
+ π = π.

Since 0 6= √π · √π = π, the functions sin(x) and cos(x) are linearly independent, but since 2π =√
π ·
√

4π, the functions sin(x) and 2 sin(x) are linearly dependent. Also note that the positive definite
property of the inner product is satisfied.

The notions of angle between vectors, orthogonality, unit length, all apply to inner product spaces
in the same way they applied to Rn with the dot product.

Example 13.6. The angle between the matrices A =
[

4 1
−1 0
7 2

]
and B =

[
0 2
3 −1
2 0

]
is

cos−1

(
trace(ATB)

trace(ATA)trace(BTB)

)
= cos−1

 trace
([

4 −1 7
1 0 2

] [ 0 2
3 −1
2 0

])
trace

([
4 −1 7
1 0 2

] [ 4 1
−1 0
7 2

])
trace

([
0 3 2
2 −1 0

] [ 0 2
3 −1
2 0

])


= cos−1

(
trace ([ 9 9

4 2 ])

trace ([ 66 18
18 5 ]) trace

([
13 −3
−3 5

]))

= cos−1

(
11

1278

)
≈ 89.51◦
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Remark 13.7. The Gram–Schmidt process in Lecture 12 was done on vectors using the usual norm
in Rn. By obeserving that the projection operation can be given in terms of inner product, the
Gram–Schmidt process can be applied to any inner product space:

projv(u) =
vTu

vTv
v =

v · u
v · vv =

〈v,u〉
〈v,v〉v.

Inquiry 13.8: Consider the inner product spaces C[a, b] and M2×2.

� What is the angle between x+ 1 and x2 + 1 in C[0, 1]?

� Compute the projection of cos(x) onto sin(x) in C[0, 2π].

� Compute the projection of the rotation matrix Rθ onto [ 1 1
1 1 ]. For what angles θ are these

matrices orthogonal to each other?

13.2 Distance matrices

Recall the points from Exercise 11.9 in Lecture 12, which were used in the motivating least squares
example. If the points were located elsewhere but their relative position to each other was the same,
we can still solve the least squares problem, up to some x-shift and y-shift. This situation has two
advantages:

� only requires relative information: measurements only need to be made among the data, not
between data and something else (like a reference point - the origin)

� allows for spaces that are not Rn: on the sphere, on a grid, with barriers, etc

Example 13.9. Consider the distances among the four points, slightly adapted from Exercise 11.9.

R

R

a

c

b

d

a = (1, 3)
b = (5, 4)
c = (7, 1)
d = (8, 2)

X =

[
1 5 7 8
3 4 1 2

]

The matrix X is called the position matrix . We can easily compute the symmetric distance matrix

D =


‖a− a‖2 ‖a− b‖2 ‖a− c‖2 ‖a− d‖2
‖b− a‖2 ‖b− b‖2 ‖b− c‖2 ‖b− d‖2
‖c− a‖2 ‖c− b‖2 ‖c− c‖2 ‖c− d‖2
‖d− a‖2 ‖d− b‖2 ‖d− c‖2 ‖d− d‖2

 =


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0

 ,
which contains the squares of the distnce among the points. The relationship between X and D is not
so clear, however.

Proposition 13.10. Let D ∈ Mk×k be the matrix containg squares of distances among k points
v1, . . . ,vk ∈ Rn. The relationship between D and the position matrix X is given by

XTX =
1

2

s
[
1 1 · · · 1

]
+


1
1
...
1

 sT −D

 ,
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where the position vector sT = [ ‖v1−v1‖2 ‖v1−v2‖2 ··· ‖v1−v2‖2 ] is the first row of the matrix D.

Example 13.11. Continuing Example 13.9, we fix one of the points as a reference point. Without
loss of generality, we simply say

a = 0.

That is, we subtract a from all the vectors a,b, c,d to get new ones (which we call the same). Any
other vector b, c,d could have been chose. Now the first line of D becomes (squares of) the lengths
‖ · ‖ of all the vectors a,b, c,d, and the lengths also appear on the diagonal of XTX:

D =


0 ‖b‖2 ‖c‖2 ‖d‖2
‖b‖2 0 ‖b− c‖2 ‖b− d‖2
‖c‖2 ‖c− b‖2 0 ‖c− d‖2
‖d‖2 ‖d− b‖2 ‖d− c‖2 0

 , XTX =


0 0 0 0
0 b • b b • c b • d
0 c • b c • c c • d
0 d • b d • c d • d

 .
Applying the result of Proposition 13.10, we construct the position vector sT = [ 0 ‖b‖2 ‖c‖2 ‖d‖2 ] =
[ 0 17 40 50 ], and compute

XTX =
1

2

s
[
1 1 1 1

]
+


1
1
1
1

 sT −D



=
1

2




0
17
40
50

 [1 1 1 1
]

+


1
1
1
1

 [0 17 40 40
]
−


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0




=
1

2




0 0 0 0
17 17 17 17
40 40 40 40
50 50 50 50

+


0 17 40 50
0 17 40 50
0 17 40 50
0 17 40 50

−


0 17 40 50
17 0 13 13
40 13 0 2
50 13 2 0




=


0 0 0 0
0 17 22 27
0 22 40 44
0 27 44 50

 .
Since XTX is symmetric, doing row reduction to get the LDU -decomposition of XTX will produce
symmetric matrices, that is, LDU = (L

√
D)(
√
DU), with L = UT . This will give X, up to a shift

and potentially a rotation and a reflection. Note that the matrix “D” here isthe diagonal matrix from
the LDU -decomposition, and is different from the distance matrix “D” used above.
For this example, we have

0 0 0 0
0 17 22 27
0 22 40 44
0 27 44 50

 =


1 0 0 0
0 1 0 0
0 22

17 1 0
0 27

17
11
14 1


︸ ︷︷ ︸

L


0 0 0 0
0 17 22 27
0 0 196

17
154
17

0 0 0 0


︸ ︷︷ ︸

U

=


1 0 0 0
0 1 0 0
0 22

17 1 0
0 27

17
11
14 1


︸ ︷︷ ︸

L


1 0 0 0
0 17 0 0
0 0 196

17 0
0 0 0 1


︸ ︷︷ ︸

D


0 0 0 0
0 1 22

17
27
17

0 0 1 11
14

0 0 0 10


︸ ︷︷ ︸

U

,

where we note that L is the transpose of U if we ignore the zero rows of U . From this we recover the
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points a′,b′, c′,d′ as the non zero rows of
√
DU .

R

R

a

c

b

d

a′ b′

c′

d′
a′ = (0, 0)

b′ = (
√

17, 0)
c′ = ( 22√

17
, 14√

17
)

d′ = ( 27√
17
, 11√

17
)

X ′ =

[
0
√

17 22√
17

27√
17

0 0 14√
17

11√
17

]

Inquiry 13.12: Consider vectors a,b, c,d in R2. If we know only the matrix D of distances
between them, the recovery method presented in Example 13.9 computes the positions of a −
a,b− a, c− a,d− a.

� Suppose instead b was subtracted from all the vectors. What is the relationship between
the vectors recovered in this way to those recovered by subtracting a?

� Suppose you have 4 new vectors, which are just a,b, c,d rotated by 90◦ clockwise. After
applying the recovery method to get X, how are the recovered vectors related to the vectors
recovered by the first method?

Remark 13.13. If instead we have a set of vectors vi, . . . ,vk, then the distance matrix would be
defined as Dij = ‖vi − vj‖. Note that this means the distance matrix is always symmetric and has a
zero diagonal.

Example 13.14. If D is simply symmetric and has a zero diagonal, there is no guarantee that is
represents distance among points in a space like Rn, or even any inner product space. Consider the
distance matrix

D =


0 1 1 1
1 0 3 3
1 3 0 3
1 3 3 0

 ,
coming from four points a, b, c, d. As in the previous example, we let the first point a = 0, so that
we get ‖b‖ = ‖c‖ = ‖d‖ = 1. We also see that

32 = ‖b− c‖2
= 〈b− c,b− c〉
= 〈b,b− c〉 − 〈c,b− c〉
= 〈b,b〉 − 〈b, c〉 − 〈c,b〉+ 〈c, c〉
= ‖b‖2 − 2〈b, c〉+ ‖c‖2
= 1− 2〈b, c〉+ 1.

Rearranging, we conclude that 〈b, c〉 = −7/2, which contradicts the fact that the inner product must
be positive definite. Hence D can not be a distance matrix of points from an inner product space.

Distance matrices can highlight clustering among the data. That is, given a distance matrix, we
can “connect” points that lie close to each other and so discover which groups of points are close to
each other.
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Example 13.15. Consider the distances between the 20 largest cities in Latvia, in kilometers. As
a distance matrix, it is difficult to get information from it, but we can group cities by distance into
clusters. This could be useful, for example, in trying to decide where to build a factory or distribution
center.

Bauska
Cesis

Daugavpils
Dobele

Jekabpils
Jelgava
Jurmala
Kuldiga
Liepaja
Ogre

Olaine
Rezekne

Riga
Salaspils
Saldus
Sigulda
Talsi

Tukums
V almiera
V entspils



0 119 152 62 103 37 68 149 196 53 46 194 62 54 111 91 136 89 145 191
119 0 174 137 96 115 93 200 271 66 97 155 79 69 180 30 159 130 27 220
152 174 0 214 79 186 203 301 344 156 185 89 187 166 263 170 281 235 194 340
62 137 214 0 158 29 47 87 141 81 41 249 59 72 51 108 78 34 158 129
103 96 79 158 0 129 134 242 297 85 122 91 117 96 208 92 215 171 116 276
37 115 186 29 129 0 38 115 170 54 19 220 40 47 80 86 98 51 139 154
68 93 203 47 134 38 0 111 179 49 22 221 18 39 88 65 80 39 112 142
149 200 301 87 242 115 111 0 79 159 120 331 129 149 42 175 48 72 214 48
196 271 344 141 297 170 179 79 0 221 181 389 195 212 92 244 127 141 288 98
53 66 156 81 85 54 49 159 221 0 40 172 32 11 130 38 129 87 91 191
46 97 185 41 122 19 22 120 181 40 0 211 21 31 90 68 96 50 120 156
194 155 89 249 91 220 221 331 389 172 211 0 203 183 299 166 300 259 163 362
62 79 187 59 117 40 18 129 195 32 21 203 0 21 103 50 98 57 100 159
54 69 166 72 96 47 39 149 212 11 31 183 21 0 120 40 119 77 94 180
111 180 263 51 208 80 88 42 92 130 90 299 103 120 0 153 61 52 198 89
91 30 170 108 92 86 65 175 244 38 68 166 50 40 153 0 137 104 54 200
136 159 281 78 215 98 80 48 127 129 96 300 98 119 61 137 0 47 170 62
89 130 235 34 171 51 39 72 141 87 50 259 57 77 52 104 47 0 147 105
145 27 194 158 116 139 112 214 288 91 120 163 100 94 198 54 170 147 0 229
191 220 340 129 276 154 142 48 98 191 156 362 159 180 89 200 62 105 229 0



To get the dendrogram above, each city begins in its own cluster. The two closest cities are connected
to create one cluster of 2 cities (Ogre and Salaspils). Create larger clusters by measuring the distance
between every pair of clusters ci and cj , with distance defined to be

(distance between ci and cj) =
1

|ci||cj |
∑
vi∈ci

∑
vj∈cj

‖vi − vj‖.

For clusters of size 1, note that |ci| = |cj | = 1, and the distance reduces to the usual distance. This is
the average method of drawing a dendrogram. In the diagram above, the last 3 clusters to be joined
are colored differently, but any number can be chosen here.

Inquiry 13.16: This question is about coding in Python.

� Generate a collection of 333 random points in R2, with:

– 300 of them randomly selected from [0, 1]× [0, 1],

– 30 of them randomly selected from [5, 6]× [5, 6],

– 3 of them randomly selected from [1, 2]× [8, 9].

� Construct the 333× 333 distance matrix between them.

� Construct the dendrogram from this matrix. Does it reflect the clusters as you created
them?

13.3 Exercises

Exercise 13.1. For each of the following “definitions”, show that each cannot be an inner product.

� For A,B ∈Mn×n, let 〈A,B〉 = trace(A+B)

� For f, g ∈ C[0, 1], let 〈f, g〉 =
∣∣∣ dfdx dgdx ∣∣∣

� For a, b ∈ R, let 〈a, b〉 = a2 + b2

Exercise 13.2. Check the conditions for the space of m×n matrices over R from Example 13.2 being
an inner product space. What is the distance between [ 1 2 3

4 5 6 ] and [ 0 1 2
3 4 5 ]?
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Exercise 13.3. Consider the following three matrices in M2×2:

A =

[
1 2
2 1

]
, B =

[
2 0
−1 1

]
, C =

[
0 −3
3 2

]
.

Using the Gram–Schmidt process to find an orthonormal basis for span{A,B,C}. Use the inner
product on matrices given in Example 13.2.

Exercise 13.4. Let P (R) be the vector space of all polynomials R → R, with scalar multiplication
and polynomial addition defined as you would expect. You may assume that the following is an inner
product on P (R):

〈p(x), q(x)〉 =

∫ ∞
0

p(x)q(x)e−x dx.

1. Check that p(x) = 2x− 1 and q(x) = x+ 3 are not orthogonal to each other.

2. Using the Gram–Schmidt process on p(x) and q(x) as in part 1., find a polynomial r(x) ∈ P (R)
that is orthogonal to p(x). Give your answer as r(x) = ax+ b, for a, b ∈ Z.

Exercise 13.5. Given the distance D matrix below, construct the dendrogram using the same average
distance method as in Example 13.15. After every step, give the new distance matrix, which measures
the distances among the clusters.

D =



0 12 10 13 2 11
12 0 3 9 13 8
10 3 0 6 14 5
13 9 6 0 15 1
2 13 14 15 0 7
11 8 5 1 7 0


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Part III

Eigensystems

Lecture 14: Defining the determinant

Chapters 5.1,5.2 in Strang’s “Linear Algebra”

� Fact 1: The determinant may be computed either recursively or combinatorially, only for a
square matrix.

� Fact 2: The determinant is related to the pivots and invertibility of a matrix.

� Skill 1: Use both the recursive and combinatorial definitions to compute the determinant.

� Skill 2: Use the definitions of the determinant to show properties of the determinant.

We now begin a new part of this course, on everything to do with eigenvectors and eigenvalues. The
first step is the determinant of a matrix, which is a rough estimate of the eigenvalues of the matrix.
In fact, the detemrinant is the product of all the eigenvalues.

14.1 The recursive definition

The determinant is a function det : Mn×n → R, and denoted as either det(A) or with vertical bars
|A|. Before we get to definitions and new ideas, we mconsider some concepts you have already seen,
in this and previous courses.

Example 14.1. The determinant is a commonly found number, often associated with invertibility .

� (Definition 14.4) The determinant of a 1 × 1 matrix [ a ] is a. The matrix is not invertible is
a = 0.

� (Definition 14.4) The determinant of a 2×2 matrix
[
a b
c d

]
is ad− bc. The matrix is not invertible

if ad− bc = 0.

� (to be proved later) The determinant is the product of the pivots, up to a sign change.

� (to be proved later) The determinant is zero if and only if the matrix is not invertible.

Definition 14.2: Let n ∈ N. The unit n-cube in Rn is the set of points (x1, . . . , xn) with
0 6 xi 6 1 for all i. The unit n-cube has n-dimensional volume, or simply n-volume, equal to
1. The n-volume of any other shape in Rn is given by the number of (fractions of) unit n-cubes
in the shape.

This way to define n-dimensional volume is a rough estimate of the more accurate way, which would
be to take an n-fold integral.

Example 14.3. Consider A ∈Mn×n as a function Rn → Rn. The absolute value of the determinant
of A is the n-dimensional volume of the shape that the unit n-cube becomes, after multiplying each
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of its corners by A.

[ 1
1 ]

A [ 1
1 ]

B [ 1
1 ]

R

R

A =

[
1 1

5
13
10

3
2

]
det(A) = 1.24

B =

[
3
2 3
−1

2
5
2

]
det(B) = 5.25

The red and blue images are called parallelograms. In general, the image of the corners of the unit
n-cube, when multiplied by an n× n matrix, is called a parallelotope.

Outr first definition of the determinant is a recursive definition, which justiofies the first two
examples in Example 14.1.

Definition 14.4: Let A ∈Mn×n. The determinant det(A) of A is:

� if n = 1, then det(A) = A11

� if n > 2, then det(A) =

n∑
j=1

(−1)i+jAij det(Aij), for any i ∈ {1, . . . , n}

The matrix Aij is the (n − 1) × (n − 1) submatrix of A produced when the ith row and jth
column are removed. In this setting,

� the number det(Aij) is called the ij-minor of A,

� the number (−1)i+j det(Aij) is called the ij-cofactor of A.

The n× n matrix with ij-entry the ij-cofactor is called the cofactor matrix cofac(A) of A.

Example 14.5. Following Definition 14.4, we compute the determinant of a matrix A, using i = 1:

det(A) = det

0 3 4
2 −1 2
1 5 −2


=

∣∣∣∣∣∣
0 3 4
2 −1 2
1 5 −2

∣∣∣∣∣∣
= (−1)1+10

∣∣∣∣−1 2
5 −2

∣∣∣∣+ (−1)1+23

∣∣∣∣2 2
1 −2

∣∣∣∣+ (−1)1+34

∣∣∣∣2 −1
1 5

∣∣∣∣
= 0− 3(−4− 2) + 4(10 + 1)

= 18 + 44

= 62.

We would have gotten the same result with i = 2 or i = 3.
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Inquiry 14.6: Let A ∈ Mn×n. Using Definition 14.4, show that the following statements are
true, for any n ∈ N.

� The determinant of the n× n identity matrix is 1. That is, det(In) = 1.

� The determinant of an upper (or lower) triangular matrix is the product of the diagonal
entries.

Hint: use induction for both!

Next we describe some general properties of the determinant.

Proposition 14.7. Let A ∈Mn×n. As a function of the rows of A, the determinant is:

� multilinear , that is, det(r1 . . . , ca + b, . . . , rn) = cdet(r1, . . . ,a, . . . , rn) + det(b, . . . , ri, . . . , rn)

� alternating , that is, det(r1 . . . , ri, . . . , rj , . . . , rn) = −det(r1 . . . , rj , . . . , ri, . . . , rn)

Proof. The first point follows by induction on n, and by using the recursive definition (Definition 14.4)
to expand along row i. The statement is immediately true for a 1× 1 matrix. For the inductive step,
notice that

detA = det(r1, . . . , ca + b, . . . , rn)

=
n∑
j=1

(−1)i+j(ca + b)j det(Aij)

= c

 n∑
j=1

(−1)i+j(a)j det(Aij)

+

 n∑
j=1

(−1)i+j(b)j det(Aij)

 ,

and Aij is the same in both cases.
The second point follows by using the combinatorial definition of the determinant (Definition

14.13). Fix two different indices i, j ∈ {1, 2, . . . , n}. For every permutation σ on a set of size n, let σ′

be the permutation given by

σ′(k) =


σ(k) k 6= i, j,

σ(j) k = i,

σ(i) k = j.

That is, σ′ is the same as σ, except it swaps the images of i and j. Note that sgn(σ′) = −sgn(σ),
since σ′ has one row swap that σ does not have. Now suppose that for a matrix A, the matrix A′ is
the same, except with rows i and j swapped. Then

det(A′) =
∑

permutations σ

sgn(σ)A′1σ(1)A
′
2σ(2) · · ·A′iσ(i) · · ·A′jσ(j) · · ·A′nσ(n) (definition of det)

=
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·A′iσ(i) · · ·A′jσ(j) · · ·Anσ(n) (definition of A′)

=
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·Aiσ(j) · · ·Ajσ(i) · · ·Anσ(n) (Ai = A′j and Aj = A′i)

=
∑

permutations σ′

sgn(σ)A1σ′(1)A2σ′(2) · · ·Aiσ′(i) · · ·Ajσ′(j) · · ·Anσ′(n) (definition of σ′)

= −
∑

permutations σ′

sgn(σ′)A1σ′(1)A2σ′(2) · · ·Aiσ′(i) · · ·Ajσ′(j) · · ·Anσ′(n) (property of σ′)

= −det(A). (definition of det)
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Example 14.8. Consider the following example of multilinearity (on the left) and the alternating
property (on the right):

−46 = 11 · (−2)− 8 · 3
∣∣∣∣−5 6
−5 6

∣∣∣∣ = (−5) · 6− (−5) · 6

=

∣∣∣∣11 8
3 −2

∣∣∣∣ = −30 + 30

=

∣∣∣∣6 + 5 9− 1
3 −2

∣∣∣∣ = 0

= 3

∣∣∣∣2 3
3 −2

∣∣∣∣+

∣∣∣∣5 −1
3 −2

∣∣∣∣
= 3 (2 · (−2)− 3 · 3) + (5 · (−2)− (−1) · 3)

= −39− 7

= −46.

Inquiry 14.9: There are two immediate consequences of Proposition 14.7. Show why they are
both true, in general for an n× n matrix.

� A matrix with a zero row has determinant zero.

� A matrix with two equal rows has determinant zero.

Hint: consider the determinant as a function of the rows, as in the proposition.

14.2 A combinatorial definition

We now consider the determinant in a combinatorial context, that is, as it relates to all permutations
of the rows and columns of a matrix.

Definition 14.10: Let S = (a1, . . . , an) be an ordered set. A permutation of S is equivalently

� a bijective function σ : (1, . . . , n)→ (1, . . . n), or

� a rearrangement of the elements of S in a different order.

A transposition is a permutation in which only two elements are in a different order, that is, for
which σ(i) = i for all i = 1, . . . , n except two.

Example 14.11. A permutation can be denoted in several different ways:

(1 2)(4 6 5)

(
1 2 3 4 5 6
2 1 3 6 4 5

) 1 7→ 2
2 7→ 1
3 7→ 3
4 7→ 6
5 7→ 4
6 7→ 5

all describe the same permutation. Moreover, (1 2)(4 6 5) is the same as (1 2)(6 5)(4 6), if we apply
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the 2-element permutations from right to left:

(4 5 6) (1 2)
1 7→ 1 7→ 2
2 7→ 2 7→ 1
3 7→ 3 7→ 3
4 7→ 6 7→ 6
5 7→ 4 7→ 4
6 7→ 5 7→ 5

(4 6) (6 5) (1 2)
1 7→ 1 7→ 1 7→ 2
2 7→ 2 7→ 2 7→ 1
3 7→ 3 7→ 3 7→ 3
4 7→ 6 7→ 6 7→ 6
5 7→ 5 7→ 4 7→ 4
6 7→ 4 7→ 5 7→ 5

On a set of size n there are n! permutations and n(n − 1)/2 transpositions. They are related to
each other, but in a difficult to prove way.

Theorem 14.12. Every permutation on a set of n elements may be uniquely (up to rearrangement)
described as a composition of transpositions.

This is a nontrivial fact and we do not prove it here.

Definition 14.13: Let A ∈Mn×n, and let σ be a permutation on a set of size n.

� The parity of σ is odd or even depeding on if the number of transpositions necessary to
represent it is odd or even.

� The sign of σ is +1 if the parity of σ is even, and −1 is the parity of σ is odd. This number
is denoted by sgn(σ).

� The determinant of a matrix A can be defined using permutations of the columns of A.
That is,

det(A) =
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n) =
∑

permutations σ

sgn(σ)

n∏
i=1

Aiσ(i). (6)

Inquiry 14.14: Recall from Definition 3.7 that elementary matrices are either permutation
(swaps rows), elimination (adds multiples of rows), or diagonal (multiplies rows by a number)
matrices.

� What is the determinant of any elimination matrix?

� What is the determinant of any diagonal matrix?

� What is the determinant of a permutation matrix that swaps two rows? What about three,
four rows? Start with some small examples to see what happens.

Convince yourself that permutation matrices with an odd number of row swaps have determinant
-1, and permutation matrices with an even number of row swaps have determinant 1. This is
the concept of parity .

Example 14.15. There are 3! = 6 permutations on a set of size 3, so a determinant of a 3× 3 matrix
is an alternating sum of 6 terms. The permutations are given below.

ρ
1 7→ 1
2 7→ 2
3 7→ 3

σ
1 7→ 2
2 7→ 1
3 7→ 3

τ
1 7→ 3
2 7→ 2
3 7→ 1

µ
1 7→ 1
2 7→ 3
3 7→ 2

ν
1 7→ 2
2 7→ 3
3 7→ 1

λ
1 7→ 3
2 7→ 1
3 7→ 2

The transpositions are σ, τ , µ. Note that ν = τ ◦σ and λ = σ◦τ , which gives us a complete description
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of the signs of these permutations:

permutation σ ρ σ τ µ ν λ

sgn(σ) 1 −1 −1 −1 1 1

So if A =
[

4 −2 1
7 0 3
−1 −3 4

]
, then the determinant is

det(A) = A1ρ(1)A2ρ(2)A3ρ(3) −A1σ(1)A2σ(2)A3σ(3) + · · ·+A1λ(1)A2λ(2)A3λ(3)

= 4 · 0 · 4− ·(−2) · 7 · 4 + · · ·+ 1 · 7 · (−3)

= 77.

However, if we had a different matrix A =
[

4 0 0
7 0 3
0 −3 4

]
, then all permutations except one would have a

factor of zero in them. That is, since the product A1σ(1)A2σ(2) · · ·Anσ(n) has exactly one element in
each row and exactly one element in each column, none of the terms in the combinatorial definition
of the determinant can have two elements in the same row or in the same column. In other words,

det(A′) = sgn(µ) · 4 · 3 · (−3) = (−1) · (−36) = 36.

Taking 4 in row 1, column 1, we cannot take any other element in column 1, so we must take row 2,
column 3, to get a nonzero number. That leaves row 3, column 2 as the final factor (since columns 1
and 3 have already been used). All other terms in the expansion (6) will have at least one factor of 0,
so can be safely ignored.

14.3 Exercises

Exercise 14.1. Show with a counter example that the set of all invertible n × n matrices is not a
subspace of Mn×n. That is, show it is not a vector space.

Exercise 14.2. Recall the definition of an inverse of a matrix A, which was a matrix B such that
AB = BA = I. Show that the statement AB = I implies BA = I.

Exercise 14.3. Let A ∈Mn×n. Show that det(A) = 0 is equivalent to saying that there is a nonzero
vector x for which Ax = 0.

Exercise 14.4. How many cofactors, or minors, of the matrix below are nonzero? How many terms
in the recursive definition of the determinant are nonzero?

A =

1 1 1
2 2 0
1 1 0


Exercise 14.5. Find the parity of the two permutations below.

σ
1 7→ 1
2 7→ 3
3 7→ 2
4 7→ 4

ρ
1 7→ 3
2 7→ 1
3 7→ 2
4 7→ 4

Use this to find the determinant of the matrix A =

[
7 0 −1 0
3 0 2 0
0 −2 6 0
0 0 0 1

]
.
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Exercise 14.6. 1. Using the permutation formula, compute the determinant of
1 0 1 0 1
1 1 1 1 1
0 0 1 0 0
1 1 1 0 1
1 0 1 0 0

 .

2. How many nonzero entries can a n × n matrix have so that the permutation formula has only
one nonzero term?
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Lecture 15: Properties of the determinant

Chapters 5.2,5.3 in Strang’s “Linear Algebra”

� Fact 1: The determinant of a product is the product of determinants: det(AB) = det(B) det(A)

� Fact 2: The determinant is the product of the pivots, up to a sign change.

� Fact 3: The determinant is nonzero iff the matrix is invertible.

� Skill 1: Compute determinants of products, inverses, transposes of matrices.

� Skill 2: Apply the properties of the determinant.

This lecture explores some properties of the determinant.

15.1 Splitting the determinant

We begin by showing that the determinant is multiplicative, that is, that det(AB) = det(A) det(B)
for any n× n matrices A,B. First we need to revisit elementary matrices in Definition 3.7.

Lemma 15.1. Let A ∈Mn×n be an invertible matrix. That is, A−1 exists.

� If P is a permutation matrix of a single row swap, then det(PA) = det(P ) det(A) = −det(A).

� If E is an elimination matrix, then det(EA) = det(E) det(A) = det(A).

� If D is a diagonal matrix, then det(DA) = det(D) det(A).

Proof. The first point follows from the alternating property from Proposition 14.7 and the thrid point
of Inquiry 14.14.

The second point follows by multilinearity from Proposition 14.7 and the first point ofInquiry
14.14, which gives that det(E) = 1. Elimination matrices are row operations, so in terms of A and
the rows r1, . . . , rn of A,

det(EA) = det(r1, . . . , ri, . . . , rj − `ijri, . . . , rn)

= det(r1, . . . , ri, . . . , rj , . . . , rn)︸ ︷︷ ︸
det(A)

−`ij det(r1, . . . , ri, . . . , ri, . . . , rn)︸ ︷︷ ︸
0 because two rows the same

= det(A).

The third point follows by the second point of Inquiry 14.6, which says that det(D) is the product
of its diagonal entries, and by the recursive definition of the determinant. If D has all ones on the
diagonal except on row i, then

det(DA) =
n∑
j=1

(−1)i+j(DA)ij det((DA)ij)

= Dii

n∑
j=1

(−1)i+jAij det((DA)ij)

= Dii

n∑
j=1

(−1)i+jAij det(Aij)

= Dii det(A)

= det(D) det(A).

If D has more than one diagonal entry that is not 1, repeat this step for every such row.
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Inquiry 15.2: Let A ∈M3×3.

� Suppose that row operations turn A into
[

1 2 −1
0 1 3
0 0 0

]
. Explain why A has determinant zero.

� Suppose that A has 3 pivots. Explain why A has a nonzero determinant.

The above inquiry sets the scene for the following inquiry and the proposition afterward.

Inquiry 15.3: Let A,B ∈Mn×n.

� Suppose that det(A) = 0. Show by contradiction that det(AB) must also be 0.

� Suppose that det(A) 6= 0 and det(B) 6= 0. Show that det(AB) = det(A) det(B).

Hint: For the second point, convince yourself that A having n pivots means A can be expressed
as a product of elementary matrices.

We conclude this section with a strong relationship among some big concepts we have seen so far:
pivots, invertibility, and the determinant.

Proposition 15.4. Let A ∈Mn×n.

� The determinant of A is the product of the pivots of A, up to a sign change.

� The determinant of A is nonzero if and only if A has n pivots.

� The determinant is zero if and only if A is not invertible.

Proof. The first point follows from the second point of Inquiry 15.3. The second point is a direct
consequence of the first point. The third point follow from both points of Inquiry 15.3.

15.2 Inverses and transposes

Now we take a look at how the determinant works with transposes and inverses.

Proposition 15.5. Let A ∈Mn×n be invertible (that is, have nonzero determinant).

� The determinant of the tranpose is the same as the determinant: det(AT ) = det(A)

� The determinant of the inverse is the reciprocal of the determinant: det(A−1) = det(A)−1

Proof. The first statement follows by using the fact that if A is invertible, then it may be expressed
as the product of elementary matrices. Using the properties of the transpose (after Definition2.9,
the transpose of the product is the (reversed) product of the individual factors. Finally by applying
multiplicativity of the determinant, we get back the original matrix A.

The second statement follows from Proposition 15.1 and the fact that AA−1 = I:

AA−1 = I =⇒ det(AA−1) = det(I)

=⇒ det(A) det(A−1) = 1

=⇒ det(A−1) =
1

det(A)
= det(A)−1.

Recall from Definition 14.4 the ij-minor of a matrix A was the determinant of the submatrix after
the ith row and jth column are removed. The ij-cofactor was the ij-minor multiplied by (−1)i+j .

88



Proposition 15.6. Let A ∈Mn×n be invertible, and let Cij = (−1)i+j det(Aij) be the ij-cofactor of
A. Then the ij-entry in the inverse is

(A−1)ij =
Cji

det(A)
.

In general, for C the cofactor matrix of A, we have ACT = det(A)I, or A−1 = CT / det(A).

Proof. This comes from the recursive definition of the determinant, which states that

det(A) = A11C11 +A12C12 + · · ·+A1nC1n = aT1 c1,

det(A) = A21C21 +A22C22 + · · ·+A2nC2n = aT2 c2,

and so on, where ai is the ith row of a and ci is the ith row of C. Moreover, for i 6= j, the sum

det(A′) = Ai1Cj1 +Ai2Cj2 + · · ·+AinCjn = aTi cj

of some new matrix A′ must be zero, as this is the determinant for a matrix whose ith and jth rows
are the same. That is, Aj1 does not appear in Cj1, so having Aj1 = Ai1 is allowed for this determinant.
Inquiry 14.9 told us that a matrix with two equal rows has determinant zero. Hence

− a1 −
− a2 −

...
− an −


︸ ︷︷ ︸

A

 | | |
c1 c2 · · · cn
| | |


︸ ︷︷ ︸

CT

=


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...
0 0 · · · det(A)

 ,

or ACT = det(A)I.

This formula generalizes the formula for the inverse of the 2 × 2 matrix A =
[
a b
c d

]
and A−1 =

1
ad−bc

[
d −b
−c a

]
. The determinant is still in the denominator, but the cofactors come from larger matrices

and so the inverse is not just about rearranging elements.

Example 15.7. Consider the matrix

A =


1 0 0 1 0
0 1 0 5 0
0 0 2 8 0
7 2 9 3 6
0 0 0 3 1

 , det(A) = −136.

This matrix is invertible, and the (4, 4)-entry of the inverse will be

(A−1)44 =
(−1)4+4

−136

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

∣∣∣∣∣∣∣∣ =
−1

68
.

A final application of the determinant that we will see is in a physical setting. Recall the standard
basis from Example 7.7 in Lecture 7.
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Definition 15.8: Let v1, . . . ,vn−1 ∈ Rn, arranged as columns of A ∈ Mn×(n−1), and let
e1, . . . , en ∈ Rn be the standard basis vectors. The cross product of the vectors vi is the vector

X(v1, . . . ,vn−1) :=

n∑
i=1

(−1)i+n det(Ai)ei =

∣∣∣∣∣∣∣
| | | e1

v1 v2 · · · vn−1
...

| | | en

∣∣∣∣∣∣∣ ,
where Ai ∈M(n−1)×(n−1) is A with the ith row removed. The expression on the right is a formal
determinant, since we can’t put in a whole vector ei in a single entry.

Example 15.9. What does the cross product represent? In three dimensions, it is the right-hand rule
of physicists, determining the direction a moving charge from a rotating magnetic field. The vector
computed will be perpendicular to the initial vectors:2

3
4

×
1

0
1

 = (−1)1+3

∣∣∣∣3 0
4 1

∣∣∣∣
1

0
0

+ (−1)2+3

∣∣∣∣2 1
4 1

∣∣∣∣
0

1
0

+ (−1)3+3

∣∣∣∣2 1
3 0

∣∣∣∣
0

0
1

 =

 3
2
−3

 .
Remark 15.10. The cross product has several interesting properties:

� X(v1, . . . ,vn−1) = 0 iff the set of vectors v1, . . . ,vn−1 is linearly dependent

� For n = 2, the length of the cross product is ‖u× v‖ = ‖u‖‖v‖| sin(θ)|

� The cross product is related to the dot product by (u× v)×w = (u ·w)v− (v ·w)u

� The cross product is anti-commutative, or skew-symmetic: a× b = −b× a

Inquiry 15.11: This inquiry is about the cross product.

� Compute the cross product of the two basis vectors for the plane defined by z = 10x− 2y
(see Example 8.2).

� Compare your answer above with a normal vector to this plane. Are the two vectors the
same? Are they similar?

� You should have four vectors from the two points above. Explain why their span can be
expressed using at most three vectors.

15.3 Exercises

Exercise 15.1. Show that the cross product X(v1, . . . ,vn−1) is skew-symmetric, in the sense that
swapping the order of two entries puts a negative sign in front.
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Lecture 16: Defining eigenvalues and eigenvectors

Chapter 6.1 in Strang’s “Linear Algebra”

� Fact 1: An n× n matrix has at most n eigenvalues, which may be real or complex.

� Fact 2: The roots of the characteristic polynomial det(A− λI) are the eigenvalues of A.

� Skill 1: Find eigenvectors and eigenvalues of a matrix

� Skill 2: Given only eigenvalues and eigenvectors of A, compute Ax for any x

� Skill 3: Given only eigenvalues and eigenvectors, construct a matrix with these eigenvalues and
eigenvectors

This lecture gets to the heart of the current topic of eigensystems. Eigenvalues are important to
undrstand what a matrix does to vectors. Eigenvectors are unique in that their direction does not
change when multiplied by a matrix A (though their length may change).

16.1 Words beginning with “eigen”

It is important to remember that eigenvalues are unique, but eigenvectors are not, as they can be
multiplied by any real number.

Definition 16.1: Let A ∈Mn×n. For every vector v with Av = λv, where λ ∈ R,

� the vector v is called an eigenvector ,

� the value λ is called the eigenvalue,

� the pair (v, λ) is called an eigenpair .

The set of all eigenvalues of A is called the spectrum of A. The set of all eigenpairs whose
eigenvectors are linearly independent is called the eigensystem of A. Eigensystems are unique
up to vector scaling.

Eigenvectors describe the direction in which a matrix changes Rn, and the eigenvalues describe the
stretching that is done in that direction.

Example 16.2. In R2, the matrix A =
[

23/10 −6/5
9/20 1/5

]
has eigenvector v1 = [ 4

1 ] with eigenvalue 2, and

eigenvector v2 = [ 2
3 ] with eigenvalue 1

2 .

R

R

v1

Av1

v2

Av2

The vector v1 gets longer and v2 gets shorter as A is applied more times. Adjusting v1 and v2 so that
they make angles π

6 and π
3 with the x-axis, respectively, we can visually see what happens to vectors
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on the unit circle as A is applied more times.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

A
0

A
1

A
2

A
3

A
4

A
5

The unit eigenvectors are marked with black circles around them. They are also distringuished from
other vectors because their “trajectory” as A is applied is a striaght line. Below in Remark 16.8 we
see what happens to vectors that are not exactly an eigenvector.

Example 16.3. Consider the following examples of eigenvectors and eigenvalues.

� The matrix A =
[

4 −2
0 2

]
has eigenvector [ 1

1 ] with eigenvalue 2. But A also has eigenvalue [ 2
2 ]

with eigenvalue 2.

� The matrix B =
[

0 −1
1 0

]
has no (real) eigenvalues. This is the rotation matrix with θ = π

2 . In
the second part of this lecture we will see how to get an eigenvalue from this matrix.

� The identity matrix has every vector as an eigenvector with eigenvalue 1.

� The projection matrix P = projU (from Lecture 10) has every vector in U as an eigenvector
with eigenvalue 1, and has every vector of U⊥ as an eigenvector with eigenvalue 0.

Eigenvectors v,w of a matrix A are called independent eigenvectors if the set {v,w} is linearly
independent.

Inquiry 16.4: Let v = [ v1v2 ] ,w = [w1
w2 ] ∈ R2 be fixed.

� If A ∈M2×2 with A [ 1
0 ] = v and A [ 0

1 ] = w, what is the determinant of A?

� Suppose that there is B ∈ M2×2 with v,w as eigenvectors. In what cases will the vector
v + w be an eigenvector for B?

� Must there always exist a 2× 2 matrix with v and w as eigenvectors?. That is, knowing
only v and w, can you construct a 2× 2 matrix with these as eigenvectors?

16.2 The characteristic polynomial

So far we have seen just examples of eigenvalues and eigenvectors, but not yet a procedure for finding
them. We describe this procedure now.

Definition 16.5: Let A ∈Mn×n. The characteristic polynomial of A is

χ(t) = det(A− tI). (7)

The roots λi of the characteristic polynomial are the eigenvalues of A. The multiplicity of each
root λi is its algebraic multiplicity .
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Once the roots λ1, . . . , λk of χ are found, then Avi = λivi can be solved in each coordinate to find
the corresponding eigenvector vi.

Example 16.6. Consider the matrix A =
[

2 3
−1 6

]
. What are its eigenvalues and corresponding eigen-

vectors? We must solve det(A− λI) = 0:

0 = det (A− λI)

= det

([
2 3
−1 6

]
−
[
λ 0
0 λ

])
=

∣∣∣∣2− λ 3
−1 6− λ

∣∣∣∣
= (2− λ)(6− λ) + 3

= 12− 8λ+ λ2 + 3

= λ2 − 8λ+ 15

= (λ− 5)(λ− 3).

Hence the eigenvalues are λ = 5 and λ = 3. To find the corrseponding eigenvectors, we solve:

Av = 3v ⇐⇒
[

2 3
−1 6

] [
v1

v2

]
= 3

[
v1

v2

]
⇐⇒

[
2v1 + 3v2

−v1 + 6v2

]
=

[
3v1

3v2

]
.

This is a linear system of 2 equations, which has solution (by back-substitution) v = [ 3
1 ], though

we can choose any value we want for v2 (and we choose 1 - to avoid such problems, we often take
eigenvectors with unit length). Similarly, λ = 3 has the eigenvector [ 3

1 ].

Inquiry 16.7: Consider the vectors v = [ 1
2 ] ,w =

[−1
3

]
∈ R2.

� Construct a 2× 2 matrix A that has v as an eigenvector.

� What is the determinant of A? What does that say about its other eigenvalue?

� Construct a 2 × 2 matrix B that has v as an eigenvector with eigenvalue 2 and w as an
eigenvector with eigenvalue 3.

� Compute the determinant and trace of B.

Remark 16.8. If A ∈Mn×n has n eigenvectors, then knowing them and their eigenvalues is enough
to know the effect of A on any matrix in Rn. In Example 16.6 we found two eigenvalues and two
eigenvectors. Then for any other vector we have

A

[
2
−2

]
= A

(
2

[
3
1

]
− 4

[
1
1

])
= 2A

[
3
1

]
− 4A

[
1
1

]
= 2 · 5

[
3
1

]
− 4 · 3

[
1
1

]
=

[
18
−2

]
.

Definition 16.9: Let A ∈Mn×n. For every eigenvalue λ,

� the number of linearly independent eigenvectors with λ as their eigenvalue is the geometric
multiplicity of λ,

� the span of these linearly independent eigenvectors is the eigenspace of λ.

In other words, if A has k eigenvectors v1, . . . ,vk in its eigensystem, then the number of vi with
eigenvalue λ is the geometric multiplicity of λ.
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Inquiry 16.10: Consider the matrix A =
[

0 1 0
1 0 0
0 1 1

]
.

� Compute the eigensystem of A.

� What are the eiegenspaces of A?

� Explain the relationship between the dimension of an eigenspace and its geometric multi-
plicity.

16.3 Exercises

Exercise 16.1. Consider the matrix A =
[

6 −5
5 −2

]
.

1. Find the eigenvalues and eigenvectors of A. Be careful, there may be complex numbers!

2. If v1 and v2 are the eigenvectors, compute the dot product v1 · v2. Is it a complex or a real
number?

Exercise 16.2. Let v ∈ Rn be a unit vector, and let A = vvT .

1. Show that A is a projection matrix.

2. Show that v is an eigenvector of A and find its eigenvalue.

3. Show that if u ⊥ v, then Au = 0.

4. How many independent eigenvectors does A have with eigenvalue 0?

Exercise 16.3. Consider the values λ1 = −3, λ2 = −2, λ3 = 5.

1. Construct two different 3× 3 matrices with λ1, λ2, λ3 as eigenvalues.

2. What are the eigenvectors v1,v2,v3 of the two matrices you created in part (a)?

3. If λ3 = −2, explain why every linear combination of v2 and v3 is an eigenvector.

Exercise 16.4. You are given that a matrix B has eigenvalues −1, 2, 5 and a matrix C has eigenvalues
9, 3, 1. Find the eigenvalues of the matrix

A =

[
B C
0 D

]
=



1 0 1 −2 0 0
−2 2 0 0 0 7
8 0 3 0 8 0
0 0 0 9 −9 0
0 0 0 0 3 0
0 0 0 −5 2 1

 .

Exercise 16.5. Construct a 2 × 2 matrix with eigenvector [ xy ] having eigenvalue λ, and eigenvector
[ zw ] having eigenvector µ.

Exercise 16.6. Let A : R2 → R2 be the 2× 2 matrix for which A [ 1
2 ] = [ 2

4 ] and A [ 6
2 ] = [ 3

1 ]. This is
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described in the picture below.

R

R

(1, 2)

A(1, 2) = (2, 4)

(6, 2)

A(6, 2) = (3, 1)

1. What is the eigensystem of A? Express [ 1
0 ] and [ 0

1 ] as linear combinations of the eigenvectors
of A.

2. Using the task above, compute A [ 1
0 ] and A [ 0

1 ]. Use this to construct the matrix of A.

3. Using eigenvalues, explain why A is invertible.
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Lecture 17: Properties of eigenvalues and eigenvectors

Chapter 6.1 in Strang’s “Linear Algebra”

� Fact 1: The sum of the eigenvalues is the trace of the matrix.

� Fact 2: The product of the eigenvalues is the determinant of the matrix.

� Skill 1: Do computations with eigenvalues and eigenvectors.

� Skill 2: Compute eigensystems of special matrices.

We continue understading the key properties of eigenvalues and eigenvectors.

17.1 Properties of eigensystems

Recall that the key idea of the eigensystem of a matrix A ∈ Mn×n was that it explains how Rn is
transformed, when A multiplies any vector in Rn.

Definition 17.1: Let A ∈Mn×n. If there are vectors v,w ∈ Rn for which there exists λ, µ ∈ R,
such

� Av = λv, then v is called an eigenvector , or right eigenvector of A,

� wTA = µwT , then w is called a left eigenvector of A.

Note that a right eigenvector of A is a left eigenvector of AT .

If no adjective “right” or “left” is used, then “right” is assumed. The relationship between left and
right eigenpairs is not immediate.

Inquiry 17.2: Let A ∈Mn×n.

� Suppose that A is symmetric. If (v, λ) is an eigenpair for A, show that v is an eigenvector
for ATA. What is its eigenvalue?

� Suppose that there are n distinct eigenpairs (vi, λi) for A, with each eigenvector being
both a right and a left eigenvector. Show that AAT = ATA.

Remark 17.3. Let A ∈Mn×n have eigenvalues λ1, . . . , λn (not all necessarily distinct). The charac-
teristic polynomial can then be expressed as

χ(t) = (−1)n(t− λ1)(t− λ2) · · · (t− λn).

This follows from the definition of the characteristic polynomial and the recursive definition of the
determinant. The coefficient (−1)n comes from the fact that −t is multiplied by itself n times, and so
the leading term must be (−1)ntn.

Proposition 17.4. Let A ∈Mn×n.

� The eigenvalues of A and AT are the same, but not necessarily their eigenvectors.

� If A is upper or lower triangular, its eigenvalues are on its diagonal.

� If the rank of A is less than n, then A has an eigenvalue 0 for a non-trivial eigenvector.

� If A has an eigenpair (v, λ), then An has an eigenpair (v, λn).
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Proof. The first point follows by distributing transposes in a sum (see Remark 4.14) in

det(A− λI) = det((A− λI)T ) = det(AT − (λI)T ) = det(AT − λI),

so the characteristic polynomial, and hence the eigenvalues, of A and AT are the same.
The second point follows by using the standard basis of Rn as eigenvectors.
The third point follows by using a vector in the nullspace.
The fourth point follows from a repeated application of Av = λv:

Anv = An−1(Av) = An−1(λv) = λAn−2(Av) = λ2An−3(Av) = · · · = λnv.

We are allowed to move the λ from the right to the left of An−1 because λ is a number.

The first point above is similar to the determinant, however: row operations change the eigenvalues
(they do not change the determinant). The sum of the diagonal entries in a matrix is called the trace
of the matrix.

Inquiry 17.5: Recall that the characteristic polynomial of A ∈ Mn×n is χ(t) = det(A − tI).

For this question, let A =
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
.

� The recursive definition of det(A− tI) has 6 terms in its expansion. Write all of these out,
without expanding the (aij − t) factors.

� When the (aij − t) factors are all expanded,

– what is the coefficient of t3?

– what is the coefficient of t2?

– what is the coefficient of t?

– what is the constant term?

� Among the parts above, find the trace and the determinant.

� Express the characteristic polynomial using the trace and the determinant.

How do you think this generalizes to higher n ∈ N?

17.2 Complex numbers

Sometimes we come across matrices (as in Example 16.3) that do not seem to have eigenvalues, such
as A =

[
0 −1
1 0

]
. Its characteristic polynomial is χ(t) = t2 + 1. This polynomial has no real solutions,

but does have complex solutions.

Definition 17.6: The complex numbers C are elements the set R × R, expressed as a + bi,
a, b ∈ R, with a new operation:

(0, 1) • (0, 1) = (−1, 0) ⇐⇒ i · i = −1.

Remark 17.7. Here are some key properties of the complex numbers .

� multiplying a complex number by i is “rotating the vector by 90 degrees”

� every polynomial with real (or complex) coefficients has roots in the complex numbers

The last statement says that C is algebraically closed .
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Inquiry 17.8: Let A ∈Mn×n be a skew-symmetric matrix.

� Compute the eigensystem for A =
[

0 −5
5 0

]
. How many complex and how many real eigen-

values does A have?

� Compute the eigensystem for A =
[

0 1 −2
−1 0 3
2 −3 0

]
. How many complex and how many real

eigenvalues does A have? You may use a computer.

� If n is an odd number, explain why A has at least one real root. Hint: use limits.

� How many real and how many complex values will a skew-symmetric n× n matrix have?
Begin by showing that ‖Av‖2 = −λ2‖v‖2 for any eigenpair (v, λ) of A.

More about complex numbers is discussed in Lecture 24.

Proposition 17.9. Let A,B ∈Mn×n.

� The eigenvectors of A+B can not be expressed in terms of the eigenvectors of A and B.

� A and B have the same eigenvectors iff A and B commute (that is, AB = BA).

17.3 Exercises

Exercise 17.1. Let A ∈Mn×n and let χ(t) be its charactristic polynomial.

1. Show that χ(0) = (−1)n det(A). That is, show that the constant term in χ(t) is (−1)n times the
determinant of A.

2. Show that the coefficient of tn−1 in χ(t) is −trace(A).
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Lecture 18: Diagonalization

Chapter 6.2 in Strang’s “Linear Algebra”

� Fact 1: An n× n matrix has exactly n eigenvalues, counting multiplicity.

� Fact 2: Eigenvalues may be zero. Eigenvectors cannot be the zero vector.

� Fact 3: Although there are n eigenpairs, their eigenvectors may not always form a linearly
independent set.

� Skill 1: Diagonalize a matrix with linearly independent eigenvectors.

� Skill 2: Identify matrices that do not have linearly independent eigenvectors.

� Skill 3: Find eigenvalues and eigenvectors of matrices similar to A.

The goal of this section is to reveal within each matrix a diagonal matrix . Diagonal matrices are
easier to deal with, because they act like numbers rather than matrices. That is, multiplication and
all other operations are much easier.

18.1 Multiplicity and diagonalization

We begin with considering several different possibilites of eigenpairs for a 3× 3 matrix.

Example 18.1. Consider the three linearly independent vectors u =
[

0
1
1

]
,v =

[
1
0
1

]
,w =

[
1
1
0

]
R

R

R

span(u)
span(v)

span(w)

eigenspaces of A

R

R

R

span(u,v)

eigenspaces of B

R

R

R

span(u)

span(w)

eigenspaces of C

These three vectors may appear in six different ways as eigenvectors of a 3× 3 matrix.

� A =
[

1 5 −5
2 4 −2
−3 3 −1

]
has 3 different eigenvalues, 3 different eigenvectors: (2,u), (−4,v), (6,w)

� B =
[

1 5 −5
5 1 −5
0 0 −4

]
has 2 different eigenvalues, 3 different eigenvectors: (−4,u), (−4,v), (6,w)

� C =
[

1 5 −5
6 0 −4
1 −1 −3

]
has 2 different eigenvalues, 2 different eigenvectors: (−4,u), (6,w)

� D =
[−4 0 0

0 −4 0
0 0 −4

]
has 1 eigenvalue, 3 different eigenvectors: (−4,u), (−4,v), (−4,w)

� E =
[−5 1 1

0 −4 0
−1 1 −3

]
has 1 eigenvalue, 2 different eigenvectors: (−4,v), (−4,w)

� F =
[−3 1 −1

2 −4 0
3 1 −5

]
has 1 eigenvalue, 1 eigenvector: (−4,u)

For B and C, λ = −4 has algebraic multiplicity 2. For D,E, F , it has algebraic multiplicity 3.
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Inquiry 18.2: Let u,v,w ∈ R3 be distinct vectors. Explain why the following situations each
cannot happen. Justify your reasoning with the matrix equation Av = λv, for an eigenpair
(λ,v).

� A is a 2× 3 matrix with eigensystem {(1,u), (2,v)}.

� B is a 3× 3 matrix with determinant zero and eigensystem {(1,u), (2,v)}.

� C is a 3× 3 matrix with trace zero and eigensystem {(1,u), (2,v)}.

� D is a 3× 3 matrix with eigensystem {(1,u), (2,u)}.

� E is a 3× 3 matrix with eigensystem {(1,u), (2,v), (3,u + v)}.

� F is a 3 × 3 matrix with eigensystem {(0,u), (0,v), (1,w)} and a 2-dimensional column
space.

We continue with an example by constructing a matrix from the eigenvectors.

Example 18.3. Let u = [ 1
1 ], v = [ 0

1 ] ∈ R2, which are linearly indepedent vectors. Let A =
[
a b
c d

]
be

a matrix with these two as eigenvectors, and corresponding eigenvalues 2, 3, respectively. What are
the entries a, b, c, d of A? We know that

[
a b
c d

] [
1
1

]
=

[
2
2

]
,

[
a b
c d

] [
0
1

]
=

[
0
3

]
, =⇒

a+ b = 2
c+ d = 2

b = 0
d = 3

⇐⇒
[
a b
c d

]
=

[
2 0
−1 3

]
.

The equations Au = 2u and Av = 3v on the left, which can be combined into a single equation

A

 | |
u v
| |


︸ ︷︷ ︸

X

=

 | |
2u 3v
| |

 =

 | |
u v
| |

[2 0
0 3

]
︸ ︷︷ ︸

Λ

=⇒ A =

 | |
u v
| |


︸ ︷︷ ︸

X

[
2 0
0 3

]
︸ ︷︷ ︸

Λ

 | |
u v
| |

−1

︸ ︷︷ ︸
X−1

The inverse of X can be constructed because u,v are linearly independent, so X has rank 2

Definition 18.4: A matrix A ∈ Mn×n is diagonalizable if it has n linearly independent eigen-
vectors. If A is diagonalizable, then the diagonalization of A is the decomposition of A as the
product

A = XΛX−1, (8)

for Λ a diagonal matrix and (Λii,xi) an eigenpair of A, for every i = 1, . . . , n. The vector xi is
the ith column of X.

Remark 18.5. The matrix X is not unique, as its columns (the eigenvectors of A) may be scaled by
any real number. That is, if Ax = λx, then also A(cx) = λ(cx), so cx is an eigenvector whenever v is
an eigenvector, for any nonzero c ∈ R. In terms of diagonalization, if A = XΛX−1, continuing from
Example 18.3, we could have the eigenvectors 5u and −7v instead of just u and v. In that case,

X =

 | |
5u −7v
| |

 =

 | |
u v
| |

[5 0
0 −7

]
=⇒ X−1 =

 | |
u v
| |

[5 0
0 −7

]−1

=

[
1/5 0
0 −1/7

] | |
u v
| |

−1

,
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and the decomposition in that case is

A =

 | |
u v
| |

[5 0
0 −7

]
︸ ︷︷ ︸

X

Λ

[
1/5 0
0 −1/7

] | |
u v
| |

−1

︸ ︷︷ ︸
X−1

=

 | |
u v
| |

Λ

[
5 0
0 −7

] [
1/5 0
0 −1/7

] | |
u v
| |

−1

=

 | |
u v
| |

Λ

 | |
u v
| |

−1

,

which is the same decomposition as we had previously, with just u and v. We used the fact that
diagonal matrices commute with each other.

Example 18.6. Consider diagonalization for different types of matrices:

� If A = In, then we the eigenvectors are the standard basis vectors of Rn, and the only eigenvalue
is 1. This eigenvalue has algebraic multiplicity n, because there are n linearly independent
eigenvectors with the same eigenvalue. That is, A = X = Λ = I.

� If A has all nonzero eigenvalues that are all the same, then A must be a multiple of the identity
matrix. Indeed:

Λ = kI =⇒ A = X−1(kI)X = kX−1IX = kX−1X = kI.

� If A ∈ M4×4 has two nonzero eigenvalues and two zero eigenvalues, then A may be diagonaliz-
able, but not always. For example:

A =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 , det(A− λI) = λ2((1− λ)(−1− λ)− 3) = λ2(−4 + λ2),

and the roots of the characteristic polynomial are λ = 0 and λ = ±2. By solving the appropriate
matrix equation, we find the nonzero eigenvector / eigenvalue pairs to be

2 for


0
0
1
1

 , −2 for


0
0
−1
3

 .
For the zero eigenvalues, the corresponding eigenvector [ x y z w ]T will have z = 0 and w = 0,
but there will be no conditions on x, y, so by convention we choose e1 and e2 of the standard
basis of R4 to be the eigenvectors. Diagonalization still works:

0 0 1 0
0 0 0 1
1 −1 0 0
1 3 0 0


︸ ︷︷ ︸

X


2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Λ


0 0 3

4
1
4

0 0 −1
4

1
4

1 0 0 0
0 1 0 0


︸ ︷︷ ︸

X−1

=


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 = A

However, this works because we essentially have a diagonal block matrix
[

0 0
0 B

]
, and the 2 × 2

matrix B had linearly independent eigenvectors. If we do not have a block matrix form with
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zero eigenvalues, then we cannot diagonalize. Consider the matrix

C =

[
1 −1
1 −1

]
, det(C − λI) = (1− λ)(−1− λ) + 1 = λ2,

and the roots of the characteristic polynomial are only λ = 0. The matrix equation to solve is[
1 −1
1 −1

] [
x
y

]
= 0

[
x
y

]
⇐⇒ x− y = 0,

x− y = 0.

It seems like the only eigenvector is [ 1
1 ], but then X = [ 1 1

1 1 ] does not have full rank and can not
be diagonalized.

18.2 Invertibility and similarity

You may be tempted to think that a matrix being invertible is the same as being diagonalizable, but
this is not true. In fact, there is no direct relationship between being invertible and diagonalizable, as
the Venn diagram of such matrices below shows.

diagonalizableinvertible [
3 0
0 2

]
(3− λ)(2− λ)

3, [ 1
0 ] 2, [ 0

1 ]

[
0 0
0 1

]
λ(1− λ)

0, [ 1
0 ] 1, [ 0

1 ]

[
1 1
0 1

]
(1− λ)2

1, [ 1
0 ]

[
1 −1
1 −1

]
λ2

0, [ 1
1 ]

For eigenvalues λi and eigenvectors vi of A, invertibility asks whether or not λi = 0. Diagonalizability
asks whether or not the vi are independent.

Inquiry 18.7: Let A ∈M3×3, and suppose that A has 3 different eigenvalues.

� Explain why A must have 3 linearly independent eigenvectors.
Hint: Show this by contradiciton, assuming that two eigenvectors are linearly independent,
and the third is a linear combination of the first two.

� If none of the eigenvalues are zero, explain why A is invertible. What happens if one of
the eigenvalues is zero?
Hint: Use the diagonalization equation.

� Convince yourself that the statement generalizes to any n ∈ N.

Remark 18.8. Let A ∈ Mn×n be diagonalizable, with eigenvector matrix X and corresponding
eigenvalue matrix Λ. Then:

� For any invertible B ∈ Mn×n, the matrix C = BAB−1 has the same eigenvalues as A, and has
eigenvector matrix BX. Here C and A are called similar matrices.

� For any k ∈ N, the matrix Ak is diagonalizable with the same eigenvectors as A, and with
eigenvalues on the diagonal of Λk.

� If |λi| = |Λii| < 1 for all i, then lim
k→∞

Akx = 0 for any x ∈ Rn.

All of these facts follow directly from the diagonalizing equation A = XΛX−1. In the last point, for
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complex eigenvalues λ = a+ bi, the absolute value is the product of λ with its conjugate λ∗ = a− bi:

|λ| = |a+ bi| = (a+ bi)(a− bi) = a2 − (bi)2 = a− b2i2 = a2 + b2.

Example 18.9. Consider the matrix A =
[

1/6 1/3
−1/6 2/3

]
. The roots of its characteristic polynomial are

given by

0 = det(A− λI) =

(
1

6
− λ
)(
−2

3
− λ

)
+

1

3
· 1

6
= λ2 − 5

6
λ+

1

6
⇐⇒ 0 = 6λ2 − 5λ+ 1,

which factors as 0 = (3λ − 1)(2λ − 1), so the eigenvalues are λ1 = 1
3 and λ2 = 1

2 . By solving the
appropriate matrix equations, we get the correspoinding eigenvectors to be v1 = [ 2

1 ] and v2 = [ 1
1 ], so

the diagonalization of A is

A =

[
2 1
1 1

]
︸ ︷︷ ︸

X

[
1/3 0
0 1/2

]
︸ ︷︷ ︸

Λ

[
1 −1
−1 2

]
︸ ︷︷ ︸

X−1

.

The eigenvalues of Ak then are computed by the equation

Ak =
(
XΛX−1

)k
= (XΛX−1)(XΛX−1) · · · (XΛX−1) = XΛ(X−1X) · · · (X−1X)ΛX−1 = XΛkX−1,

and Λk =
[

1/3k 0

0 1/2k

]
. Hence the eigenvectors of Ak are the same as those for A, and the eigenvalues

are siomply powers of the original eigenvalues. We can even construct the matrix Ak explicitly:

Ak = XΛkX−1

=

[
2 1
1 1

] [
1/3k 0

0 1/2k

] [
1 −1
−1 2

]
=

[
2/3k 1/2k

1/3k 1/2k

] [
1 −1
−1 2

]
=

1

6k

[
2k+1 − 3k 2(3k − 2k)
2k − 3k 2 · 3k − 2k

]
For example, when k = 5, we have

A5 =
1

7776

[
−179 422
−211 454

]
.

18.3 Exercises

Exercise 18.1. Decompose both matrices below in theirXΛX−1-decomposition, where Λ is a diagonal
matrix with the eigenvalues, and X is the matrix with columns as eigenvectors.

A =

[
2 2
5 5

]
B =

1 2 3
0 4 5
0 0 6


Exercise 18.2. Let A ∈ M3×3 with the eigenvectors

[
1
2
1

]
,
[

0
1
0

]
,
[−1
−1
0

]
and eigenvalues −1, 2,−3,

respectively.

1. Construct the eigenvector matrix X and the eigenvalues matrix Λ.

2. Construct A by the diagonalization equation A = XΛX−1.

Exercise 18.3. Diagonalize the matrices A,B below and find what Ak and Bk look like, for any
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k ∈ N. Your answers should have the value k in them.

A =

[
3 −1
−1 3

]
, B =

[
5 1
0 10

]
.

Exercise 18.4. Let A,B,C be any 3× 3 matrices, with C diagonalizable.

1. Show that trace(AB) = trace(BA).

2. Use that above to show that trace(C) is the sum of the three eigenvalues of C.
Hint: Split up the diagonalization of C into two matrices.

3. Suppose that the eigenvalues of C are 1, 1
2 ,

1
3 . Show why the limit lim

n→∞
Cn exists, and why it

has rank 1.
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Lecture 19: Special matrices

Chapters 6.4, 6.5 in Strang’s “Linear Algebra”

� Fact 1: Symmetric matrices can be decomposed with an orthonormal matrix of eigenvectors.

� Fact 2: Positive definiteness can be expressed in terms of pivots, eigenvalues, determinants, and
matix or vector multiplications.

� Skill 1: Apply the results of the spectral theorem

� Skill 2: Express a symmetric matrix as a sum of rank one matrices

� Skill 3: Check if a matrix is positive definite using equivalent properties

This section is about symmetric and positive definite matrices. We will see that for any matrix
A ∈Mm×n, the matrices ATA ∈Mn×n and AAT ∈Mm×m are both symmetric and positive definite.

19.1 Symmetric matrices

Recall from Definition 4.2 in Lecture 3 that a matrix A ∈ Mn×n is symmetric if Aij = Aji for all
1 6 i, j 6 n. This property makes many of the previous computations we did before much easier.

Proposition 19.1 (The Spectral Theorem). Let A ∈ Mn×n. If A is symmetric, then A has n real
eigenvalues and n orthogonal eigenvectors.

This implies that a symmetric matrix can always be diagonalized. Symmetric matrices will often be
written “S”.

Inquiry 19.2: Consider the symmetric matrix S =
[

1 2 0
2 1 2
0 2 1

]
.

� Compute the matrices X,Λ for the diagonalization of S.

� Find the matrix B for which BX has orthonormal columns.

� Consider the matrix X ′ which is the same as X, but with the first two columns swapped.
Explain why X ′Λ′(X ′)−1 is still equal to S. As with X, here Λ′ is the same as Λ, but with
the first two columns swapped.

� Does column swapping as in the point above work for any symmetric matrix, or only for
this particular S?

Example 19.3. Consider S = [ 1 2
2 4 ]. We can find its eigenvalues by solving

0 = det(S − λI) = (1− λ)(4− λ) = 4 = −5λ+ λ2 = λ(λ− 5),

for which λ1 = 0 and λ2 = 5. We find the eigenvectors by solving[
1 2
2 4

] [
x
y

]
= 0

[
0
y

]
⇐⇒ x+ 2y = 0

2x+ 4y = 0
=⇒

[
x
y

]
=

[
1
−1

2

]
= v1,[

1 2
2 4

] [
x
y

]
= 5

[
0
y

]
⇐⇒ x+ 2y = 5x

2x+ 4y = 5y
=⇒

[
x
y

]
=

[
1
2
1

]
= v2.

These vectors are orthogonal as v1 • v2 = 0. They both have length
√

5/2, so the normalized vectors
are

q1 =

[
2/
√

5

−1/
√

5

]
, q2 =

[
1/
√

5

2/
√

5

]
.
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This gives us the diagonalization as[
1 2
2 4

]
︸ ︷︷ ︸

S

=

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]
︸ ︷︷ ︸

Q

[
0 0
0 5

]
︸ ︷︷ ︸

Λ

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
︸ ︷︷ ︸

QT

.

Remark 19.4. The fact that S = QΛQT , where Q has orthonormal columns, allows us to write S in
another way. If S ∈M3×3, then

S =

 | | |
u v w
| | |


︸ ︷︷ ︸

Q

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

Λ

− uT −
− vT −
− wT −


︸ ︷︷ ︸

QT

=

 | | |
λ1u λ2v λ3w
| | |


︸ ︷︷ ︸

QΛ

− uT −
− vT −
− wT −



= λ1uuT + λ2vvT + λ3wwT ,

which is a sum of 3× 3 rank one matrices. This description will be important for Lecture 21.

We finish off the first part of this lecture with another comment about the relationship between
pivots and eigenvalues.

Remark 19.5. Let A ∈ Mn×n. Below are the main facts about pivots and eigenvalues summarized,
along with a new one:

� det(A) = (product of pivots) = (product of eigenvalues)

� trace(A) = (sum of eigenvalues)

� (number of pivots > 0) = (number of eigvals > 0) whenever A is symmetric

This last fact is counting multiplicity. It follows from the LDU -decomposition of a symmetric matrix,
which turns into LDLT .

Inquiry 19.6: Consider the symmetric matrix S =
[

1 1 1
1 1 1
1 1 1

]
. For this inquiry, you may use a

computer.

� Compute the eigensystem of S.

� As given, S is not invertible. For what values i, j will changing Sij = Sji to something
other than 1, make it invertible?

� The eiegnsystem of S contains only integers. Choose some i, j, and change Sij = Sji to
something other than 1 so that the eigensystem again only contains integers.

19.2 Positive definite matrices

The second part of this lecture focuses on special types of symmetric matrices.
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Definition 19.7: Let S ∈Mn×n be symmetric. The matrix S is positive definite if, equivalently,

� all eigenvalues of S are positive

� vTSv > 0 for any nonzero v ∈ R.

Weakening the conditions to λ > 0 and vTSv > 0 means S is (positive) semidefinite.

Finding eigenvalues is computationally intensive for large matrices, so we use the relationship with
pivots from Remark 19.5 to determine when eigenvalues are positive. This gives several quick ways to
determine when a matrix is positive definite.

Example 19.8. The 2 × 2 symmetric matrix
[
a b
b c

]
has pivots a, c − b2

a , so the pivots are positive iff
a > 0 and ac− b2 > 0. For example, all the symmetric matrices[

1 10
10 200

]
,

[
22 −3
−3 2

]
,

[
3 0
0 2

]
are positive definite because they have positive eigenvalues.

Remark 19.9. To see why the two definitions from Definition 19.7 are equivalent, consider an n× n
positive definite matrix S with eigenvector v and positive eigenvalue λ. Then

Sv = λv =⇒ vTSv = λvTv = λ(v2
1 + · · · v2

n) > 0.

Conversely, any x ∈ Rn can be expressed as a linear combination a1v1 + · · · anvn of the orthonormal
eigenvectors v1, . . . ,vn of S. Then by orthonormality of the eigenvectors,

xTSx = (a1v1 + · · ·+ anvn)T (a1λ1v1 + · · ·+ anλnvn) = a2
1λ1‖v1‖2 + · · ·+ a2

nλn‖vn‖2 > 0.

Proposition 19.10. The previous remark has some nice consequences:

� If S, T ∈Mn×n are positive definite, then S + T is positive definite.

� If A ∈Mm×n has independent columns, then ATA is positive definite.

Proof. The first point follows from distributing

xT (S + T )x = xTSx + xTTx.

The second point comes from rewriting

xT (ATA)x = (Ax)T (Ax) = ‖Ax‖2 > 0.

The proof of the second claim implies that ATA (and also AAT ) is always positive semidefinite.

Inquiry 19.11: This inquiry uses Definition 13.1 of an inner product from Lecture 13.

� Let S ∈ Mn×n be positive definite. Show that 〈u,v〉 = uTSv satisfies all the properties
of an inner product on Rn.

� Let A ∈Mn×n be a matrix and 〈u,v〉 = uTAv an inner product. Show that A must be a
positive definite matrix.
Hint: To show A must be symmetric, use the symmetric property of the inner product with
the standard basis vectors. To show A must be positive definite, use the positive definite
property of the inner product.
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Proposition 19.12. Let S ∈Mn×n be symmetric. Then, equivalently,

� S is positive definite

� S has all positive pivots

� S has all positive eigenvalues

� Every top-left submatrix of S has positive determinant

� xTSx > 0 for any nonzero x ∈ Rn

� There exists A ∈Mm×n with independent columns and S = ATA

Example 19.13. Let’s check all the claims above on a simple matrix S =
[

2 −1 0
−1 2 −1
0 −1 2

]
. For the pivots,

we quickly row reduce: 2 −1 0
−1 2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 0 4/3


The pivots are 2, 3/2, 4/3, which are all positive. The eigenvalues are the roots of

det(S − λI) =

19.3 Exercises

Exercise 19.1. Let a ∈ R be nonzero.

1. Find the eigenvalues of
[

0 a
−a 0

]
.

2. Find the eigenvalues of
[

0 0 a
0 ia 0
−a 0 0

]
.

3. Using a, construct a 4× 4 skew-symmetric matrix that has all imaginary eigenvalues.

4. Construct a 3× 3 symmetric matrix that has three pivots a and no zero entries.

Exercise 19.2. Let A ∈Mm×n. Show that AAT and ATA are both symmetric matrices.

Exercise 19.3. The numbers a, b, c are chosen randomly from the set of integers {−3,−2, . . . , 2, 3},
with replacement, to create a matrix A =

[
a b
0 c

]
.

1. What is the probability that A is symmetric?

2. What is the probability that A is positive definite?

Exercise 19.4. Consider the two symmetric matrices below, for a, b ∈ R:

A =

1 2 2
2 a 2
2 2 1

 , B =

b 2 0
2 b 3
0 3 b

 .
1. Find the pivots for both matrices. For what values of a, b will the pivots be positive?

2. Find the eigenvalues for both matrices. For what values of a, b will the eigenvalues be positive?

3. Find the upper left determinants for both matrices. For what values of a, b will the determinants
be positive?

4. Choose some b so that pivots, eigenvalues, determinants are positive. Find theQΛQT -decomposition
for B.
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Lecture 20: Generalizing diagonalizability: Jordan form

Chapter 8.3 in Strang’s “Linear Algebra”

� Fact 1: Every square matrix is similar to a square matrix in Jordan normal form.

� Fact 2: Jordan normal gives generalized eigenvectors, which always exist, irrespective of geo-
metric multiplicity.

� Skill 1: Construct the Jordan normal form of a square matrix.

� Skill 2: Find the higher rank generalized eigenvectors when algebraic multiplicity exceeds geo-
metric multiplicity.

In this section we continue with the idea of associating a diagonal matrix to every matrix, but this
time the matrix will be almost diagonal. This allows us to decompose a matrix when the number of
linearly independent eigenvectors is less than the rank.

20.1 Missing eigenvectors

Recall that the characteristic polynomial χ(t) of A ∈ Mm×n has n roots λ1, . . . , λn, some of which
may repeat, which are the eigenvalues of A. For each i = 1, . . . , n,

� the exponent m of the factor (λ− λi)m of χ is the algebraic multiplicity of λi

� the number of linearly independent eigenvectors of A having λi as an eigenvalue is the geometric
multiplicity of λi.

We already saw the general relationship among these numbers to be

1 6 (geometric multiplicity of λ) 6 (algebraic multiplicity of λ) 6 rank(A).

Inquiry 20.1: Let A ∈ Mn×n, and suppose that there is a nonzero number k ∈ R with
det(A− kI) = 0, and a nonzero vector x ∈ Rn with Ax = 0.

� The equation det(A− kI) = 0 means k is an eigenvalue of A. How do you know there has
to be an eigenvector assicated to this eigenvalue?
Hint: If the determinant of a matrix is zero, what does that say about the linear indepen-
dence of the rows / columns?

� Use the equation Ax = 0 to find two different n× n matrices with x as an eigenvector.
Hint: Consider the (somewhat silly) equation A = A+ λI − λI.

Example 20.2. The matrix B = [ 2 2
0 2 ] has one eigenvalue λ = 2 with algebraic multiplicity 2 and

geometric multiplicity 1, as[
2 2
0 2

] [
x
y

]
=

[
λx
λy

]
⇐⇒ 2x+ 2y = λx

2y = λy,

meaning y = 0 and λ = 2. The single eigenpair is then (2,v = [ 1
0 ]), or in other words

Av = 2v ⇐⇒ Av− 2v = 0 (A− 2I)v = 0.

The eigenspace of λ = 2 is 1-dimensional, and to fill all of R2, we need a vector like [ 0
1 ]. Note that

(A− 2I)

[
0

1/2

]
=

[
0 2
0 0

] [
0

1/2

]
=

[
1
0

]
= v =⇒ (A− 2I)2

[
0

1/2

]
= 0.

109



So the vector
[

0
1/2

]
is almost like an eigenvector, but not quite! This motivates the next definition.

Definition 20.3: Let A ∈Mn×n with eigenvalue λ, having

� algebraic multiplicity of λ equal to a ∈ {1, . . . , n}, and

� geometric multiplicity of λ equal to b ∈ {1, . . . , b}.

A vector v ∈ Rn is a generalized eigenvector of rank k associated to λ if

(A− λI)kv = 0 and (A− λI)k−1v 6= 0,

for some k ∈ {1, . . . , n − b + 1}. The eigenvectors we have seen so far are all generalized
eigenvectors of rank 1. We use the convention that A0 = I for any nonzero A.

Remark 20.4. There is a relationship among generalized eigenvectors v1, . . . ,vm of A ∈ Mn×n
associated to a particular eigenvalue λ. If vi is a generalized eigenvector of rank i, then there is a
cycle of generalized eigenvectors given by

(A− λI)vi = vi−1 or (A− λI)m−ivm = vi (9)

for all i = 1, . . . ,m. The relationship between the number m and other numbers of a matrix is explored
in Inquiry 20.7.

Example 20.5. Consider the matrix

A =


2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 1

 , with det(A− tI) = (2− t)3(1− t).

The eigensystem of this matrix is given below.

eigenvalue eigenvector alg. mult. geom. mult.

2 (1, 0, 0, 0) 3 1
1 (0, 0, 0, 1) 1 1

How do we find the generalized eigenvectors? Although in this case it may be quick to see that we are
missing (0, 1, 0, 0) and (0, 0, 1, 0), this is not the case in general. We already know the two (generalized)
eigenvectors (of rank 1), so by Equation 9, the generalized eigenvector of rank 2 associated to λ = 2,
is a vector v for which

(A− 2I)2v = 0 and (A− 2I)v =


1
0
0
0

 ⇐⇒


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 −1



v1

v2

v3

v4

 =


1
0
0
0

 .
We quickly see the solution to be (0, 1, 0, 0), as expected. Similarly, the generalized eigenvector of
rank 3 associated to λ = 2 is a vector w for which

(A− 2I)3w = 0 and (A− 2I)2w =


1
0
0
0

 and (A− 2I)w = v.

Solving the last equation we find that w = (0, 0, 1, 0), again as expected.
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Definition 20.6: Let A ∈Mn×n. The Jordan (normal) form of A is the matrix

J =

J1

. . .

Js

 with Ji =


λi 1

λi
. . .
. . . 1

λi

 ,
for every i = 1, . . . , s. Every J1, . . . , Js is a Jordan block , and every λ1, . . . , λn is an eigenvalue
of A. For every i, the number of Jordan blocks with eigenvalue λ is the geometric multiplicity of
λ. Jordan normal form is also known under the names normal form or Jordan canonical form.

To get the size of each Jordan block, we need to do some more work.

Inquiry 20.7: Let A ∈M10×10, and suppose it has the eigensystem as given in the table below.

eigenvalue eigenvector algebraic multiplicity

−1 u 1
−1 v 1
−1 w 3
3 x 2
3 y

5/11 z 2

� Fill in the missing entry in the table. What is χ(t)?

� How many Jordan blocks will the Jordan form of A have? What will be their sizes?

� Write the Jordan normal form of A.

� How are the sizes of Jordan blocks of the same eigenvalue related to the eigenvalue’s
algebraic multiplicity?

In general, given a single eigenpair of A ∈ Mn×n and the algebraic multiplicity, how can you
know the size of the associated Jordan block? Is it even possible?

Example 20.8. If we have the eigenvector with the highest rank in the cycle, we can generate the
others. Consider

J =



2 1
2

2 1
2 1

2 1
2 1

2


,

which has only one eigenvalue λ = 2, with algebraic multiplicity 7, geometric multiplicity 2 and two
Jordan blocks associated to it. The rank 1 eigenvectors are

u1 = [ 1 0 0 0 0 0 0 ]T , v1 = [ 0 0 1 0 0 0 0 ]T .

To get the higher rank generalized eigenvectors, we check the positions of the 1’s above the diagonal.
It is immediate that

u2 = [ 0 1 0 0 0 0 0 ]T , v2 = [ 0 0 0 1 0 0 0 ]T , · · · v5 = [ 0 0 0 0 0 0 1 ]T .
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The relationship is also (J − 2I)v5 = v4, (J − 2I)2v5 = v3, and so on.

20.2 Jordan’s theorem

Recall that a matrix B is similar to a matrix A if there exists an invertible matrix C with B = C−1AC.
Here we revisit the idea, making precise the relationship between the matrices A and J .

Remark 20.9. Similar matrices do not have the same eigenvectors, but they do have the same
eigenvalues. The eigenvectors of similar matrices are related: If B = C−1AC has eigenvector x with
eigenvalue λ, then

Bx = λx =⇒ C−1ACx = λx =⇒ A(Cx) = λ(Cx).

That is, Cx is an eigenvector of A with eigenvalue λ.

Now we combine similar matrices with generalized eigenvectors. Fortunately, generalized eigen-
vectors apply to any matrix, not just matrices in Jordan form.

Theorem 20.10 (Jordan). Every A ∈Mn×n can be decomposed as

A = XJX−1, (10)

where J is the Jordan normal form of A, and X has the generalized eigenvectors of A as columns, in
the same order as the eigenvalues in J .

Remark 20.11. Let A ∈ Mn×n with J = X−1AX in Jordan normal form, and let B be similar to
A. That is, there exists some C ∈Mn×n with B = CAC−1. It follows that

J = X−1AX = X−1(C−1BC)X = (CX)−1B(CX).

In other words, B has the same Jordan normal form as A.

Inquiry 20.12: Let A ∈ Mn×n, and suppose that the eigenvectors of A are all linearly inde-
pendent.

� How many Jordan blocks does A have? What does this say about the Jordan normal form
of A? It will be a matrix.

� Recall the XΛX−1 decomposition from Lecture 18. How does this compare with the
decomposition of A from Jordan’s theorem?

20.3 Exercises

Exercise 20.1. The matrix A below has a single eigenvalue λ = 6 with algebraic multiplicity 4 and
geometric multiplicity 1. Find all of its generalized eigenvectors.

A =


9 −1 −1 −3
−3 5 1 1
5 −5 5 −9
3 1 −1 5

 , v1 =


1
−1
1
1

 .
Exercise 20.2. How many different matrices inM7×7, up to similarity, are there with one eigenvalue
λ = 2 that has algebraic multiplicity 2 and

1. geometric multiplicity 2?

2. geometric multiplicity 3?

3. any geometric multiplicity?
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Exercise 20.3. Let J ∈ M6×6 be a matrix in Jordan form with two eigenvalues 3 (having algebraic
multiplicity 4 and geometric multiplicity 2) and −3 (having algebraic multiplicity 2 and geometric
multiplicity 1).

1. How many Jordan blocks will J have? Give the two possibilities for their sizes.

2. Suppose that the Jordan blocks of J all have the same size. Find a matrix B that is similar to
J and has no zero entries.

3. For the matrix B from part (2.), find all its generalized eigenvectors.
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Lecture 21: Generalizing diagonalizability: Singular values

Chapters 7.1,7.2 in Strang’s “Linear Algebra”

� Fact 1: No matter what size A has, AAT and ATA are both positive semidefinite and have the
same nonzero eigenvalues.

� Fact 2: The SVD contains orthonormal bases of the four fundamental subspaces.

� Skill 1: Compute the rank r approximation to A

� Skill 2: Decompose a non-square matrix A by the SVD

This lecture continues with generalizing diagonalizibility. Instead to having some XJX−1 decompo-
sition for a square matrix, as in the previous lecture, we get a decomposition for a matrix of any
rectangular size.

21.1 Eigenvalues of symmetric matrices

The word singular so far has been used when talking about matrices. A square matrix was seen to be
singular if its determinant is zero, and non-singular otherwise. Before we begin with the new concept
of singular , we make two observations.

Remark 21.1. Let any A ∈Mm×n. Then AAT ∈Mm×m and ATA ∈Mn×n

� both have the same nonzero eigenvalues, not counting algebraic multiplicity;

� both are positive semidefinite.

The first points follows by using the usual eigenvalue-eigenvector equations. Suppose that (λ,u) is an
eigenpair for AAT , and the (µ,v) is an eigenpair for ATA. Then

AATu = λu =⇒ ATA(ATu) = λ(ATu), (11)

ATAv = µv =⇒ AAT (Av) = µ(Av). (12)

In other words, we the immediately get that (λ,ATu) is an eigenpair for ATA and (µ,Av) is an
eigenpair for AAT . However, we only get this conclusion if Au and ATv are not the zero vector!
Recall that an eigenvector cannot be the zero vector. This situation is explored more in Inquiry 21.2.

The second point follows by obsevervation. Let x ∈ Rm and y ∈ Rn. Then

xTAATx = (xTA) · (ATx) = (ATx)T · (ATx) = (ATx) • (ATx) = ‖ATx‖2 > 0,

yTATAy = (yTAT ) · (Ay) = (Ay)T · (Ay) = (Ay) • (Ay) = ‖Ay‖2 > 0,

where the last inequality follows from the nonnegativity of the norm ‖ · ‖. Note that xTAATx may
be equal to zero even when x 6= 0. Indeed, if ATx = 0, it simply means there is linear dependence
among the columns of AT (equivalently, among the rows of A).

Inquiry 21.2: Consider the matrix A =
[

1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

]
∈ M3×5. You may use a computer for this

Inquiry.

� Compute the 3 eigenvalues of AAT and the 5 eigenvalues of ATA.

� Compute the eigenvectors for the zero eigenvalues of ATA are zero.

� Attempt to use Equation (11) to get the associated eigenvectors for AAT . What is hap-
pening?
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Definition 21.3: Let A ∈ Mm×n. The singular values of A are the square roots of the eigen-
values that AAT and ATA have in common.

Example 21.4. Continuing with the matrix A from Inquiry 21.2, we can apply the decomposition
from Remark 19.4. For AAT , suppose that it has eigensystem {(λ1,u1), (λ2,u2), (λ3,u3)}, with λ1 >
λ2 > λ3. Then, using decimals,

AAT ≈ 83.38︸ ︷︷ ︸
λ1

0.17 0.23 0.3
0.23 0.3 0.4
0.3 0.4 0.53


︸ ︷︷ ︸

u1uT
1

+ 2.49︸︷︷︸
λ2

 0.69 0.08 −0.45
0.08 0.01 −0.05
−0.45 −0.05 0.3


︸ ︷︷ ︸

u2uT
2

+ 0.13︸︷︷︸
λ3

 0.14 −0.31 0.15
−0.31 0.69 −0.34
0.15 −0.34 0.17


︸ ︷︷ ︸

u3uT
3

.

Notice the very large eigenvalue and the two smaller ones. This decomposition will be useful when we
ignore the smaller eigenvalues.

Inquiry 21.2 above showed that if AAT has more eigenvalues than ATA, or vice versa, then the
extra eigenvalues are zero. However, this does not imply that AAT and ATA have the same number
of independent eigenvectors!

Remark 21.5. Let A ∈ Mm×n. Let u1, . . . ,um ∈ Rm be the eigenvectors of AAT and v1, . . . ,vn ∈
Rn be the eigenvectors of ATA, where both are repeated depending on algebraic multiplicity. Without
loss of generality, we assume that n > m, so vm+1, . . . ,vn are all eigenvectors for the zero eigenvalue.
Let σ1, . . . , σm ∈ R be such that

AATui = σ2
i ui and ATAvi = σ2

i vi,

for all i = 1, . . . ,m. We may do this because AAT and ATA are both positive semidefinite (so we can
take square roots of the eigenvalues). We use σ instead of λ because these are the singular values -
the letter σ is the letter “s” in Greek. The relationship among the ui, vi, σi and the original matrix
A is then given by

ATui = σivi and Avi = σiui,

as multiplying the left equation by A on the left means the equation on the right must be true (for the
previous equation to hold). Combining all the equations Avi = σiui into a big equation, and assuming
that the ui are orthonormal, and the vi are orthonormal as well ,we get the following decomposition:

A

 | | |
v1 v2 · · · vm
| | |

 =

 | | |
σ1u1 σ2u2 · · · σmum
| | |



A

 | | |
v1 v2 · · · vm
| | |

 =

 | | |
u1 u2 · · · um
| | |



σ1

σ2

. . .

σm



A

 | | |
v1 v2 · · · vm
| | |



− v1 −
− v2 −

...
− vm −

 =

 | | |
u1 u2 · · · um
| | |



σ1

σ2

. . .

σm



− v1 −
− v2 −

...
− vm −



A =

 | | |
u1 u2 · · · um
| | |



σ1

σ2

. . .

σm



− v1 −
− v2 −

...
− vm −


= σ1u1v

T
1 + σ2u2v

T
2 + · · ·+ σmumvTm.
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Definition 21.6: The singular value decomposition of A ∈Mm×n is A = UΣV T , where

� U ∈Mm×m has the eigenvectors of AAT as columns,

� V ∈Mn×n has the eigenvectors of ATA as columns,

� Σ ∈Mm×n has the singular values of A on the diagonal of its upper left rank(A)×rank(A)
submatrix, in decreasing order from the largest in Σ11.

The order of the eigenvectors in U and V corresponds to the order of the singular values in Σ.
The vectors ui are called the left singular vectors and the vi are called the right singular vectors
of A.

Singular value decomposition allows us to have an eigenvalue-eigenvecftor type decomposition for
non-square matrices. This is very powerful, as most data in real life is not square.

Inquiry 21.7: Consider the two flags below (of Lithuania and Benin), given as matrices.

L =



y y y y y y y y y
y y y y y y y y y
g g g g g g g g g
g g g g g g g g g
r r r r r r r r r
r r r r r r r r r

 B =



g g g y y y y
g g g y y y y
g g g y y y y
g g g r r r r
g g g r r r r
g g g r r r r


� How many singular values do these two matrices have?

� Express both matrices as sums of rank one matrices.

You may use a computer for this task, and a Python function such as svd from the package
scipy.linalg. You will need to convert colors to numbers (the choice of number does not
matter, but distinct colors should have distinct numbers).

Very often we do not need the whole decomposition, only a part of it.

Definition 21.8: Let A ∈ Mm×n, and let σ1, σ2, . . . be the singular values of A in decreasing
order. The rank r approximation of A is the sum

σ1u1v
T
1 + · · ·+ σrurv

T
r ∈Mm×n,

for every 1 6 r 6 rank(A). If r = rank(A), then the rank r approximation of A is equal to A.

These rank r approximations help is massively reduce the amount of “information” in a matrix.
For example, given a 100× 100 matrix, which has 1002 = 10 000 numbers, we could just consider the
rank 5 approximation, which has 5 + 5 · (100 + 100) = 1005 numbers, an approximately 90% reduction
in size.
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Inquiry 21.9: This inquiry explores how “similar” the rank r approximations are to the input.

� Open up the Google Colab notebook (link here) and execute the cells in your Python IDE.

� For each image, find the r for which the rank r approximation “essentially looks like” the
input image. What percentage reduction in information size did this achieve?

� Find some images on your own, and perform the same steps as above. Without using
single color images, try to find the images that have the highest recduction in size.

21.2 Bases in the decomposition

For this section, let r = rank(A) 6 min{m,n}, for A ∈ Mm×n. We have alrerady seen the decompo-
sition of A into three matrices, using eigenvalues and eigenvectors of AAT and ATA:

A =

 | | |
u1 u2 · · · ur
| | |


︸ ︷︷ ︸

eigenvectors of AAT


σ1

σ2

. . .

σr


︸ ︷︷ ︸

singular values


− vT1 −
− vT2 −

...
− vTr −


︸ ︷︷ ︸

eigenvectors of ATA

. (13)

Hding in this equation are the bases for the four fundamental subspaces that we have already seen in
Lecture 8.

Remark 21.10. The rank(A)-approximation of A contains orthonormal basis vectors of other sub-
spaces:

column space left nullspace
m− r rows,
n− r columns

row space

nullspace

A =

 | | | |
u1 · · · ur ur+1 · · · um
| | | |



σ1

. . . 0
σr

0 0





− vT1 −
...

− vTr −
− vTr+1 −

...
− vn −



Example 21.11. Let’s compute the full SVD for a matrix, and get the appropriate bases. Consider

A =

 1 1
2 2
−1 −1

 , AAT =

 2 4 −2
4 8 −4
−2 −4 2

 , ATA =

[
6 6
6 6

]
.

It is immediate that A has rank 1, as the rows are all multiples of the first row. We already know
both ATA and AAT have the same eigenvalues, so we just find them for the easier of the two, ATA.
The roots of the characteristic polynomial are found by

0 = det(ATA− λI) = (6− λ)2 − 36 = 36− 12λ+ λ2 − 36 = λ2 − 12λ = (λ− 12)λ,

so the eigenvalues are 12 and 0. Hence the only singular value is σ1 = 2
√

3. To find the eigenvectors,
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we row reduce the appropriate augmented matrices, remembering to normalize the eigenvectors.

12 for AAT :

−10 4 −2 0
4 −4 −4 0
−2 −4 −10 0

 RREF−−−−−→

1 0 1 0
0 1 2 0
0 0 0 0

 =⇒ u1 =

−1/
√

6

−2/
√

6

1/
√

6


0 for AAT :

 2 4 −2 0
4 8 −4 −0
−2 −4 2 0

 RREF−−−−−→

1 2 −1 0
0 0 0 0
0 0 0 0

 =⇒ u2 =

1/
√

2
0

1/
√

2

 ,u3 =

−2/
√

5

1/
√

5
0


12 for ATA :

[
−6 6 0
6 −6 0

]
RREF−−−−−→

[
1 −1 0
0 0 0

]
=⇒ v1 =

[
1/
√

2

1/
√

2

]
0 for ATA :

[
6 6 0
6 6 0

]
RREF−−−−−→

[
1 1 0
0 0 0

]
=⇒ v2 =

[
−1/
√

2

1/
√

2

]
We could have also found v1 by ATu1 = 2

√
3v1. This gives us the complete decomposition

A =

−1/
√

6 1/
√

2 −2/
√

5

−2/
√

6 0 1/
√

5

1/
√

6 1/
√

2 0


︸ ︷︷ ︸

U

3
√

2 0
0 0
0 0


︸ ︷︷ ︸

Σ

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
︸ ︷︷ ︸

V T

,

as well as bases

col(A) = span


−1/

√
6

−2/
√

6

1/
√

6

 , null(AT ) = span


1/
√

2
0

1/
√

2

 ,
−2/

√
5

1/
√

5
0

 ,

row(A) = span

{[
1/
√

2

1/
√

2

]}
, null(A) = span

{[
−1/
√

2

1/
√

2

]}
.

Remark 21.12. If A is symmetric, then the SVD is the same as the QΛQT -decomposition. In
this way, the SVD is a more general decomposition that captures the nice properties of the QΛQT -
decomposition.

21.3 Exercises

Exercise 21.1. Consider the two “matrices” below.

L =


r r r r r r r r r r
r r r r r r r r r r
w w w w w w w w w w
r r r r r r r r r r
r r r r r r r r r r

 B =



w w w r w r w w w
w w w r w r w w w
r r r r w r r r r
w w w w w w w w w
r r r r w r r r r
w w w r w r w w w
w w w r w r w w w


1. Express L, the flag of Latvia, as a rank one product of two vectors.

2. Express B, the flag of Latvian battleships, as a sum of two rank one matrices. That is, decompose
B as B = σ1u1v

T
1 + σ2u2v

T
2 .

Exercise 21.2. This question uses Python. You may use the folowing resources:

� Sample code: jlazovskis.com/teaching/linearalgebra

� Sample images: links.uwaterloo.ca/Repository.html

Find a grayscale image online at least 100× 100 pixels in size. It does not have to be square.
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1../ Find the singular values of the image. How many of them are less than 1/100 of the largest
singular value?

2../ Compute the rank r approximation to the image for r = 1, 2, 3, 5, 10.

3. If the image had size m× n, what is the percent reduction in size for the rank r approxmation?

Exercise 21.3. Let a ∈ R6=0, and consider the matrix

A =

[
a 0 a 0
0 0 0 2a

]
.

1. Compute the SVD of A by finding the eigenvalue / eigenvector pairs for AAT and ATA.

2. What are the dimensions of the four fundamental subspaces of A?

Exercise 21.4. 1. Construct a 3× 4 matrix with singular values 1, 2, 3.

2. Construct a 2× 2 rank 1 matrix with right singular vectors
[

1/2√
3/2

]
,
[
−
√

3/2
1/2

]
.

3. Find the rank 1 and rank 2 approximations for

A =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .
Hint: Since two eigenvalues are the same, there are two rank 2 approximations!
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Part IV

Generalizations and applications

Lecture 22: Principal component analysis

Chapter 7.3 in Strang’s “Linear Algebra”

� Fact 1: The first principal component solves the perpendicular least squares problem

� Fact 2: The first two principal components give a reasonable way to plot high-dimensional data

� Skill 1: Solve the perpendicular least squares problem using SVD

� Skill 2: Identify the principal components of A ∈Mm×n, in terms of the total covariance of A

� Skill 3: Normalize and center data on its mean

In the previous lecture, we saw how to simplify images, thought of as a matrix A, for compressed com-
munication, using the eigenvectors of AAT and ATA, which appear in the singular value decomposition
of A. in this lecture we will apply SVD, but to a different problem: dimensionality reduction.

22.1 The first significant direction of data

All data used in this lecture is available on the course website jlazovskis.com/teaching/linearalgebra.

Example 22.1. Consider the following data set, representing the number of instructors (x-value) and
the number of students (y-value) at 32 different post-secondary institutions in Latvia.

{(1531, 15260), . . . , (2, 33)}

instructors

students

200

3000

There seems to be a general trend! In Lecture 11 we saw how to approximate this data with a least
squares line of best fit. We do something similar now, but slightly differently, and as motivation
for higher dimensions. Each pair in this data set is a sample, so we can costruct a sample matrix
A ∈M2×32.
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Definition 22.2: Let A ∈ Mm×n and consider each of the n columns of A as a sample. There
are two matrices associated to A:

Mij = Aij −
1

n

n∑
k=1

Aik︸ ︷︷ ︸
mean of row i

, S =
MMT

n− 1
.

A has a mean-centered matrix M ∈Mm×n and a sample covariance matrix S ∈Mm×m.

By definition, S is symmetric.

Inquiry 22.3: Consider the matrix A =
[

2 3 −1 6 1
0 −3 −4 1 −1

]
.

� Compute the mean-centered matrix M .

� Suppose you add one column (sample) to M . Will M still be mean-centered? Why or why
not?

� Suppose you add two columns to M . What must be true about the two columns for the
new M to still be mean-centered?

Continuing with Example 22.1, we find the means and center the matrix accordingly:

mean of row 1 (students): 145.6
mean of row 2 (instructors): 1890.6

This lets us create the mean-centered 2× 32 matrix M and the sample covariance 2× 2 matrix S for
the data. The key lies in the singular value decomposition of

S =

[
73909.14 864786.84
864786.84 10971745.39

]
=

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

U

[
11039942.91 0

0 5711.62

]
︸ ︷︷ ︸

Σ

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

V T

.

Since S is symmetric, the matrices U and V are the same. The singular vector with the largest
eigenvalue identifies the principal component of the mean-centered data. This can be thought of as
a 1-dimensional subspace of Rm that does the best job (that a 1-dimensional subspace could do) of
approximating all the data. The first eigenvalue dominates the second one, indicating the data is
very close to a straight line. The straight line is given by the eigenvector corresponding to the large
eigenvalue.

instructors (mean-centered)

students (mean-centered) span of (−0.0786,−0.9969)
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The line here is y = 0.9969
0.0786x, which best approximates the mean-centered data. The line that best

approximates the original data is this line, but shifted back by the mean:

y =
0.9969

0.0786
(x− 145.6) + 1890.6.

Definition 22.4: Let A ∈ Mm×n. The (first) principal component of A is the singular vector
corresponding to the largest singular value of A.

The first principal component of A solves the perpendicular least squares problem. That is, the first
eigenvector minimizes the square of the distance from its line to the data. This is alternative to the
least squares solution we saw in Lecture 10, which minimized the the vertical distance.

Inquiry 22.5: Consider the data sets and lines below.

R

R

R

R

R

R

� For each of the grids above, indicate which of the three lines you think corresponds to the
linear least squares approximation and which corresponds to the first principal component.

� Check your answers by computing the least squares linear approximation and the first
principal component to the data sets. Use the interactive plot (link here).

� Which approximation do you think is better? Why?

� Try to come up with data for which the difference between the two lines is as big as posible.

The key idea for this inquiry is that least squares minimizes vertical distance and the first
principal component minimizes perpendicular distance. “Distance” means the sum of the lengths
from each point to the line.

22.2 PCA for higher dimensions

So far we saw data with two coordinates, but very often the data we see is many-dimensional, and
has more than one important component. Now we analyze the principal components (that is, singular
vectors) corresponding to the several largest singular values.

Example 22.6. The data from Example 22.1 can be augmented with extra data about the change
in student and instructor numbers from the previous year. This gives 4-dimensional data, which can
not be easily visualized on a page.

iestade akad pers 2019 akad pers 2020 stud 2019 stud 2020

Latvijas Universitāte 1182 1531 15250 15260
R̄ıgas Tehniskā universitāte 930 904 14383 14006

Daugavpils Universitāte 194 182 2163 2068
...

...
...

...
...

Latvijas Nacionālā aizsardz̄ıbas akadēmija 10 10 269 262
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If we want to consider the change (percent), then we need to normalize the data, to make sure that a
change in every coordinate is taken into account similarly.

Definition 22.7: Let x ∈ Rn. The normalization of x is a vector x̂ ∈ Rn that is either:

� a multiple of x so that it has unit length: x̂ = x
‖x‖

� a shift and scale the vector so that it lies in [0, 1]n: x̂ = x−m
M−m , where m = mini xi,

M = maxi xi, and m = [m m · · · m]T .

The second case is also called min-max normalization, and is the normalization used here.

We normalize each row, then center it at zero, then compute the sample covariance matrix, and finally
get its SVD. The matrices U and Σ from the SVD are below.

U =


−0.61 0.161 −0.011 −0.776
−0.754 0.167 −0.09 0.629
−0.096 −0.075 0.992 0.046
−0.224 −0.97 −0.094 −0.025



Σ =


0.802 0 0 0

0 0.363 0 0
0 0 0.164 0
0 0 0 0.0145



Looking at the first two columns of U (the first two singular vectors), we see that the second coordinate
(student number) has the largest magnitude for the first singular vector u1, and the last coordinate
(change in student number) has the largest magnitude for the second singular vector u2:

xnew = projspan(u1,u2)(xold) =

[
x1

x2

]
, x1 =

u1 • xold

u1 • u1
, x2 =

u2 • xold

u2 • u2
.

The first two singular vectors are the “defining directions” of the data.

Definition 22.8: Let A ∈Mm×n, considered as n samples in m coordinates.

� For each 1 6 i 6 m, the variance of coordinate i is Sii.

A large variance means coordinate i is spread out, and a small variance means coordinate i is
densely packed.

� For each 1 6 i, j 6 m, the covariance of coordinate i with coordinate j is Sij = Sji.

A large positive covariance means coordinate i increases when coordinate j increases, and a
large negative covariance means coordinate i decreases when coordinate j increases.

� The total variance of A is trace(S).

The variance of the data from Example 22.1 is either trace(S) = S11 + S22 or trace(Σ) = Σ11 + Σ22,

123



since the sum of the eigenvalues of a matrix is the trace of the matrix. The singular value of the
first principal component accounts for σ1/trace(S) ≈ 0.99, or about 99% of the total covariance. In
general, it may take more than the first principal component to accont for so much of the covariance
- your choice of when to stop determines the princial components of the data.

22.3 Exercises

Exercise 22.1. This question is about the 4 point interactive found on the course website (link here).

1. Create an arrangement of the points with the largest angle possible between the two approxi-
mations that you can find. Do you think any angle is possible? Justify your reasoning.

2. Create an arrangement of the points with the largest difference between the sums of the distances
that you can find. Besides all points being on a line, what situations give the same sums of
distances?

Exercise 22.2. Find samples of high-dimensional (at least 4) data online.

1. Construct the sample covariance matrix S and find the two largest eigenvalue / eigenvector pairs
from its SVD.

2. What percentage of the total covariance do the first two principal components cover?

3. Plot the data on the axes of the two principal components.

4. Create two plots of the data having for axes:

(a) the first principal component against the coordinate with the highest (in magnitude) asso-
ciation

(b) the second principal component against the coordinate with the highest (in magnitude)
association

Exercise 22.3. Create a matrix of 2-dimensional data for which the first principal component of the
data is a multiple of the eigenvector [ ab ], for a, b ∈ R6=0. Make sure that:

� the matrix has at least 3 columns (samples),

� no 3 samples are colinear.

Exercise 22.4. 1. Create a matrix of 3-dimensional data for which first two principal components
are the vectors [ 1 0 0 ]T and [ 0 1 0 ]T . Make sure that:

� the data is centered at 0,

� the matrix has at least 4 columns (samples),

� no 3 samples are colinear.

2. Do the same as in part (a), but change the last condition to “no 4 samples lie on a plane.”
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Lecture 23: Linear transformations

Chapters 8.1, 8.2 in Strang’s “Linear Algebra”

� Fact 1: A linear transformation is the same thing as a matrix.

� Fact 2: A linear transformtion is injective iff it is surjective.

� Skill 1: Determine whether or not a function is a linear transformation.

� Skill 2: Construct a matrix for a linear transformation, given what it does to a basis.

� Skill 3: Construct the image and kernel of a linear transformation

This lecture focuses on a generalization: the connection between m× n matrices and functions Rn →
Rm. We have already seen the interpretation of a matrix as a function with the rotation matrix Rθ
in Lecture 9. By the end of this lecture, we will see that every such function comes from a matrix.

23.1 Types of linear transformations

Definition 23.1: Let V,W be vector spaces. A linear transformation, or linear map, is a
function f : V →W that satisfies

f(x + y) = f(x) + f(y) and f(cx) = cf(x) (14)

for every x,y ∈ V and every c ∈ R. These are conditions for linearity .

Example 23.2. We have already seen examples (and non-examples) of linear transformations:

� Every m× n matrix is a linear transformation Rn → Rm, because A(x + y) = Ax +Ay.

� The shift function x 7→ x + y for nonzero y is not linear, because splitting up the function on
two vectors adds 2y instead of just y.

� The length function is not a linear transformation Rn → R, becausewwww[12
]wwww =

wwww[−1
−2

]wwww =
√

3, but

wwww[12
]

+

[
−1
−2

]wwww =

wwww[00
]wwww = 0 6= 2

√
3.

Inquiry 23.3: Each of the functions below are linear. For each, show that the two conditions
for linearity are satisfied.

� the dot product of a vector v ∈ R3 with
[

1
2
3

]
∈ R3, as a function R3 → R

� projection of a vector v ∈ R3 to the x-axis, considered as the span of
[

1
0
0

]
� differentiation and integration on the space C[R] of continuous functions

Each of the functions below is not linear. For each, show which of the linearity conditions are
violated.

� addition of the vector [ 1
1 ]: f([ xy ]) = [ xy ] + [ 1

1 ]

� squaring of every component: f([ xy ]) =
[
x2

y2

]
Linearity is good because it gives a complete picture with a small amount of information.
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Proposition 23.4. Any linear map V →W is completely determined by what it does to the basis of
V .

This follows immediately by linearity. Another way to say the above proposition is that choosing a
basis v1, . . . ,vn of V and taking any (not necessarily linearly independent!) vectors w1, . . . ,wn ∈W ,
there is only one unique linear map f : V →W for which f(vi) = wi, for all i.

Inquiry 23.5: This inquiry is about the vector space R3.

� Come up with two different bases {v1,v2,v3} and {w1,w2,w3} for R3.

� Let A be the 2× 3 matrix with Av1 = [ 1
1 ], Av2 = [ 2

2 ] and Av3 =
[−1

2

]
. What is A?

� Let B be the 4× 3 matrix with Bw1 =

[
1
0
0
1

]
, Bv2 =

[
0
2
0
2

]
and Bv3 =

[
0
0
−1
2

]
. What is B?

� What are the ranks of A and B? How are these numbers related to the dimension of R3?

Every linear transformation V →W creates new subspaces of V and of W .

Definition 23.6: Let f : V →W be a linear transformation.

� The kernel of f is ker(f) = {x ∈ V : f(x) = 0} ⊆ V

� The image, or range of f is im(f) = {f(x) ∈W : x ∈} ⊆W

Note that ker(f) ⊆ V is a subspace of V , and im(f) ⊆W is a subspace of W .

Example 23.7. For f(x) = Ax, multiplication by a matrix, the kernel is the nullspace and the image
is the column space. That is,

ker(f) = null(A), im(f) = col(A).

Recall that a function f : X → Y is injective, or one-to-one, if f(a) = f(b) implies a = b. Further,
the function f is surjective, or onto, if for every y ∈ Y there exists x ∈ X such that f(x) = y. We
will apply these concepts to linear transformations.

Proposition 23.8. Let f : V →W be linear.

� f is injective iff ker(f) = {0}

� if dim(W ) = dim(im(f)), then f is surjective.

Inquiry 23.9: This inquiry describes the justification for Proposition 23.8.

� Suppose that ker(f) = {0}. Show that assuming f(x) = f(y) implies that x = y.

� Suppose that f is injective. Use the second linarity condition with c = 0 to show that
assuming a nonzero vector is in the kernel of f implies a contradiction.

� Revisit Remark 7.17 and explain why it justifies the second point of the proposition.

Combining injective and surjective linear transformations gives us a very special transformation.

Definition 23.10: A linear transformation f : V → W that is both injective and surjective is
an isomorphism.
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You may have seen the word bijective be used for functions that are both injective and surjective,
but for linear maps we use this special word. Isomorphisms are important because they preserve the
fundamental structure of the vector space V .

Example 23.11. We have already seen examples of isomorphisms:

� The map f : Rn → Rn with f(x) = 2x is an isomoprhism.

� The change of basis matrix from Lecture 7 is an isomorphism

� The dot product of any vector in R2 with (−1, 2) is not an isomoprhism, as it fails injectivity:
(3, 4) · (−1, 2) = (−5, 0) · (−1, 2).

23.2 The matrix of a linear transformation

Theorem 23.12. Let f : Rn → Rm be linear. Then there is a unique matrix A for which Ax = f(x)
for all x ∈ Rn.

Proof. First we do this proof in a special case, using the standard bases e1, . . . , en for Rn and e1, . . . , em
for Rm. By Proposition 23.4, f is completely determined by what it does on the ei. Suppose that

f(e1) = a11e1 + · · ·+ am1em,

f(e2) = a12e1 + · · ·+ am2em,

...

f(en) = a1ne1 + · · ·+ amnem,

for some aij ∈ R. Then on an arbitrary x = b1e1 + · · ·+ bnen ∈ Rn, the linear map f takes it to

f(x) = f(b1e1 + · · ·+ bnen)

= b1f(e1) + · · ·+ bnf(en)

= b1(a11e1 + · · ·+ am1em) + · · ·+ bn(a1ne1 + · · ·+ amnem)

= (b1a11 + · · ·+ bna1n)e1 + · · ·+ (b1am1 + · · · bnamn)em.

Since ei is all zeros except a 1 on line i, the last line above can be rewritten as
b1a11 + · · ·+ bna1n

b2a21 + · · ·+ bna2n
...

b1am1 + · · · bnamn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸

A


b1
b2
...
bn

 = A(b1e1 + · · ·+ bnen) = Ax.

So in this case, f is exactly A.
In the general case, where v1, . . . ,vn is some basis for Rn and w1, . . . ,wm is some basis for Rm,

construct the change of basis matrices CV , that takes the vi to the ei, and CW , that takes the wi to
the ei. Then the matrix of the function f is C−1

W ACV .
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Inquiry 23.13: This inquiry connects linear transformations with matrices. Recall that AT is
the transpose of A.

� Considering the transpose as a “function” M3×2 → M2×3, explain why this cannot be
linear.
Hint: How would this work as a matrix multiplication?

� Explain why the function f : M3×2 → R6, for which

f
([

a11 a12
a21 a22
a31 a32

])
= [ a11 a12 a21 a22 a31 a32 ]T

is linear. What is its inverse, and is it linear as well?

� Describe a function g : R6 → R6 so that

(f−1 ◦ g ◦ f) : M3×2 →M2×3

produces the transpose of a matrix. Is it linear?

This Theorem above has several implications. Combining the rank-nullity theorem from Lecture
8 along with observations above, we immediately get the following.

Corollary 23.14. Let f : V →W be linear, with dim(V ) = dim(W ).

� [Dimension Theorem] dim(V ) = dim(ker(f)) + dim(im(f))

� The map f is surjective iff it is injective

Proof. The first point follows by the rank-nullity theorem and applying Theorem 23.12 in Example
23.7 to describe every linear map as a matrix.

The second point follows immediately from the first point and Proposition 23.8.

Remark 23.15. We also get a nice result for compositions of linear maps. Given two linear maps
f : V →W and g : W → Z, their composition is a linear map (g ◦f) : V → Z (you will check this in an
exercise). If f, g have associated matrices A,B, respectively, then the composition g ◦f has associated
matrix BA. This follows by using the equations f(x) = Ax and g(y) = B(y) in simplifying

(g ◦ f)(x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.

23.3 Exercises

Exercise 23.1. For this question, the vector Ti(x) is simply written Tix, to both ease notation and as
a reminder that linear transformatons are simply matrices. You are given the following transformations
Ti:

T1


x
y
z
w

 =


w
y
z
x

 T2

[
x
y

]
=

[
2ey

x

]
T3

[
x
y

]
=

[
x2

y2

]
T4

[
x
y

]
=

[
sin(x2 + y2)
cos(x2 + y2)

]

T5

xy
z

 =

3y + x
0

x2 − y

 T6

[
x
y

]
=


0
0
0
0

 T7

xy
z

 =

[
−3x
z + y

]
T8

xy
z

 =

2x+ 2y
y + z

0


1. Which of the Ti are linear? For those that are not, give a counterexample in which one of the

linearity conditions fail.
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2. Let S : R3 → R3 be the linear transformation for which

ST5

1
0
0

 =

1
0
1

 , ST8

0
1
0

 =

0
1
1

 , ST8

0
0
1

 =

1
1
0

 .
Construct the 3× 3 matrix of S.

Exercise 23.2. Prove the claim from Definition 23.6 that the kernel and image of f : V → W are
subspaces of V and W , respectively. Use linearity to check the vector space conditions.

Exercise 23.3. Let f : V → W be a linear transformation, and let v1, . . . , vn be a basis of V . Show
that f is injective iff the set of vectors f(v1), . . . , f(vn) ⊆W is linearly independent.

Exercise 23.4. Consider the three orthogonal vectors

x =

1
0
3

 , y =

 3
0
−1

 , z =

 0
−2
0

 .
1. Find the unit vectors x̂, ŷ, ẑ.

2. Construct a symmetric matrix A of full rank for which the unit vectors from part (a) are
eigenvectors.

3. Let f : R3 → R3 be the linear transformation for which

f(x) =

1
1
0

 , f(y) =

−1
−1
−1

 , f(z) =

 0
1
−1


Construct the 3× 3 matrix for f .

Exercise 23.5. Let V be the vector space of polynomials in two variables x and y of degree at most
2. This space has dimension 6, and has basis with basis 1, x, y, x2, y2, xy. Let L : V → V be the linear
transformation defined by L(f(x, y)) = f(x− y, y − x).

1. Find the matrix of L using the basis specified.

2. Find a basis for the image and kernel of L.

Exercise 23.6. Prove the claim from Remark 23.15 that the composition of two linear maps is linear.
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Lecture 24: Complex numbers and complex matrices

Chapters 9.1 and 9.2 in Strang

� Fact 1: All the math we have done so far can be considered over C instead of R

� Fact 2: Complex number adition and multiplication have geomtric meaning

� Skill 1: Express a complex number in one of four different ways

� Skill 2: Apply the new results for Hermitian vectors and matrices

In this lecture we will take some time to introduce fully the topic of coplex numbers. The goal is to
get a better feel for them and to set the stage for the future topic of Fourier transforms. Fortunately,
almost all the results we have seen so far with matrices over R apply to matrices over C as well.

24.1 The space of complex numbers

Definition 24.1: The complex numbers are elements of the set C = {x+ iy : x, y ∈ R}. The
symbol i is the imaginary number , having the property that i2 = −1.

� The standard form of a complex number is x+ iy.

� In Cartesian, or rectangular coordinates this number is written (x, y).

The real part of x+ iy is x and its imaginary part is y.

If x = 0, then z = x+ iy is a purely imaginary number .
Let z = x + iy and w = a + ib be complex numbers and c ∈ R. Complex number addition and

multiplication, and real number multiplication are defined in the following way:

z + w = (a+ x) + i(y + b)

zw = xa+ ixb+ iya+ i2tb = (xa− yb) + i(xb+ ya)

cz = cx+ icy

Inquiry 24.2: The set C along with complex number addition and scalar multiplication as
above form a vector space.

� Show that the function f : C→ R2, given by f(x+ iy) = (x, y) is bijective.

� Give a bijection between Cn and R2n, for any n ∈ N.

� Let z = 2 + i ∈ C. Is the function m : C → C, given by m(x + iy) = (2 + i)(x + iy) a
linear transformation?

Example 24.3. What does the complex number (1 + i)−2 look like in standard form? Observe that

1

(1 + i)2
=

1

1 + 2i+ i2
=

1

1 + 2i− 1
=

1

2i
=

1

2i

i

i
=

i

−2i
=
−1

2
i.

Definition 24.4: Let z = x + yi ∈ C. The (complex ) conjugate of z is z = z∗ = x − iy. The
absolute value, or modulus of z is

|z| =
√
zz =

√
(x+ iy)(x− iy) =

√
x2 + y2.
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Proposition 24.5. Let z = x+ iy, w = a+ ib ∈ C. Then the conjugate satisfies:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z 6= 0

And the absolute value satisfies:

1. |z| = 0 iff z = 0

2. |z| = |z|

3. |zw| = |z||w|

4. |z + w| 6 |z|+ |w|

Definition 24.6: The third way to express z = x+iy ∈ C is with polar coordinates (r, θ), where
r = |z| and θ is the angle from the positive x axis to the vector (x, y). Note that

x+ iy = r cos(θ) + ir sin(θ) = reiθ,

where the second equality is known as Euler’s formula. This last expression is in exponential
form.

Remark 24.7. All that we have seen so far about the complex numbers, and a new observation about
multiplying complex numbers, can be drawn together in a picture.

R

R

|z|

z

z

zw

w

z + w

x

y

zw = rzrwe
i(θz+θw)

z + w = rw cos(θw) + irw sin(θw)

z = x+ iy = rz cos(θz) + irz sin(θz)

z = x− iy = rz cos(θz)− irz sin(θz)

Remark 24.8. Putting complex numbers into polar coordinates makes computations in standard
form much easier. For z = reiθ, we have:

� (De Moivre’s theorem) zn = (reiθ)n = rneinθ

� (complex roots) the nth roots of z are r1/nei(θ+2kπ)/n, for every k = 1, . . . , n− 1.

For the second point, when z = 1 + 0i, then the kth root of z is called the kth root of unity .

Inquiry 24.9: This inquiry is about the different forms of complex numbers.

� Express z = 5 cos(π/4) + 5i sin(π/4) in standard form.

� Express w = −
√

3− i in polar form.

� Find the 4th roots of p = 1 + i in Cartesian coordinates.

� Convince yourself that finding nth roots of unity is much easier in polar coordinates than
in rectangular coordinates.

Example 24.10. Below are given the 5th roots of z = −1 + 9i and the 5th roots of z = e0 = 1, or
unity. For some 5th roots ω of z, the complex numbers ω, ω2, ω3, ω4, ω5 = z are also shown. The circle
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with radius 5
√
|z| is given to emphasize that all 5th roots are the same distance from 0.

R

R

−1 + 9i

R

R

e0

e2π/5

e4π/5

e6π/5

e8π/5

1 1 1

Remark 24.11. The space of complex numbers is a 2-dimensional vector space over R via the
identification of Cartesian coordinates. However, it is a 1-dimensional vector space over C.

24.2 Complex matrices

Definition 24.12: Let z = [z1 · · · zn]T ∈ Cn be a vector. The (complex ) conjugate is the
vector z = [z1 · · · zn]T .

Often we talk about not just the conjugate, but the conjugate transpose. The reason for taking both
the conjugate of each element and the transpose, when n = 2 and z = [ xy ] = x+ iy = z, is to get that

zT z = z∗z = ‖z‖2 = |z|2 = zz,

so the previous notion of length of a vector corresponds with the new notion of absolute value of a
complex number. The notation z∗ = zT is also used for matrices, so that (A∗)ij = Aji.

Definition 24.13: Let A ∈Mn×n(C). Then

� A is Hermitian if A = A∗

� A is unitary if the columns of A are orthonormal

Proposition 24.14. Let A ∈Mn×n(C) and z ∈ Cn. If A is Hermitian, then:

� z∗Az is a real number

� every eigenvalue of A is a real number

� eigenvectors (of different eigenvalues are orthogonal

If A is unitary, then:

� A∗A = I and A−1 = A∗

� every eigenvalue of A is ±1

132



Example 24.15. Consider the 2 × 2 matrix A =
[

2 3−3i
3+3i 5

]
. This matrix is Hermitian, so should

have real eigenvalues and orthogonal eigenvectors by the previous Proposition. Indeed, we find that

det(A− λI) = (2− λ)(5− λ)− (3− 3i)(3 + 3i) = 10− 7λ+ λ2 − 18 = λ2 − 7λ− 8 = (λ− 8)(λ+ 1),

so the eigenvalues are λ = 8,−1. For the eigenvectors, we must solve[
2 3− 3i

3 + 3i 5

] [
z
w

]
=

[
8z
8w

]
⇐⇒ −6z + (3− 3i)w = 0,

(3 + 3i)z − 3w = 0.

Using the first equation to isolate w, we get

w =
6z

3− 3i
=

6z

3− 3i

3 + 3i

3 + 3i
=

(18 + 18i)z

9 + 9
= (1 + i)z,

which, when placed into the second equation, gives us (3 + 3i)z − 3(1 + i)z = 0, which means there
are no constraints on z. So we let z = 1 and w = 1 + i. Similarly for the second eigenvector we find
z = 2 and w = −1− i. To check they are orthogonal, we observe that[

1 + i
1

]∗
·
[
−1− i

2

]
=
[
1− i 1

] [−1− i
2

]
= (1− i)(−1− i) + 2 = −1− i+ i+ i2 + 2 = −2 + 2 = 0,

and we have orthogonality, as desired.

Inquiry 24.16: Consider the Fourier matrix F = 1√
3

1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3

.

� Note that F is symmetrix. Is it Hermitian? Which entries must change so that it is
Hermitian?

� Show that F is unitary.

� Compute the third power F 3 of F .

This matrix will feature heavily in the next lecture.

24.3 Exercises

Exercise 24.1. Show that every complex number z = x + iy for which at least one of x and y are
not zero has an inverse. That is, find w ∈ C for which zw = 1.

Exercise 24.2. Prove all the claims of Proposition 20.4, for z = x+ yi, w = a+ bi ∈ C:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z 6= 0

7. |z| = 0 iff z = 0

8. |z| = |z|

9. |zw| = |z||w|

10. |z + w| 6 |z|+ |w|

Exercise 24.3. Prove Euler’s formula cos(θ) + i sin(θ) = eiθ is true by showing that the derivative of
(cos(θ) + i sin(θ))e−iθ is zero.
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Lecture 25: The Fourier series and the discrete Fourier transform

Chapters 8.3 and 9.3 in Strang’s “Linear Algebra” and IV.1 in Strang’s “Learning from Data”

� Fact 1: The Fourier series describes any function as a sum of sines and cosines (with real
coefficients)

� Fact 2: The discrete Fourier transform describes any sample (of a function) as a sum of sines
and cosines (with complex coefficients)

� Fact 3: Fourer series uses integration, DFT uses matrix multiplication. Both can be simplified
for approximation.

� Skill 1: Compute the Fourier coefficients of a piecewise continuous function on [0, 2π]

� Skill 2: Construct the discrete Fourier transform of evenely-spaced data points.

This lecture is all about things named after Joseph Fourier (1768-1830). The key idea of this lecture is
how to approximate complicated functions in a very simple way. We begin with the more complicated
approach, which we resolve with a simplex approach in the second part of the lecture. All functions
are define on a finite interval, assumed to be [0, 2π].

25.1 The Fourier basis and the Fourier series

A function f : R → R is piecewise continuous if f is continuous at all except finitely many points of
R. We consider the space PC[0, 2π] of piecewise continuous functions defined on [0, 2π], and make it
an inner product space with the inner product

〈f, g〉 =

∫ 2π

0
f(x)g(x) dx. (15)

Piecewise continuous functions can be integrated just like continuous functions, by applying linearity
and splitting them up over intervals where they are continuous.

Example 25.1. Consider the following continuous and piecewise continuous functions, which are all
different, but coincide at some points.

0
π

4

π

2

3π

4

π
5π

4

3π

2

7π

4

2π

0.5

1.

1.5

2.

2.5

3.

3.5

Of these five functions, three are continuous, but only one is differentiable. One function ise discon-
tinuous at three points, one function is discontinuous at four points. All functions are elements of
PC[0, 2π]. We assume that they are periodic, that is, they repeat every interval of length 2π.
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Definition 25.2: The Fourier basis is the set of functions

F = {1} ∪ {sin(nx) : n ∈ N} ∪ {cos(nx) : n ∈ N}.

These are all continuous functions in [0, 2π]. We have yet to show that it is a basis.

Proposition 25.3. The set F is orthogonal.

Inquiry 25.4: This inquiry goes into the the details of Proposition 25.3.

� Compute the inner product, from equation (15), of 1 with sin(nx) and cos(nx), to confirm
that 1 is orthogonal to all other functions in F .

� Recall the sum of angles formula:

cos(θ ± ϕ) = cos(θ) cos(ϕ)∓ sin(θ) sin(ϕ).

Use this to express cos(θ) cos(ϕ) as a sum of only cos functions, and sin(θ) sin(ϕ) only as
a difference of cos functions.

� Compute the inner products 〈sin(nx), cos(mx)〉 and 〈cos(nx), cos(mx)〉 for n 6= m. You
may have to use substitution.

Showing that 〈sin(nx), cos(mx)〉 = 〈cos(nx), cos(mx)〉 = 0 for n 6= m shows orthogonality among
many (but not all) of the functions in F .

To finish justifying that F is a basis for PC[0, 2π], we need to show that F spans this set. Such
a proof is beyond the scope of this course, so we continue with the assumption that F is a basis for
PC[0, 2π].

Definition 25.5: Let f ∈ PC[0, 2π]. Expressing f using the basis F is the Fourier series of f :

f(x) = a0 + a1 sin(x) + b1 cos(x) + a2 sin(2x) + b2 cos(2x) + · · ·

= a0 +
∞∑
n=1

(an sin(nx) + bn cos(nx)).

The numbers an and bn are the projections of f onto the vectors spanned by sin(nx) and cos(nx),
respectively. They are the Fourier coefficients of f :

a0 =
1

2π

∫ 2π

0
f(x) dx, an =

〈f(x), sin(nx)〉
‖sin(nx)‖2 , bn =

〈f(x), cos(nx)〉
‖cos(nx)‖2 .

Example 25.6. Unless f is very nice, the sum is usually infinite. Hence we often give only the first
few terms in the series to describe f . Here are the first 6 pairs of Fourier coefficients for a simple
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degree 4 polynomial.

This may seem like overkill, but it is very useful when the orginal function is not continuous every-
where. The Fourier series of any piecewise continuous function will be continuous (and differentiable!)
everywhere.

Inquiry 25.7: This inquiry considers a different for of the functions in the Fourier basis. You
will need the identities

sin(θ) =
eiθ − e−iθ

2i
=
ie−iθ − ieiθ

2
, cos(θ) =

eiθ + e−iθ

2
.

Let Fe = {einx : n ∈ Z}.

� Explain why span(F ) = span(Fe).

� Explain why 〈einx, eimx〉 = 0 whenever n 6= m. This proves orthogonality of Fe.

� Express the n = 2 approximation f(x) = a0 +a1 sin(x) + b1 cos(x) +a2 sin(2x) + b2 cos(2x)
of f in terms of the elements in Fe.

25.2 The Fourier matrix and the discrete Fourier transform

In Example 25.6 above, we had two functions that were completely known. In the real world, we do
not know completely the function we are considering, but only know its value at certain inputs x. A
very pertinent queston is then how to convert this discrete data into a continuous function.

Example 25.8. Suppose we have the following data points on the interval [0, 2π], evenly spaced out.
This could be only part of a signal that we can pick up, or a very sparsely sampled sound:

(0, 1),
(π

2
, 2
)
, (π,−2) ,

(
3π

2
,−3

)
.
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How can we make this data into a continuous function? We could apply the approach from Example
25.6, but we would be assuming the values of the signal at unknown points, and there are several
natural ways to extend the discrete signal into a continuous signal.

Definition 25.9: The n × n Fourier matrix Fn ∈ Mn×n(C) has n(Fn)ij = ω(i−1)(j−1), where
ω = e−2πi/n is an nth root of unity:

Fn =
1

n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 =
1

n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
1 ωn−1 ωn−2 · · · ω

 .

Given x ∈ Rn, the vector Fnx ∈ Cn is called the discrete Fourier transform of x.

Remark 25.10. This matrix may look familiar - it is the Vandermonde matrix from Definition 11.10
in Lecture 12, for x1, . . . , xn the nth roots of unity. In that lecture the Vandermonde matrix was used
to create a polynomial that approximates well some given data points, and here we create a periodic
function that approximates well some data points.

Inquiry 25.11: This inquiry is about the 4× 4 Fourier matrix F4 = 1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 i

.

� Show that the columns of F4 are orthogonal to each other.

� Show that the columns of F4 all have length 1, by computing the product ck
T ck = c∗kck

for each column ck, k = 1, 2, 3, 4 of F4.

� What do the two points above mean for the product F ∗4F4?

� What is the inverse of F4? What will be the (i, j) entry in the inverse of Fn, for any
n ∈ N?

Here A∗ is the conjugate transpose of A.

Example 25.12. The reason the Fourier matrix is useful is because it provides the coefficients of the
periodic function in the basis Fe that goes through the given data points. So instead of integrating,
we simply multiply to get the same result. Consider the data from Example 25.6:

x =


1
2
−2
−3

 , F4x =
1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
2
−2
−3

 =
1

4


−2

3− 5i
0

3 + 5i

 ,
which means that f4(x) = −1

2 + 3−5i
4 eix + 3+5i

4 ei3x. Plotting the real part of this function (since it is
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complex-valued) along with the original data points gives the following graph:

π

4

π

2

3π

4

π
5π

4

3π

2

7π

4

2π

-4

-3

-2

-1

1

2

3

If we recieved more data points, spaced π/4 (instead of π/2) apart, to get a new data vector x ∈ R8,
we could use the Fourier matrix F8 to reconstruct a continuous function from this data:

π

4

π

2

3π

4

π
5π

4

3π

2

7π

4

2π

-4

-3

-2

-1

1

2

3

Inquiry 25.13: This question has you use Python to compute and visualize function approxi-
mations. Let f(x) = x

π − 1.

� Draw this function on the interval [0, 2π].

� Compute the Fourier series of f up to n = 4.

� Compute the Fourier transform of f using 8 samples.

� Draw the two functions from the privous points using matplotlib.

We finish off this lecture with some observations about the Fourier matrix Fn.

Remark 25.14. The Fourier matrix Fn is symmetric, which follows immediately from the definition
that (Fn)ij = ω(i−1)(j−1). The matrix is not Hermitian, as both symmetric and Hermitian would imply
that everything off the diagonal is zero. As given, Fn is not unitary, but the columns are orthogonal.
For example: 

1
1
1
1


∗ 

1
i
−1
−i

 = 1 + i− 1− i = 0,


1
i
−1
−i


∗ 

1
−i
−1
i

 = 1− 1 + 1− 1 = 0.

If we change the coefficient in front from 1
n to 1√

n
, then Fn becomes unitary. As a result of the columns

being orthogonal, the columns may be interpreted as eigenvectors. Setting all eigenvalues to be 1, we
can construct the matrix that has these eigenvectors, and it turns out to be a permutation matrix P
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that cycles all the coordinates:

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

x
y
z
w

 P−→


y
z
w
x

 P−→


z
w
x
y

 P−→


w
x
y
z

 P−→


x
y
z
w

 .
25.3 Exercises

Exercise 25.1. Find the Fourier coefficients an, bn up until n = 3 for f(x) = sin(x) cos2(x).

Exercise 25.2. Consider the function f ∈ C[0, 2π] given by f(x) =
{−1 x<π

1 x>π .

1. Compute the Fourier series of f up to n = 1, n = 3, and n = 5. Plot these three functions
together with f .

2. Compute the discrete Fourier transform of f for n = 4, using evenly spaced samples f(xk) for
xk = 2kπ/4, with k = 0, 1, 2, 3. Express it as a sum of sin and cos functions using Euler’s
formula.

3. Plot the real part of the discrete Fourier transform of f for n = 4, 8, 12 together with f . As
above, take 4, 8, 12 evenly spaced samples in the interval [0, 2π], starting with 0. You do not
need to show your computations.
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Part V

Answers to selected lecture exercises

Exercise 1.1. We solve the equation line by line. From the first line, we have −3b = −5, which
means b = 5/3. From the second line on the left and, using the result a = 35/18 with the third line
on the right, we have:

6a− 4b = 5 −a− 5b+ c = −4

6a− 20/3 = 5 −35/18− 25/3 + c = −4

18a− 20 = 15 −35− 150 + 18c = −72

18a = 35 18c = 113

a = 35/18 c = 113/18

Exercise 1.2. By expressing each vector in terms of its constitutent parts, we see the desired result.
Let u = (u1, . . . , un), v = (v1, . . . , vn), and w = (w1, . . . , wn). Then

v • (u + w) =

v1
...
vn

 •

u1

...
un

+

w1
...
wn


 (definition of vectors u,v, w)

=

v1
...
vn

 •
u1 + w1

...
un + wn

 (definition of matrix addition)

= v1(u1 + w1) + · · ·+ vn(un + wn) (definition of dot product)

= v1u1 + v1w1 + · · ·+ vnun + vnwn (multiplication of real numbers)

= (v1u1 + · · ·+ vnun) + (v1w1 + · · ·+ vnwn) (rearranging)

=

v1
...
vn

 •
u1

...
un

+

v1
...
vn

 •
w1

...
wn

 (definition of dot product)

= v • u + v •w.

Exercise 1.6. Since w = (w1, w2, w3) and z = (z1, z2, z3) are perpendicular to v = (v1, v2, v3), we
have that

0 = v •w = v1w1 + v2w2 + v3w3,

0 = v • z = v1z2 + v2z2 + v3z3.
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The halfway point between w and z is h =
(
w1+z1

2 , w2+z2
2 , w3+z3

2

)
, and for this vector

v • h = (v1, v2, v3) •
(
w1 + z1

2
,
w2 + z2

2
,
w3 + z3

2

)
= v1 •

w1 + z1

2
+ v2 •

w2 + z2

2
+ v3 •

w3 + z3

2

=
1

2
(v1w1 + v1z1 + v2w2 + v2z2 + v3w3 + v3z3)

=
1

2
((v1w1 + +v2w2 + v3w3) + (v1z1 + v2z2 + v3z3))

=
1

2
(v •w + v • z)

=
1

2
(0 + 0)

= 0.

Exercise 2.4. Let A,B ∈Mn×n, with ij-entries aij and bij , respectively.

1. Suppose that A,B are lower triangular, so aij = 0 and bij = 0 if i < j. In the product, the ij
entry of AB, for i < j, is

(AB)ij =
n∑
k=1

AikBkj =

 i∑
k=1

Aik Bkj︸︷︷︸
=0

+

 n∑
k=i+1

Aik︸︷︷︸
=0

Bkj

 = 0.

Hence AB is also lower triangular.

2. Suppose that A,B are upper triangular, so aij = 0 and bij = 0 if i > j. In the product, the ij
entry of AB, for i > j, is

(AB)ij =

n∑
k=1

AikBkj =

 j∑
k=1

Aik︸︷︷︸
=0

Bkj

+

 n∑
k=j+1

Aik Bkj︸︷︷︸
=0

 = 0.

Hence AB is also upper triangular.

3. The result does not have to be triangular, for example:[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
.

Here we have two non diagonal matrices, whose product is a diagonal matrix:[
6 −10
77 22

] [
2 5
−7 3

]
=

[
82 0
0 451

]
.
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Exercise 3.1. 1. We describe each step of Gaussian elimination in terms of elementary matrices:

clear the second row
below the first pivot:

 1 0 0
−2 1 0
0 0 1

3 −1 2 5
6 −2 −1 −2
1 −1 −1 −3

 =

3 −1 2 5
0 0 −5 −12
1 −1 −1 −3


clear the third row

below the first pivot:

 1 0 0
0 1 0
−1

3 0 1

3 −1 2 5
0 0 −5 −12
1 −1 −1 −3

 =

3 −1 2 5
0 0 −5 −12
0 −2

3 −5
3 −14

3



swap the second and
third rows:

1 0 0
0 0 1
0 1 0

3 −1 2 5
0 0 −5 −12
0 −2

3 −5
3 −14

3

 =

3 −1 2 5
0 −2

3 −5
3 −14

3
0 0 −5 −12


Since all the pivots have zeros below them, we have finished Gaussian elimintation.

2. We describe each step of Gauss–Jordan elimination in terms of elementary matrices:

clear the first row above
the second pivot:

1 −3
2 0

0 1 0
0 0 1

3 −1 2 5
0 −2

3 −5
3 −14

3
0 0 −5 −12

 =

3 0 9
2 12

0 −2
3 −5

3 −14
3

0 0 −5 −12


clear the second row

above the third pivot:

1 0 0
0 1 −1

3
0 0 1

3 0 9
2 12

0 −2
3 −5

3 −14
3

0 0 −5 −12

 =

3 0 9
2 12

0 −2
3 0 −2

3
0 0 −5 −12


clear the first row

above the third pivot:

1 0 9
10

0 1 0
0 0 1

3 0 9
2 12

0 −2
3 0 2

3
0 0 −5 −12

 =

3 0 0 6
5

0 −2
3 0 −2

3
0 0 −5 −12


Since all pivots havce zeros below them, we have finished Gauss–Jordan elimination. To make
the solution a bit easier to find, we already here multiply by diagonal matrices, to make the
diagonal entries be 1:

make the
(1, 1)-entry be 1:

1
3 0 0
0 1 0
0 0 1

3 0 0 6
5

0 −2
3 0 −2

3
0 0 −5 −12

 =

1 0 0 2
5

0 −2
3 0 −2

3
0 0 −5 −12


make the

(2, 2)-entry be 1:

1 0 0
0 −3

2 0
0 0 1

1 0 0 2
5

0 −2
3 0 −2

3
0 0 −5 −12

 =

1 0 0 2
5

0 1 0 1
0 0 −5 −12


make the

(3, 3)-entry be 1:

1 0 0
0 1 0
0 0 −1

5

1 0 0 2
5

0 1 0 1
0 0 −5 −12

 =

1 0 0 2
5

0 1 0 1
0 0 1 12

5


We immediately find the solution to be

[
x
y
z

]
=

[
2/5
1

12/5

]
.
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3. This step is just (careful) matrix multiplication:1 0 0
0 1 0
0 0 −1

5

1 0 0
0 −3

2 0
0 0 1

1
3 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

step 3: make the diagonal entries be 1

1 0 9
10

0 1 0
0 0 1

1 0 0
0 1 −1

3
0 0 1

1 −3
2 0

0 1 0
0 0 1


︸ ︷︷ ︸

step 2: Gauss–Jordan elimination

1 0 0
0 0 1
0 1 0

 1 0 0
0 1 0
−1

3 0 1

 1 0 0
−2 1 0
0 0 1


︸ ︷︷ ︸

step 1: Gaussian elimination

=

1
3 0 0
0 −3

2 0
0 0 −1

5


︸ ︷︷ ︸

step 3

1 −3
2

9
10

0 1 −1
3

0 0 1


︸ ︷︷ ︸

step 2

1 0 0
0 0 1
0 1 0

 1 0 0
−2 1 0
−1

3 0 1


︸ ︷︷ ︸

step 1

=

1
3 −1

2
3
10

0 −3
2

1
2

0 0 −1
5

 1 0 0
−1

3 0 1
−2 1 0



=

− 1
10

3
10 −1

2
−1

2
1
2 −3

2
2
5 −1

5 0

 .
This is the inverse of A.

Exercise 3.2. Some examples are given below. Many more exist.

1. An example is
[

1 0 0
0 2 0
0 0 3

]
, as all the pivots can be read off the diagonal.

2. An example is
[

1 0 0
6 2 0
5 8 3

]
, as elimination tells us to:

subtract `21 = 6 of the first row from the second row:

1 0 0
0 2 0
5 8 3


subtract `31 = 5 of the first row from the third row:

1 0 0
0 2 0
0 8 3


subtract `32 = 4 of the second row from the third row:

1 0 0
0 2 0
0 0 3


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots on
the diagonal.

3. An example is
[

1 1 1
1 3 1
1 1 1

]
, as elimination tells us to:

subtract `21 = 1 of the first row from the second row:

1 1 1
0 2 0
1 1 1


subtract `31 = 1 of the first row from the second row:

1 1 1
0 2 0
0 0 0


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots on
the diagonal. There is no third pivot, since the third row is all zeros.
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Exercise 3.3. 1. For the first matrix, elimination tells us to:

subtract `21 = d/a of the first row from the second row:

a b c
0 e− bd/a f − cd/a
g h i


subtract `31 = g/a of the first row from the third row:

a b c
0 e− bd/a f − cd/a
0 h− bg/a i− cg/a


For the multiplier `32, it needs to be

(h− bg/a) · (e− bd/a)−1 =
h− bg

a

e− bd
a

=
ah− bg
ae− bd .

The lower right entry after this step will be (i− cg/a)− (f − cd/a) · ah−bgae−bd , which we call simply
n, because it is very long to write. So elimination tells us to

subtract `32 =
ah− bg
ae− bd of the second row from the third row:

a b c
0 e− bd/a f − cd/a
0 0 n


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
a, e− bd/a, n on the diagonal.

For the second matrix, elimination tells us to:

subtract `32 = h/e of the second row from the third row:

0 b c
0 e f
0 0 i− fh/e


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
e, i− fh/e on the diagonal.

For the third matrix, elimination tells us to:

subtract `21 = d/a of the first row from the second row:

a b c
0 0 f − cd/a
d bd/a i


subtract `31 = d/a of the first row from the third row:

a b c
0 0 f − cd/a
0 0 i− cd/a


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
a, i− cd/a on the diagonal.

For the fourth matrix, elimination tells us to:

subtract `32 = 1 of the second row from the third row:

0 b c
0 e ce/b
0 0 0


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the only pivot
e on the diagonal.

2. Here is an example of such a function, in Python, using the input A[[a,b,c],[d,e,f],[g,h,i]].
We use the result from the first matrix in part 1. above.

def pivots(A):

a = A[0][0]
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b = A[0][1]

c = A[0][2]

d = A[1][0]

e = A[1][1]

f = A[1][2]

g = A[2][0]

h = A[2][1]

i = A[2][2]

return [a, b*d/a, (i-c*g/a)-(f-c*d/a)*(a*h-b*g)(a*e-b*d)]

3. Here is some Python code that produces the range and average as requested, using the function
above.

import numpy as np

values = []

for i in range(1000):

M1 = np.random.rand(3,3)

M2 = 2*M1 - np.ones((3,3))

values += pivots(M2)

print([min(values), max(values), sum(values)/len(values)])

This is the result it prints on one particular run:

[-1105.1138842178975, 1650.5842938466174, -0.272518610029052]

Exercise 3.6. We apply row operations to the block matrix [A I] =
[

0 2 −1 1 0 0
1 0 −4 0 1 0
2 2 2 0 0 1

]
, as below.

swap the first and the second rows to get a first pivot:

1 0 −4 0 1 0
0 2 −1 1 0 0
2 2 2 0 0 1


subtract `31 = 2 of the first row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 2 10 0 −2 1


subtract `32 = 1 of the second row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 0 11 −1 −2 1


This finishes Gaussian elminaton, so we proceeed with Gauss–Jordan elimination above the diagonal.

subtract `23 = −1/11 of the third row from the second row:

1 0 −4 0 1 0
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


subtract `13 = −4/11 of the third row from the first row:

1 0 0 −4/11 3/11 1/11
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


multiply each row by the inverse of the pivots:

1 0 0 −4/11 3/11 1/11
0 1 0 5/11 −1/11 1/22
0 0 1 −1/11 −2/11 1/11


Hence the inverse of A is A−1 =

[−4/11 3/11 1/11
5/11 −1/11 1/22
−1/11 −2/11 1/11

]
.

Exercise 4.1. The matrix L is the inverse of the row reduction matrices. When it is on the left, we
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have: 1 0 0
0 1 0
0 8

3 1


︸ ︷︷ ︸

clear the (3, 2)-entry

1 0 0
0 1 0
1
2 0 1


︸ ︷︷ ︸

clear the (3, 1)-entry

 1 0 0
−1

6 1 0
0 0 1


︸ ︷︷ ︸

clear the (2, 1)-entry

 6 0 −2
1 3 4
−3 −8 2

 =

6 0 −2
0 2 13/3
0 0 113/9



1 0 0
0 1 0
1
2

8
3 1

 1 0 0
−1

6 1 0
0 0 1

 6 0 −2
1 3 4
−3 −8 2

 =

6 0 −2
0 2 13/3
0 0 113/9


 1 0 0
−1

6 1 0
5
9

8
3 1

 6 0 −2
1 3 4
−3 −8 2

 =

6 0 −2
0 2 13/3
0 0 113/9

 .
To find the inverse of this matrix, we can perform Gaussian elimination, exactly as above:1 0 0

0 1 0
0 −8

3 1


︸ ︷︷ ︸

clear the (3, 2)-entry

 1 0 0
0 1 0
−5

9 0 1


︸ ︷︷ ︸

clear the (3, 1)-entry

1 0 0
1
6 1 0
0 0 1


︸ ︷︷ ︸

clear the (2, 1)-entry

 1 0 0
−1

6 1 0
5
9

8
3 1

 =

1 0 0
0 1 0
0 0 1



 1 0 0
0 1 0
−5

9 −8
3 1

1 0 0
1
6 1 0
0 0 1

 1 0 0
−1

6 1 0
5
9

8
3 1

 =

1 0 0
0 1 0
0 0 1


 1 0 0

1
6 1 0
−1 −8

3 1

 1 0 0
−1

6 1 0
5
9

8
3 1

 =

1 0 0
0 1 0
0 0 1

 .
This is the inverse U . Hence a = 1

6 , b = −1, c = −5
9 .

Exercise 4.2. We immediately see that the first row operation will give two leading zeros in row 2,
so we swap rows 2 and 3: 1 0 0

0 0 1
0 1 0


︸ ︷︷ ︸

P

3 1 1
3 1 3
1 1 3


︸ ︷︷ ︸

A

=

3 1 1
1 1 3
3 1 3

 .
Then we begin Gaussian elimination:

clear the second row
below the first pivot:

 1 0 0
−1

3 1 0
0 0 1

3 1 1
1 1 3
3 1 3

 =

3 1 1
0 2

3
8
3

3 1 3


clear the third row

below the first pivot:

 1 0 0
0 1 0
−1 0 1

3 1 1
0 2

3
8
3

3 1 3

 =

3 1 1
0 2

3
8
3

0 0 2

 .
Separating the right side into DU , we get the following equation: 1 0 0

−1
3 1 0
−1 0 1


︸ ︷︷ ︸

L−1

1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P

3 1 1
3 1 3
1 1 3


︸ ︷︷ ︸

A

=

3 0 0
0 3

2 0
0 0 2


︸ ︷︷ ︸

D

1 1
3

1
3

0 1 16
9

0 0 1


︸ ︷︷ ︸

U

.
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The inverse of L−1 is the same as L−1, just with negative values in the off-diagonals. Hence we get1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

P

3 1 1
3 1 3
1 1 3


︸ ︷︷ ︸

A

=

1 0 0
1
3 1 0
1 0 1


︸ ︷︷ ︸

L

3 0 0
0 3

2 0
0 0 2


︸ ︷︷ ︸

D

1 1
3

1
3

0 1 16
9

0 0 1


︸ ︷︷ ︸

U

as the answer.

Exercise 4.3. In Example 3.8, we had the following result:1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

E32

·

1 0 0
0 1 0
1
2 0 1


︸ ︷︷ ︸

E31

·

0 1 0
1 0 0
0 0 1


︸ ︷︷ ︸

P12

·

 0 6 −2 2
4 8 −4 8
−2 2 7 12

 =

4 8 −4 8
0 6 −2 2
0 0 7 14



For PA = LDU decomposition, we don’t need the fourth column b used in this example. We also
note several necessary things:

D =

4 0 0
0 6 0
0 0 7

 , E−1
32 =

1 0 0
0 1 0
0 1 1

 , E−1
31 =

 1 0 0
0 1 0
−1

2 0 1

 .
For the inverses of elementary matrices, we used the observations from Example ??. This gets us
almost where we want to be:0 1 0

1 0 0
0 0 1


︸ ︷︷ ︸

P

 0 6 −2
4 8 −4
−2 2 7


︸ ︷︷ ︸

A

= E−1
31 E

−1
32

4 8 −4
0 6 −2
0 0 7

 .

The lower triangular matrix is

L = E−1
31 E

−1
32 =

 1 0 0
0 1 0
−1

2 1 1

 ,
and the product DU is 4 0 0

0 6 0
0 0 7

1 2 −1
0 1 −1/3
0 0 1

 .
Putting this all together, we get0 1 0

1 0 0
0 0 1


︸ ︷︷ ︸

P

 0 6 −2
4 8 −4
−2 2 7


︸ ︷︷ ︸

A

=

 1 0 0
0 1 0
−1

2 1 1


︸ ︷︷ ︸

L

4 0 0
0 6 0
0 0 7


︸ ︷︷ ︸

D

1 2 −1
0 1 −1/3
0 0 1


︸ ︷︷ ︸

U

.

147



Exercise 4.4. Each one of the elementary matrices from Definition 3.7 has an inverse:

inverse of permutation is
itself:


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


−1

=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



inverse of row operations is
opposite operation:


1 0 0 0
0 1 0 0
−2

5 0 1 0
0 0 0 1


−1

=


1 0 0 0
0 1 0 0
2
5 0 1 0
0 0 0 1



inverse of multiplication is
reciprocal multiplication:


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10


−1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 10


Although these are examples, the method clearly generalizes. Since each Ei has an inverse, the product
of their inverses is the inverse of A. That is,(

E−1
k · · ·E−1

2 · E−1
1

)︸ ︷︷ ︸
A−1

(E1 · E2 · · ·Ek)︸ ︷︷ ︸
A

= E−1
k · · ·E−1

2 · E−1
1 · E1︸ ︷︷ ︸
I

·E2 · · ·Ek

= E−1
k · · ·E−1

2 · E3E
−1
2 · E2︸ ︷︷ ︸
I

·E3 · · ·Ek

...

= I.

Exercise 5.1. The operations of addition and scalar multiplication clearly exist:

� c1(2, 1) + c2(2, 1) = (c1 + c2)(2, 1), and c1 + c2 ∈ R

� c1 · (c2(2, 1)) = (c1c2)(2, 1), and c1c2 ∈ R

The identity element is the zero vector (0, 0) = 0(2, 1), and every c(2, 1) has an inverse (−c)(2, 1), for
which c(2, 1) + (−c)(2, 1) = (c + (−c))(2, 1) = 0(2, 1) = (0, 0). Finally, scalar multiplication has the
usual identity 1, as 1(c(2, 1)) = (1 · c)(2, 1) = c(2, 1). Commutativity, associativity, and distributivity
in this space all follow from the same properties of R2 as a vector space.

Exercise 5.2. To show this, we need to show that every element in W can be expressed an element
in V . An arbitrary element of W looks like

a(u + v) + b(v + w),

for some a, b ∈ R. Rearranging, we get

au + (a+ b)v + bw,

which is an element of the span of u,v,w, hence in V . Therefore W ⊆ V .

Exercise 5.3. 1. This is not a vector space, because scalar multiplication is not distributive over
field addition. For example, if f(x) = x2 − 1, a = 3, b = −2, then

(a+ b)f(x) = (3 + (−2))f(x) = 1f(x) = f(1x) = x2 − 1,

af(x) + bf(x) = 3f(x) + (−2)f(x) = f(3x) + f(−2x) = (3x)2 − 1 + (−2x)2 − 1

= 9x2 + 4x2 − 2 = 13x2 − 2,
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and these are clearly not the same function.

2. This is not a vector space, because addition is not commutative. For example, if f(x) = x2 and
g(x) = 2x, then

f + g = f(g(x)) = f(2x) = 4x2,

g + f = g(f(x)) = g(x2) = 2x2,

which are clearly not the same function.

Exercise 5.4. We take advantage of the fact that there is a 3× 3 identity matrix in columns 3-5, and
consider them as our pivot columns. That is, columns 1,2,6 are free columns. The first free column
gives us the first vector, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




1
0
−2
0
−8
0

 =

0
0
0

 .

The second free column gives us the second vector, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




0
1
−9
3
6
0

 =

0
0
0

 .

And the third free column gives us the third vector, as

2 9 1 0 0 9
0 −3 0 1 0 −3
8 −6 0 0 1 1




0
0
−9
3
−1
1

 =

0
0
0

 .

These are all linearly independent, as witnessed by rows 1,2,6, which are zeros for all but exactly one
vector. Hence

null(A) = span





1
0
−2
0
−8
0

 ,


0
1
−9
3
6
0

 ,


0
0
−9
3
−1
1



 .

Exercise 5.5. 1. Every element in span(V ) is a sum∑
v∈V

avv,

for av ∈ R (technically, we must have only finitely many av be nonzero, but that is not an
issue here). Since V is a linear combination of vectors, every element of V appears in span(V ).
Conversely, given x ∈ V , the sum equals x when all other coefficients ay6=x are 0 and ax = 1.
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For the zero vector space, linear combinations a · 0 for any a ∈ R always give back 0, so there is
nothing else in the span.

2. The following matrices work (there are others for A, but B is unique):

A =

1 0 0
0 1 0
0 0 1

 , B =

0 0 0
0 0 0
0 0 0

 .
They can not be the same matrix because A must have 3 pivots (no free columns) and B must
have 0 pivots (3 free columns).

Exercise 5.6. 1. First we observe the following linear combinations from the two spans:1
1
0

+

 0
−1
0

 =

1
0
0

 ,
0

1
1

+

 0
−1
0

 =

0
0
1

 .
These are useful because they only have one nonzero entry. That is,xy

z

 = x

1
0
0

+ z

0
0
1

+ (−y)

 0
−1
0


= x

1
1
0

+

 0
−1
0

+ z

0
1
1

+

 0
−1
0

+ (−y)

 0
−1
0


= x

1
1
0

+ (x+ z − y)

 0
−1
0

+ z

0
1
1

 .
Hence R3 is a subspace of ⊆ V +W .

2. We take a linear combination of vectors from both spans. Consider

u =

1
1
0

−
1

0
1

 =

 0
1
−1

 .
This is an element of V +W . For it to be an element of V ∪W , it must either be in V or in W .
This vector is in V if any only if the matrix equation1 0

1 1
0 1

[x1

x2

]
=

 0
1
−1


has a solution. However, the first line is the equation x1 = 0 and the last line is x2 = −1, so
it must be that x1 + x2 = −1. But the second line says x1 + x2 = 1, and these two equations
contradict each other, so there is no solution. Similarly, this vector is in W if and only if the
matrix equation 1 0

0 −1
1 0

[x1

x2

]
=

 0
1
−1


has a solution. Again, we find the first line x1 = 0 and the third line x1 = −1 cannot both be
true at the same time, hence there is no solution. Therefore u 6∈ V and u 6∈ W , so u 6∈ V ∪W .
Since u ∈ V +W , it follows that V ∪W 6= V +W .
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Exercise 6.1. The product is

vwT =


a
a
a
a

 [1 1 1 1
]

=


a a a a
a a a a
a a a a
a a a a

 .
if a = 0, then we have the zero matrix, which has rank 0. But if a is any nonzero real number, then
the the reduced row echelon form of A will be

a a a a
0 0 0 0
0 0 0 0
0 0 0 0

 ,
which clearly has only one pivot. So in this case, the rank is 1.

Exercise 6.2. First we find the particular solutions. We get these by elimination on the augmented
matrix [A b]. The first multiplier is `21 = 2:[

1 0
−2 1

] [
3 0 −9 −3 0 9
6 0 −21 0 2 −1

]
=

[
3 0 −9 −3 0 9
0 0 −3 6 2 −19

]
.

We see the pivots already as 3,−3. Now we clear the −9 above the −3:[
1 −3
0 1

] [
3 0 −9 −3 0 9
0 0 −3 6 2 −19

]
=

[
3 0 0 −21 −6 66
0 0 −3 6 2 −19

]
.

Finally we multiply by the reciprocals of the pivots:[
1/3 0
0 −1/3

] [
3 0 0 −21 −6 66
0 0 −3 6 2 −19

]
=

[
1 0 0 −7 −2 22
0 0 1 −2 −2/3 19/3

]
.

We find the particular solution immediately by placing the last column d in the pivot variable spots,
and get p = [ 22 0 19/3 0 0 ]T . The special solutions, which we know there are 3 (as there are 3 free
columns), come from considering Rx = 0. The three special solutions will have one 1 in each of the
free variable spots, and 0 in the other free variable spots.

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

1
x3

0
0

 =


0
0
0
0
0

 =⇒ x1 = 0, x3 = 0

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

0
x3

1
0

 =


0
0
0
0
0

 =⇒ x1 = 7, x3 = 2

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

0
x3

0
1

 =


0
0
0
0
0

 =⇒ x1 = 2, x3 = 2/3
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Hence the complete solution is

x =


22
0

19/3
0
0

+ x2


0
1
0
0
0

+ x4


7
0
2
1
0

+ x5


2
0

2/3
0
1

 ,
for any x2, x4, x5 ∈ R.

Exercise 6.3. Note the answer is presented in the usual (particular solution)+(special solution) way.
The free column is the second column of A, since the only value 1 is in the second row of the only
special solution.

1. In a particular solution the free variables are zero, which occurs in19
0
−2

 =

 7
4
−2

+ (−4)

−3
1
0

 .
This vector is still on the line of intersection, and we can build Ax = b from it. The augmented
matrix [R d] from the equation Rx = d, obtained via elimination, is[

1 3 0 19
0 0 1 −2

]
.

Here R =

[
1 3 0
0 0 1

]
could already be A, and d =

19
0
−2

 could already be b.

2. We can simply add rows together to get rid of the zeros:

A =

[
1 3 1
2 6 3

]
, b =

[
17
32

]
.

Exercise 7.1. Choosing 3 vectors from 5 gives
(

5
3

)
= 10 choices. Among the five vectors, we see the

following linear dependence equations:1
0
1

 =
1

2

2
0
2

 ,
1

0
1

+

2
0
1

 =

3
0
2

 .
The first equation gives 3 linearly dependent sets of size 3, and the second gives 1. Replacing

[
1 0 1

]T
with 1

2

[
2 0 2

]T
in the second equation gives another linearly dependent set of size 3. Hence we

should find 10− 3− 1− 1 = 5 linearly independent sets of size 3. The linearly independent sets of size

3 cotaining
[
1 0 1

]T
are: 

1
0
1

 ,
0

1
0

 ,
2

0
1

 ,


1

0
1

 ,
0

1
0

 ,
3

0
2

 .

Further, linearly independent sets of size 3 containing
[
0 1 1

]T
that have not already been given

are: 
0

1
0

 ,
2

0
1

 ,
2

0
2

 ,


0

1
0

 ,
2

0
1

 ,
3

0
2

 ,


0

1
0

 ,
2

0
2

 ,
3

0
2

 .
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This gives 5 different linearly independent sets of size 3 (linear independence can be checked by row
reduction), so we are done.

Exercise 7.2. Here we again use Python, and take a 2×2 matrix to be a list of lists [[a,b],[c,d]].

1. The following function takes a 2×2 matrix as input and returns True if one column is a multiple
of the other, and False otherwise. We have an additional function that allows for computer
precision up to 10 decimal points.

def iszero(n):

return (abs(n) < 1e-10)

def twomult(mat):

ratio1 = mat[0][1] / mat[0][0]

ratio2 = mat[1][1] / mat[1][0]

return iszero(ratio1 - ratio2)

This does not take into account the possibility that one of the denominators could be zero.

Exercise 7.4. A plane is 2-dimensional, so it should have two elements in the basis. Note that the
defining equation may be expressed as

[
2 −4 −5

] xy
z

 =

0
0
0

 ,
and bringing the matrix on the left to row reduced form we get

A =
[
2 −4 −5

] RREF−−−−−→
[
1 −2 −5

2

]
= R.

The nullspace of these matrices consists of precisely those vectors (x, y, z) which lie in the plane P .
Note there are two free columns, so there are two special solutions. We find them quickly to be

s1 =

2
1
0

 , s2 =

5
2
0
1

 ,
and get that the nullspace of the matrix A is the span of s1 and s2. Hence the plane P is the span
of these equations. We did not check that {s1, s2} is a linearly independent set, but because we know
span(s1, s2) = P and we know dim(P ) = 2, we must have that {s1, s2} is linearly independent, because
there are only two vectors in the set, and every basis of P must have 2 vectors. Hence {s1, s2} is a
basis for P .

Exercise 7.6. The proof of the first claim follows from first observing that the intersection U ∩W is
closed under vector addition and scalar multiplication. Indeed, if v ∈ U ∩W , the v ∈ U (so cv ∈ U)
and v ∈ W (so cv ∈ W ). Hence cv ∈ U ∩W . A similar appproach works for vector addition. The
zero element is in both U and W , and so must be in U ∩W . Additive inverses are −1 multiples, and
so are also in the intersection. The other properties are inherited from U and W similarly.

The proof of the second claim comes from constructing a basis for U ∩W that can be extended to
bases of U and W separately.

The proof of the third claim comes by constructing an explicit basis {(u, 0) : u ∈ BU}∪{(0,w) :
w ∈ BW } for V ⊕W , where BU is a basis for U and BW is a basis for W .

Exercise 7.7. 1. The space of diagonal 3× 3 matrices has the following basis (not the only one):
1 0 0

0 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 0
0 0 1

 ,
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as any diagonal 3×3 matrix
[
a 0 0
0 b 0
0 0 c

]
can be written as a linear combination of the given matrices.

The space of skew-symmetric 3× 3 matrices has the following basis (not the only one):
 0 1 0
−1 0 0
0 0 0

 ,
 0 0 1

0 0 0
−1 0 0

 ,
0 0 0

0 0 1
0 −1 0

 ,

as any skew-symmetric 3 × 3 matrix
[

0 a b
−a 0 c
−b −c 0

]
can be written as a linear combination of the

given matrices.

2. The dimension of the space of n× n diagonal matrices is n, because the basis has elements only
on the diagonal, and the diagonal has n elements.

The basis of the space of n× n skew-symmetric matrices has as many elements as entries above
(or below) the diagonal. The first row has n− 1 entries above the diagonal, and every next row
has one less. Hence the number of entries above the diagonal, and so the dimension, in general
is

(n− 1) + (n− 2) + · · ·+ 1 =
n−1∑
i=1

i =
(n− 1)n

2
.

3. The identity and the identity with rows swapped are both invertible 2 × 2 matrices, yet their
sum is not, as the sum only has one pivot:[

1 0
0 1

]
+

[
0 1
1 0

]
=

[
1 1
1 1

]
RREF−−−−−→

[
1 1
0 0

]
.

Hence invertible 2×2 matrices are not closed under matrix addition, so cannot be a vector space.

For the second part, we follow the hint and construct the basis of M2×2 as linear combinations
of invertible matrices: [

1 0
0 0

]
=

[
1 0
0 1

]
+

[
0 1
1 0

]
−
[
0 1
1 1

]
,

[
0 1
0 0

]
=

[
1 1
0 1

]
−
[
1 0
0 1

]
,

[
0 0
1 0

]
=

[
1 0
1 1

]
−
[
1 0
0 1

]
,

[
0 0
0 1

]
=

[
1 0
0 1

]
+

[
0 1
1 0

]
−
[
1 1
1 0

]
.

Hence the span of all invertible 2× 2 matrices is all 2× 2 matrices.

Exercise 8.1. To find these spaces, we have to row reduce the matrix and its transpose:

rref(A) =


0 1 0 0 a+ abc abc− ab
0 0 1 0 −bc b− bc
0 0 0 1 c c
0 0 0 0 0 0

 , rref(AT ) =



0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
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From the row-reduced form of A, it follows that

col(A) = span




1
0
0
0

 ,

a
1
0
0

 ,


0
b
1
0


 , null(A) = span





0
−a− abc

bc
−c
1
0

 ,


0
ab− abc
bc− b
−c
0
1



 .

From the row-reduced form of AT , it follows that

row(A) = span





0
1
a
0
a
0

 ,


0
0
1
b
0
b

 ,


0
0
0
1
c
c



 , null(AT ) = span




0
0
0
1


 .

If any of a, b, c are zero, then the spaces change accordingly. Their dimensions do not change. That
is, no zero vectors appear, if any / all of a, b, c are zero.

Exercise 8.3. 1. The column space is the span of the columns, so all we need is to make u and v
be two of the columns, and make the other two linear combinations of u and v. There are many
choices, one example is

A =

[
1 3 0 0
2 4 0 0

]
.

2. The given matrix is

A =

[
1
2

] [
3 4

]
+

([
1
2

] [
3 4

])2

=

[
3 4
6 8

]
+

[
3 4
6 8

] [
3 4
6 8

]
=

[
3 4
6 8

]
+

[
33 44
66 88

]
=

[
36 48
72 96

]
.

One row operation brings us to [
36 48
0 0

]
,

so the column space is just the span of the first column. The row operation shows the second
row is a multiple of the first, so the row space is the span of the first row. That is,

col(A) = span

{[
36
72

]}
, row(A) = span

{[
36
48

]}
.

Exercise 9.1. Arbitrary elements in U and V are

U 3 u = a1u1 + · · · akuk =

k∑
i=1

aiui, V 3 v = b1v1 + · · · b`v` =
∑̀
j=1

bjvj .

Their dot product, following the laws of dot products, is

u · v = (a1u1 + · · · akuk) · (b1v1 + · · · b`v`)
= a1b1u1 · v1 + a1b2u1 · v2 + · · ·+ akbkuk · v`

=

k∑
i=1

∑̀
j=1

aibj ui · vj︸ ︷︷ ︸
0

= 0

Exercise 9.3. Since the row space and the nullspace of A are orthogonal complements in Rn, every
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x ∈ Rn can be decomposed as x = xr + xn, where xr ∈ row(A) and wn ∈ null(A). We claim that

f : row(A) → col(A),
v 7→ Av

is such a function. We first note that Av is indeed in the column space of A, as

Av =

 | |
a1 · · · an
| |


v1

...
vn

 = v1

 |a1

|

+ · · ·+ vn

 |an
|

 ,
for a1, . . . ,an the columns of A. To see that f is injective, suppose that Av = Aw for some v,w ∈
row(A). Then

Av−Aw = 0 =⇒ A(v−w) = 0 =⇒ v−w ∈ null(A).

However, since v,w ∈ row(A), and row(A) is a vector space, it follows that v − w ∈ row(A) as
well. Since row(A)⊥ = null(A), the only vector in both row(A) and null(A) is the zero vector. Hence
v−w = 0, or v = w.

To see f is surjective, let c ∈ col(A). That is, c is a linear combination of the columns a1, . . . ,an
of A. In other words, there are real numbers r1, . . . , rn with

c = r1a1 + · · ·+ rnan = r1

 |a1

|

+ · · ·+ rn

 |an
|

 =

 | |
a1 · · · an
| |


︸ ︷︷ ︸

A

r1
...
rn


︸ ︷︷ ︸

r

.

To see that r ∈ row(A), we again use the fact that row(A) and null(A) are orthogonal complements.
That is, either r is in row(A) or in null(A), and if r ∈ null(A), then it follows that Ar = c = 0. How-
ever, we also have 0 ∈ row(A), and A0 = 0 = c as well, so r has a preimage in row(A). Alternatively,
if r ∈ row(A), then we are done.

Hence f is a bijection.

Exercise 9.4. 1. Let u ∈ U , u′ ∈ U⊥, and u′′ ∈ (U⊥)⊥. To see that U ⊆ (U⊥)⊥, notice that
u · u′ = 0, which means that u ∈ (U⊥)⊥). To see that (U⊥)⊥ ⊆ U , notice that u′′ 6∈ U⊥, and
since U ⊥ +U = Rn, it must be that u′′ ∈ U . Hence U = (U⊥)⊥.

2. For this question we use Theorem 7.9 from the lecture notes, which showed that (U + V )⊥ =
U⊥ ∩ V ⊥. In this statement, replace U with U⊥ and V with V ⊥:

(U + V )⊥ = U⊥ ∩ V ⊥ (Theorem 7.9, part 2)

(U⊥ + V ⊥)⊥ = (U⊥)⊥ ∩ (V ⊥)⊥ (replace U with U⊥ and V with V ⊥)

(U⊥ + V ⊥)⊥ = U ∩ V (part (a) to this question)

((U⊥ + V ⊥)⊥)⊥ = (U ∩ V )⊥ (take the complement of both sides)

U⊥ + V ⊥ = (U ∩ V )⊥ (part (a) to this question)

3. The nullspace is orthogonal to the rowspace by Example 7.10, so for such a matrix C, we need
row(C) = U + V . That is, if we just put the columns of A and B as rows of C, we will have the
desired matrix:

C =

[
AT

BT

]
.

156



Exercise 9.5. 1. Normal vectors can be read off from the equations, and they are

n1 =

 3
−4
1

 , n2 =

 5
0
−10

 .
2. We follow the hint, and starting with P1, describe the equation as a matrix equation

[
3 −4 1

] x1

x2

x3

 = 0.

The points in the plane are elements in the nullspace of the matrix

A =
[
3 −4 1

] RREF−−−−−→
[
1 −4/3 1/3

]
=⇒ null(A) = span


4/3

1
0

 ,
−1/3

0
1


=⇒ B1 =


4/3

1
0

 ,
−1/3

0
1

 .

Similarly for the plane P2, we find

A =
[
5 0 −10

] RREF−−−−−→
[
1 0 −2

]
=⇒ null(A) = span


0

1
0

 ,
2

0
1


=⇒ B2 =


0

1
0

 ,
2

0
1

 .

3. Here we can simply use the basis vectors of P1 as rows:

A1 =

[
4/3 1 0
−1/3 0 1

]
RREF−−−−−→

[
1 0 −3
0 1 −4

]
.

We see the nullspace immediately as null(A1) = span
{[

3
−4
1

]}
= span{n1}.

4. As above, we use the basis vectors of P2 as columns:

A2 =

0 2
1 0
0 1

 .
The left nullspace is the nullspace of the transpose:

AT2 =

[
0 1 0
2 0 1

]
.

RREF−−−−−→
[
1 0 1/2
0 1 0

]
.

We see the nullspace immediately as

null(AT2 ) = span


−1/2

0
1

 = span

{
− 1

10
n2

}
= span{n2}.
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Exercise 10.1. We expand the expression P 2 to get

P 2 =

(
1

v • v
· vvT

)
·
(

1

v • v
· vvT

)
=

(vvT )(vvT )

(v • v)(v • v)
=

v(vTv)vT

(v • v)(v • v)
=

v(v • v)vT

(v • v)(v • v)
=

vvT

v • v
= P,

as desired.

Exercise 10.3. The normal vector is n = (3, 4, 9). Following Exercise 7.4, we find the plane 3x+4y−9z
to be the column space of the matrix

A =

−4
3 3

1 0
0 1

 .
Exercise 10.4. 1. The last two coordinates disappear, so we are looking for a block matrix

M =

[
I2 0
0 0

]
=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .
2. All the rows are moving forward, so we need a matrix with rows like the identity matrix, but

also moved forward (up). That is, we need

N =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
Exercise 10.5. 1. Recall that the projection matrix for projU is A(ATA)−1AT , where the columns

of A are the ui. By Remark 8.6, the projection matrix for projU⊥ is I −A(ATA)−1AT . Hence

reflU (v) = v− 2
(
I −A(ATA)−1AT

)
v =

(
I − 2 + 2A(ATA)−1AT

)
v,

and so the matrix is reflU = 2A(ATA)−1AT − I.

2. This comes from a straightforward computation:

‖reflU (v)‖2 = ‖
(
2A(ATA)−1AT − I

)
v‖2

= ‖2A(ATA)−1ATv− v‖2

=
(
2A(ATA)−1ATv− v

)
·
(
2A(ATA)−1ATv− v

)
= (2A(ATA)−1ATv)T (2A(ATA)−1ATv)− 2(2A(ATA)−1ATv)Tv + vTv

= 4vTA((ATA)−1)TATA(ATA)−1ATv− 4vTA((ATA)−1)TATv + ‖v‖2

= 4vTA(ATA)−1ATA(ATA)−1ATv− 4vTA(ATA)−1ATv + ‖v‖2

= 4vTA(ATA)−1ATv− 4vTA(ATA)−1ATv + ‖v‖2

= ‖v‖2.

We used the fact that the transpose of the inverse is the inverse of the tranpose: (A−1)T =
(AT )−1, which follows from taking the inverse of AA−1 = I.

Exercise 11.2. Recal the nullspace of A is all the vectors x for which Ax = 0. To see null(A) ⊆
null(ATA), suppose that x ∈ null(A). That is, Ax = 0, and multiplying by AT on the left gives
ATAx = 0, which means x ∈ null(ATA). To see null(ATA) ⊆ null(A), suppose that y ∈ null(ATA).
That is, ATAy = 0, and multiplying by yT on the left gives

0 = yT (ATAy) = (yTAT )(Ay) = (Ay)T (Ay) = ‖Ay‖.
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Since the norm is positive definite, it follow that Ay = 0, and so y ∈ null(A).

Exercise 11.3. 1. We are trying to find the best solution x to the equation

−1 1
4 1
3 1
−2 1
6 1
−6 1


︸ ︷︷ ︸

A

[
a
b

]
=



3
6
1
−3
−7
4


︸ ︷︷ ︸

b

,

or equivalently, trying to find the projection of b onto col(A). That is, we can either solve
Ax = A(ATA)−1ATb, or solve ATAx = ATb:

−1 1
4 1
3 1
−2 1
6 1
−6 1


[
a
b

]

︸ ︷︷ ︸
Ax

=
1

596



784
−376
−144
1016
−840
1944


︸ ︷︷ ︸
A(ATA)−1ATb

or

[
102 4
4 6

] [
a
b

]
︸ ︷︷ ︸

ATAx

=

[
−36

4

]
︸ ︷︷ ︸
ATb

.

The second is easier to solve:[
102 4 −36
4 6 4

]
RREF−−−−−→

[
1 0 − 58

149
0 1 138

149

]
,

and so the equation of the line is y = − 58
149x+ 138

149 .

2. Using the derivatives approach, we know that that the line y = − 58
149x + 138

149 minimizes the
squares of the vertical distances between every point in P and the line. That is, choosing p7 to
be on the line will keep the sum of squares at this minimum. The are many such choices, one of
which is

p7 =

(
0,

138

149

)
.

3. This is solved in reverse, by adding a point (z, w) to the process, and running the same steps as
above. We are trying to solve 

−1 1
4 1
3 1
−2 1
6 1
−6 1
z 1


︸ ︷︷ ︸

A

[
a
b

]
=



3
6
1
−3
−7
4
w


︸ ︷︷ ︸

b

,

or equivalently,

ATA

[
a
b

]
= ATb ⇐⇒

[
102 + z2 4 + z

4 + z 7

] [
a
b

]
=

[
−36 + wz

4 + w

]
.

We row reduce the augmented matrix:[
102 + z2 4 + z −36 + wz

4 + z 7 4 + w

]
RREF−−−−−→

[
1 0 3wz−2w−2z−134

3z2−4z+349

0 1 −2wz+51w+2z2+18z+276
3z2−4z+349

]
.
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The slope is the entry on the top right, so we simply need some values z, w for which

c =
3wz − 2w − 2z − 134

3z2 − 4z + 349
.

There are many solutions (z, w), so we just let z = 0 and solve

c =
−2w − 134

349
⇐⇒ w =

−349c− 134

2
.

Hence adding the point
(
0, −349c−134

2

)
will make the least squares approximation have slope c.

Exercise 11.4. There are many ways to do this, one way is given below.

import numpy as np

from numpy.linalg import solve

def degreedlsq(points,degree):

n = len(points)

# Construct the Vandermonde matrix

matrix = np.ones((n,degree+1))

for row,point in enumerate(points):

for column in range(1,degree+1):

matrix[row][column] = point[0]**column

# Set up the least squares equation and solve it

ATA = np.matmul(np.transpose(matrix),matrix)

ATb = np.matmul(np.transpose(matrix),np.transpose(points)[1])

solution = solve(ATA,ATb)

# Print the result in a nice way

result = str(round(solution[0],2))

for i,coefficient in enumerate(solution[1:]):

result = str(round(coefficient,2))+"x̂"+str(i+1)+" + "+result

print(result)

Exercise 11.5. 1. Recall the equation of a plane is ax+ by+ cz = d, for some a, b, c, d ∈ R. Since
we are told the plane will not go through the origin, d 6= 0, so we can divide by d and just
consider the equation ax+ by + cz = 1. The system of equation we are trying to solve is then

a− 2b− 4c = 1
5b+ 5c = 1

−6a− 7b+ 2c = 1
a+ 4b− c = 1

⇐⇒


1 −2 −4
0 5 5
−6 −7 2
1 4 −1


︸ ︷︷ ︸

A

ab
c


︸︷︷︸
x

=


1
1
1
1


︸︷︷︸
b

.

Having four equations in three unknowns is overdetermined, so we need to project to solve it.
We can either solve Ax = A(ATA)−1ATb, or equivalently, solve ATAx = ATb. The second of
these equations becomes

ATAx =

 38 44 −17
44 94 15
−17 15 46

ab
c

 =

−4
0
2

 = ATb.
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Bringing the augmented matrix to reduced row echelon form we see

[
ATAx ATb

]
=

 38 44 −17 −4
44 94 15 0
−17 15 46 2

 RREF−−−−−→

1 0 0 −66/95
0 1 0 36/95
0 0 1 −32/95

 ,
and hence the equation of the closest plane is −66x+ 36y − 32z = 95.

2. Recall that projection works to subspaces, and having 95 6= 0 means the plane H is not a
subspace. Our approach will be to move H so that it is a subspace, then project, then move H
back. Note that the point w = (−95

66 , 0, 0) lies in H, so we shift everything in H by w:

H = {(x, y, z) : −66x+ 36y − 32z = 95},
H ′ = {(x+ 95

66 , y, z) : −66x+ 36y − 32z = 95}
= {(x, y, z) : −66x+ 36y − 32z = 0}.

As before, we find the basis of H ′ from the nullspace of[
−66 36 −32

] RREF−−−−−→
[
0 − 6

11
16
33

]
,

which is the span of
[

6/11
1
0

]
and

[−16/33
0
1

]
, which we can then use as columns of the matrix A:

A =

 6
11 −16

33
1 0
0 1

 =⇒ P = A(ATA)−1AT =
1

1669

 580 594 −528
594 1345 288
−528 288 1413

 .
The points we project to H ′ are not p1, p2, p3, p4, but rather p1−w, p2−w, p3−w and p4−w:

P (p1 −w) =
1

1669

 580 594 −528
594 1345 288
−528 288 1413

1− 95
66

−2
−4

 =

 77182
55077
−2393

1669
−7516

1669

 = q1

P (p2 −w) =
1

1669

 580 594 −528
594 1345 288
−528 288 1413

95
66
5
5

 =

38440
55077
9020
1669
7745
1669

 = q2

P (p3 −w) =
1

1669

 580 594 −528
594 1345 288
−528 288 1413

−6 + 95
66

−7
2

 =

−259352
55077
−11548

1669
3218
1669

 = q3

P (p4 −w) =
1

1669

 580 594 −528
594 1345 288
−528 288 1413

1− 95
66

4
−1

 =

145522
55077
6541
1669
1549
1669

 = q4

These points lie on H ′. We need to add w to them to make sure they lie on H. That is,

projH(p1) = q1 + w

projH(p2) = q2 + w

projH(p3) = q3 + w

projH(p4) = q4 + w

The expressions are too long to calculate, so we leave the vectors as they are above.

Exercise 12.2. � Step 1: Set w1 = v1 =


1
2
0
1

.
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� Step 2: Project v2 onto w1, and subtract this from v2 to ensure the new vector will be
orthogonal to the previous vector. That is, set w2 to be the error vector when projecting to w1.
Using the formula from Definition 10.2, we get

w2 = v2 − projw1
(v2) = v2 −

wT
1 v2

wT
1 w1

w1 =


2
0
2
0

− 2

6


1
2
0
1

 =


5
3
−2

3
2
−1

3


� Step 3: Project v3 onto w1 and w2, and subtract these from v3 to make sure everything is still

orthogonal. The formula is

w3 = v3 − projw1
(v3)− projw2

(v3) = v3 −
wT

1 v3

wT
1 w1

w1 −
wT

2 v3

wT
2 w2

w2 =


− 8

11
1
11
8
11
6
11

 .
� Step 4: Repeat the same for v4 to get

w4 = v4−projw1
(v4)−projw2

(v4)−projw3
(v4) = v4−

wT
1 v4

wT
1 w1

w1−
wT

2 v4

wT
2 w2

w2−
wT

3 v4

wT
3 w3

w3 =


1
3
−2

3
−1

3
1

 .
We now have an orthogonal basis of vectors {w1,w2,w3} for R4. Note these do not (except for
the first one) point in the same directions as the original set of vectors {v1,v2,v3,v4}, but they
do have the same span. Normalizing these vectors we get the final set:

q1 =
w1

‖w1‖
=


1/
√

6√
2/
√

6
0

1/
√

6

 , q2 =
w2

‖w2‖
=


5/
√

66

−
√

2/
√

33√
6/
√

11

−1/
√

66

 ,

q3 =
w3

‖w3‖
=


−8/
√

165

1/
√

165

8/
√

165√
12/
√

165

 , q4 =
w4

‖w4‖
=


1/
√

15

−2/
√

15

−1/
√

15√
3/
√

5

 .
Exercise 18.1. For the matrix A, note that the rows are multiples of each other, so λ1 = 0. Since
there are 2 eigenvalues (as it is a 2× 2 matrix), and the sum of the eigenvalues is the trace, it follows
that λ1 + λ2 = 2 + 5 = 7, so λ2 = 7. For the eigenvectors, we eliminate the augmented matrices[

2 2 0
5 5 0

]
RREF−−−−−→

[
1 1 0
0 0 0

]
, and

[
−5 2 0
5 −2 0

]
RREF−−−−−→

[
1 −2/5 0
0 0 0

]
.

So the eigenvectors are
[−1

1

]
for λ1 = 0 and

[
2/5
1

]
for λ2 = 7, giving the decomposition

[
2 2
5 5

]
=

[
−1 2/5
1 1

] [
0 0
0 7

] [
−1 2/5
1 1

]−1

where

[
−1 2/5
1 1

]−1

=
−5

7

[
1 −2/5
−1 −1

]
.

For the matrix B, the eigenvalues are on the diagonal, but the eigenvectors are not so immediate. For
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λ1 = 1 we have e1, but for λ2 = 4 we need1 2 3
0 4 5
0 0 6

xy
z

 =

4x
4y
4z

 =⇒
z = 0

4y = 4y
−3x = −2y

=⇒ v2 =

2/3
1
0

 .
Similarly for λ3 = 6, we need1 2 3

0 4 5
0 0 6

xy
z

 =

6x
6y
6z

 =⇒
6z = 6z
−2y = −5z
−5x = −2y − 3z

=⇒ v3 =

8/5
5/2
1

 .
Hence the decomposition is1 2 3

0 4 5
0 0 6

 =

1 2/3 8/5
0 1 5/2
0 0 1

1 0 0
0 4 0
0 0 6

1 2/3 8/5
0 1 5/2
0 0 1

−1

,

where 1 2/3 8/5
0 1 5/2
0 0 1

−1

=

1 −2/3 1/15
0 1 −5/2
0 0 1

 .
Exercise 18.2. 1. The eigenvector matrix X has the eigenvectors as columns, and the eigenvalues

matrix Λ has the eigenvalues on the diagonal:

X =

1 0 −1
2 1 −1
1 0 0

 , Λ =

−1 0 0
0 2 0
0 0 −3

 .
2. First we get the inverse of X by row reduction:1 0 −1 1 0 0

2 1 −1 0 1 0
1 0 0 0 0 1

 RREF−−−−−→

1 0 0 0 0 1
0 1 0 −1 1 −1
0 0 1 −1 0 1

 .
Hence the matrix A is

XΛX−1 =

1 0 −1
2 1 −1
1 0 0

−1 0 0
0 2 0
0 0 −3

X−1

=

−1 0 3
−2 2 3
−1 0 0

 0 0 1
−1 1 −1
−1 0 1


=

−3 0 2
−5 2 −1
0 0 −1

 .
Exercise 18.4. 1. This follows by computing the diagonal entries of AB and of BA. By the

formula for entries in a product of matrices:

(AB)ii =

3∑
j=1

AijBji = Ai1B1i +Ai2B2i +Ai3B3i,

(BA)ii =
3∑
j=1

BijAji = Bi1A1i +Bi2A2i +Bi3A3i.
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Summing up for i = 1, 2, 3, for the trace, we find that

trace(AB) = (AB)11 + (AB)22 + (AB)33

= A11B11 +A12B21 +A13B31 +A21B12 +A22B22 +A23B32 +A31B13 +A32B23 +A33B33,

trace(BA) = (BA)11 + (BA)22 + (BA)33

= B11A11 +B12A21 +B13A31 +B21A12 +B22A22 +B23A32 +B31A13 +B32A23 +B33A33,

which are the same.

2. Since C is diagonalizable, there exists an invertible matrix X of the eigenvectors of C as columns,
and a diagonal matrix Λ of the eigenvalues of C on its diagonal, with C = XΛX−1. Using the
previous task with A = X and B = ΛX−1, we get that

trace(C) = trace(XΛX−1) (since C is diagonalizable)

= trace((A)(ΛX−1))

= trace((ΛX−1)(X)) (by part (a) above)

= trace(ΛX−1X)

= trace(ΛI) (definition of the inverse)

= trace(Λ)

= Λ11 + Λ22 + Λ33. (since Λ is diagonal)

This is the sum of the eigenvalues of C, since the eigenvalues of C are on the diagonal of Λ.

3. If the eigenvalues of C are 1, 1
2 ,

1
3 , then the eigenvalues of Cn are 1n, 1

2n ,
1

3n , as

C2 = (XΛX−1)(XΛX−1) = XΛIΛX−1 = XΛ2X−1

C3 = (XΛ2X−1)(XΛX−1) = XΛ2IΛX−1 = XΛ3X−1

...

Cn = XΛnX−1.

It follows that

lim
n→∞

Cn = lim
n→∞

(
XΛnX−1

)
= lim

n→∞

x11 x12 x13

x21 x22 x23

x31 x32 x33

1n 0 0
0 1

2n 0
0 0 1

3n

y11 y12 y13

y21 y22 y23

y31 y32 y33


= lim

n→∞

x11
x12
2n

x13
3n

x21
x22
2n

x23
3n

x31
x32
2n

x33
3n

y11 y12 y13

y21 y22 y23

y31 y32 y33


= lim

n→∞

([
x11y11+ 1

2n
·x12y21+ 1

3n
·x13y31 x11y12+ 1

2n
·x12y22+ 1

3n
·x13y32 x11y13+ 1

2n
·x12y23+ 1

3n
·x13y33

x21y11+ 1
2n
·x22y21+ 1

3n
·x23y31 x21y12+ 1

2n
·x22y22+ 1

3n
·x23y32 x21y13+ 1

2n
·x22y23+ 1

3n
·x23y33

x31y11+ 1
2n
·x32y21+ 1

3n
·x33y31 x31y12+ 1

2n
·x32y22+ 1

3n
·x33y32 x31y13+ 1

2n
·x32y23+ 1

3n
·x33y33

])

=

x11y11 x11y12 x11y13

x21y11 x21y12 x21y13

x31y11 x31y12 x31y13


=

x11

x21

x31

 [y11 y12 y13

]
.
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The limit exists, and as it is a (outer) product of two vectors, it must have rank at most 1.
Moreover, we know it has rank exactly one, because to have rank zero either the column or row
vector must be all zeros - but this is not possible, as then the matrices X,X−1 would not be
invertible.

Exercise 19.1. We apply equation (9) from Remark 20.4 above:

(A− 6I)v2 = v1 ⇐⇒


3 −1 −1 −3
−3 −1 1 1
5 −5 −1 −9
3 1 −1 −1



x
y
z
w

 =


1
−1
1
1



⇐⇒


3 −1 −1 −3 1
−3 −1 1 1 −1
5 −5 −1 −9 1
3 1 −1 −1 1

 RREF−−−−−→


1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 −1
0 0 0 0 0

 ,
and so v2 = [ 1 −1 0 1 ]T . We similarly solve (A − 6I)v3 = v2 and (A − 6I)v4 = v3 to get the matrix
B ∈M4×4, which has the generalized eigenvectors as its columns. Moreover, we notice that

B−1AB =


−3 −1 1 2
5 1 −1 −3
−2 −4 0 −2
0 4 0 4


︸ ︷︷ ︸

B−1


9 −1 −1 −3
−3 5 1 1
5 −5 5 −9
3 1 −1 5


︸ ︷︷ ︸

A


1 1 1

2
1
2

−1 −1 −1 −3
4

1 0 −3
2 −5

4
1 1 1 1


︸ ︷︷ ︸

B

=


6 1 0 0
0 6 1 0
0 0 6 1
0 0 0 6

 ,

which is the Jordan form of A.

Exercise 20.1. We apply equation (9) from Remark 20.4 above:

(A− 6I)v2 = v1 ⇐⇒


3 −1 −1 −3
−3 −1 1 1
5 −5 −1 −9
3 1 −1 −1



x
y
z
w

 =


1
−1
1
1



⇐⇒


3 −1 −1 −3 1
−3 −1 1 1 −1
5 −5 −1 −9 1
3 1 −1 −1 1

 RREF−−−−−→


1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 −1
0 0 0 0 0

 ,
and so v2 = [ 1 −1 0 1 ]T . We similarly solve (A − 6I)v3 = v2 and (A − 6I)v4 = v3 to get the matrix
B ∈M4×4, which has the generalized eigenvectors as its columns. Moreover, we notice that

B−1AB =


−3 −1 1 2
5 1 −1 −3
−2 −4 0 −2
0 4 0 4


︸ ︷︷ ︸

B−1


9 −1 −1 −3
−3 5 1 1
5 −5 5 −9
3 1 −1 5


︸ ︷︷ ︸

A


1 1 1

2
1
2

−1 −1 −1 −3
4

1 0 −3
2 −5

4
1 1 1 1


︸ ︷︷ ︸

B

=


6 1 0 0
0 6 1 0
0 0 6 1
0 0 0 6

 ,

which is the Jordan form of A.

Exercise 20.3. 1. The eigenvalue −3 contributes a 2 × 2 Jordan block, since the algebraic mul-
tiplicity is 2 (so all its Jordan blocks together have 2 rows and 2 columns) and the geometric
multiplicity is 1 (so there is only one Jordan block corresponding to this eigenvalue). Similarly,
the Jordan blocks for the eigenvalue 3 take up 4 rows and 4 columns, and there are 2 of them.
Hence:

� there are 3 Jordan blocks
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� their sizes are either 1,3,2 or 2,2,2:

3

3

−3




3

3

−3


The order of the blocks is not relevant for this question.

2. For the matrix B, we need to find an invertible 6 × 6 matrix C for which B = CJC−1, as the
J and B will be similar. We need B to have no zero entries, and generating several random
matrices with entries in the range {−1, 0, 1}, we quickly find one (there is not a unique answer).
We see that

B =

−1 −1 1 1 1 1
0 1 0 −1 −1 1
1 1 −1 0 1 0
0 0 0 0 −1 −1
1 −1 1 −1 0 1
0 0 1 0 0 1


︸ ︷︷ ︸

C

 3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 −3 1
0 0 0 0 0 −3


︸ ︷︷ ︸

J


2 1 2 3 1 −1
−2 −1 −1 −2 −1 2
−3 −2 −2 −3 −1 3
4 2 3 5 1 −2
−3 −2 −2 −4 −1 2
3 2 2 3 1 −2


︸ ︷︷ ︸

C−1

=


12 5 6 16 3 −6
−39 −23 −26 −45 −13 26
15 11 13 20 5 −10
−3 −2 −2 −6 −1 2
−16 −11 −10 −15 −3 12
−14 −10 −9 −13 −5 13

 .

3. Applying Theorem 20.10 from the lecture notes and the fact that J = C−1BC, we get that the
generalized eigenvectors of B are the columns of C.

Exercise 21.1. 1. There are 50 entries in the matrix, but they repeat horizontally. We could do
SVD, but we can see the decomposition by sight:

L = uvT =


r
r
w
r
r

 [1 1 1 1 1 1 1 1 1 1
]
.

So now instead of having 5× 10 pieces of data, we have only 5 + 10, a 70% reduction in size.

2. We can reduce the 7 × 9 pieces of data by singular value decomposition. For ease of notation,
change r to 1 and w to 0. We then simply compute the eigenvalues and eigenvectors of WW T

and W TW . We are lucky and see there are only 2 nonzero eigenvalues:

(σ2
1, σ

2
2) ≈ (18.93, 5.07), u1 ≈



−0.23
−0.23
−0.63

0
−0.63
−0.23
−0.23


,u2 ≈



−0.44
−0.44
0.33

0
0.33
−0.44
−0.44


, v1 ≈



−0.29
−0.29
−0.29
−0.5

0
−0.5
−0.29
−0.29
−0.29


,v2 ≈



0.29
0.29
0.29
−0.5

0
−0.5
0.29
0.29
0.29


.

Reducing from 7× 9 = 63 to 2 + 2× 7 + 2× 9 = 34 is done by the decomposition

W = σ1u1v
T
1 + σ2u2v

T
2 .
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Exercise 21.3. 1. First we compute these matrices as

AAT =

[
2a2 0
0 4a2

]
, ATA =


a2 0 a2 0
0 0 0 0
a2 0 a2 0
0 0 0 4a2

 .
The eigenvalue / eigenvector pairs of AAT are evidently λ1 = 4a2 with u1 = [ 0

1 ] and λ2 = 2a2

with u2 = [ 1
0 ]. We sort them this way because 4a2 > 2a2. For the SVD we only need the

eigenvectors of ATA corresponding to these two eigenvalues. It is immediate that v1 = [0 0 0 1]T

and v2 = [1 0 1 0]T , which normalizes to [1/
√

2 0 1/
√

2 0]T . Hence the SVD of A is

A = 2a

[
0
1

] [
0 0 0 1

]
+
√

2a

[
1
0

] [
1/
√

2 0 1/
√

2 0
]

=

[
0 1
1 0

]
︸ ︷︷ ︸

U

[
2a 0 0 0

0
√

2a 0 0

]
︸ ︷︷ ︸

Σ

[
0 0 0 1

1/
√

2 0 1/
√

2 0

]
︸ ︷︷ ︸

V T

.

2. The dimensions of the four fundamental subspaces are given by the number of rows and columns
in the matrices U,Σ, V T . We get that:

� dim(col(A)) = rank(A) = 2

� dim(null(AT )) = (number of zero rows in Σ) = 0

� dim(row(A)) = rank(A) = 2

� dim(null(A)) = (number of zero columns in Σ) = 2

Exercise 21.4. 1. There are many examples, one is A =
[

1 0 0 0
0 2 0 0
0 0 3 0

]
. The matrix AAT ∈ M3×3 is

diagonal with 1, 4, 9 on its diagonal, so those are its eigenvalues. The singular values of A are
the positive square roots of these numbers, and those are 1, 2, 3.

2. Take the left singular vectors to be same as the right ones. Let σ1 = 4 (to clear denominators)
be the only signular value (because rank is 1). By SVD we get

A =

[
1
2 −

√
3

2√
3

2
1
2

]
︸ ︷︷ ︸

U

[
4 0
0 0

]
︸ ︷︷ ︸

Σ

[
1
2

√
3

2

−
√

3
2

1
2

]
︸ ︷︷ ︸

V T

=

[
2 0

2
√

3 0

][
1
2

√
3

2

−
√

3
2

1
2

]
=

[
1
√

3√
3 3

]
.

3. Since A is symmetric, its singular values are its eigenvalues. Since there are many zeros, the
eigenvalue / eigenvector pairs can be found by sight:

λ1 = σ1 = 2
λ2 = σ2 = 1
λ3 = σ3 = 1

u1

‖u1‖
=


1/
√

2
0

1/
√

2
0

 , u2 =


0
1
0
0

 , u3 =


0
0
0
1

 .
The last eigenvalue is zero because the matrix has two equal rows (so the determinant is 0). The
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approximations then are:

rank 1 : σ1u1v
T
1 = 2


1/
√

2
0

1/
√

2
0




1/
√

2
0

1/
√

2
0


T

=


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



rank 2 : σ1u1v
T
1 + σ2u2v

T
2 =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

+


0
1
0
0




0
1
0
0


T

=


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0



other rank 2 : σ1u1v
T
1 + σ3u3v

T
3 =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

+


0
0
0
1




0
0
0
1


T

=


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1


Exercise 22.1. 1. The largest possible angle is π

2 = 90◦. There are many arrangements that give
this, one of which is described below.

A justification that such an angle is possible comes from “flipping” the yellow line around. At
first, the angle is almost 0◦ with the blue line, and at the end, it is 180◦ = 0◦, and as the
movement is continuous, by the intermediate value theorem the angle must have been 90◦ at
some point.
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2. The largest possible difference can be created by making the perpendicular distances zero and
the vertical distances as large as possible. In the given frame, that maximal difference should
be 20 units, since the height of the frame is 10 units. Such an example is given below (due to
rendering and approximation errors, the difference is larger than 20).

One way to get the same distances is to make sure the least squares and principal component
lines are both horizontal. Then the perpendicular distances equal the vertical distances.

In special cases, this occurs with either a single pair of points can be placed an equal distance
away from a horizontal line, or both pairs points can be placed an equal distance away.

In the second case the principal component line is vertical due to rounding errors. Both eigen-
values should be the same.

Exercise 22.3. Since the first principal component solves the perpendicular least squares problem,
we choose one point to be exactly [ ab ], and the other two to lie the same distance on either side of
this eigenvector. We choose the distance to be ` =

√
a2 + b2/4 so that the two other points do not
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dominate the first point. The idea is given in the picture below.

R

R

first point (a, b)
second point

third point

We now construct these points explicitly and perform PCA on the data to confirm that the result will
be as desired. To find the coordinates of the other two points, note that the slope of the line to (a, b)
is b

a . So the two other points lie on the line with slope −ab which goes through (a2 ,
b
2). The equation

of the line is given by

−a
b

=
y − b

2

x− a
2

⇐⇒ f(x) = y =
−a
b
x+

(
a2

2b
+
b

2

)
.

To find the points a distance ` along this line from (a2 ,
b
2), we solve for x in the equality

√
a2 + b2

4
=

√(a
2
− x
)2

+

(
b

2
− f(x)

)2

=

√(a
2
− x
)2

+

(
b

2
−
(−a
b
x+

a2

2b
+
b

2

))2

=

√(a
2
− x
)2

+

(
a

b
x− a2

2b

)2

=

√(a
2
− x
)2

+
a2

b2

(
x− a

2

)2

=

√(a
2
− x
)2
(

1 +
a2

b2

)
.

This simplifies to x = 2a±b
4 , so the data we have is

A =

[
a 2a−b

4
2a+b

4

b f(2a−b
4 ) f(2a+b

4 )

]
=

[
a 2a−b

4
2a+b

4

b 2b+a
4

2b−a
4

]
.

For PCA, we need to mean-center the data first. The mean of x-coordinates is 2a/3 and the mean of
the y-coordinates is 2b/3, so after subtracting 2a/3 from the first row and 2b/3 from the second row,
we get the mean centered data to be

M =

[
a
3
−2a−3b

12
3b−2a

12
b
3

3a−2b
12

−3a−2b
12

]
=⇒ S =

MMT

2
=

[
4a2+3b2

48
ab
48

ab
48

3a2+4b2

48

]
.

With the help of a computer, we find the eigenvalues and eigenvectors of this symmetric matrix to be

λ1 =
a2 + b2

12
, u1 =

[
a/b
1

]
, λ2 =

a2 + b2

16
, u2 =

[
−b/a

1

]
.

It looks like we are done, but the eigenvector
[
a/b
1

]
is for the mean-centered data, so we need to shift
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it back. Hence the first eigenvector for the original data is[
a/b
1

]
+

[
2a/3
2b/3

]
=

[
2ab+3a

3b
2b+3

3

]
=

2b+ 3

3b

[
a
b

]
,

which is indeed a multiple of [ ab ], as desired.

Exercise 22.4. 1. We folow a similar method as in Question 1, placing what were the second and
third points in the second eigenvector direction. We make some other changes:

� Since we need at least 4 points, but cannot place three points in a line, we split up what
were the second and third points.

� To ensure the second principal component is [ 0 1 0 ]T , we place further points along the
second principal component axis.

� To ensure that the data is mean-centered, we mirror all the points.

This construction is demonstrated in the picture below left (the plane x = 0 is emphasized in
gray), with the points in the matrix below right.

Rx
Ry

Rz

•

••
•

•
•

•

•
A =

1 −1 0 0 0 0 0 0
0 0 1

4
1
4 −1

4 −1
4 1 −1

0 0 1
4 −1

4
1
4 −1

4 0 0



It is evident that no three points lie on a line. The mean-centered matrix M is the same as A,
since the mean of each row is 0. The sample covariance matrix S and its eigenvectors are

S =

2
7 0 0
0 9

28 0
0 0 1

28

 , u1 = [ 1 0 0 ]T

u2 = [ 0 1 0 ]T

u3 = [ 0 0 1 ]T
.

Hence the presented data satisfies the given conditions.

2. Columns 1,2,7,8 lie in plane z = 0 and columns 3-8 lie in plane x = 0 (emphasized in the picture
above). To fix theses issues, we take two steps:

� For the first issue, we split the points (1, 0, 0) and (−1, 0, 0) into two points just above and
below the x-axis. We shift them in equal but opposite diections along the y-axis so that
the new points are not on a plane.

� For the the second issue, we move the four points in columns 3-6 by equal but opposite
distances in the x-direction.

� To ensure the two solutions do not conflict, the shifting magnitudes are different.

The new data is given below left (with lines indicating shifts from the previous data), and the
new matrix is given below right.

••

•
••

•
•

•

•

•

Rx
Ry

Rz

A =

 1 1 −1 −1 1
8 −1

8 −1
8

1
8 0 0

1
16 − 1

16 − 1
16

1
16

1
4

1
4 −1

4 −1
4 1 −1

1
8 −1

8
1
8 −1

8
1
4 −1

4
1
4 −1

4 0 0


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By sight we confirm that no four points of these samples line in the same plane. The data
is still mean-centered (since we added equal but opposite values to each row), and the sample
covariance matrix with its eigenvectors is

S =

 65
144 0 0
0 145

576 0
0 0 5

144

 , u1 = [ 1 0 0 ]T

u2 = [ 0 1 0 ]T

u3 = [ 0 0 1 ]T
.

Hence all the conditions are satisfied.

Exercise 23.1. 1. T1 is linear, and its matrix is a permutation matrix:

T1 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .
T2 is not linear, as T2 [ 0

2 ] =
[

2e2
0

]
6= [ 4e

0 ] = 2T2 [ 0
1 ].

T3 is not linear, as T3 [ 3
0 ] = [ 9

0 ] 6= [ 3
0 ] = 3T3 [ 1

0 ].

T4 is not linear, as T4

[√
π

0

]
= [ 0

0 ] 6= [ 1
0 ] =

√
2T4

[√
π/2
0

]
.

T5 is not linear, as T5

[
0
0
3

]
=
[

0
0
9

]
6=
[

0
0
1

]
= 3T5

[
0
0
1

]
.

T6 is linear, and its matrix is the zero matrix:

T6 =


0 0
0 0
0 0
0 0

 .
T7 is linear, and its matrix can be found by what it does to each variable:

T7 =

[
−3 0 0
−0 1 1

]
.

T8 is linear, and its matrix can be found by what it does to each variable:

T8 =

2 2 0
0 1 1
0 0 0

 .
2. The three conditions that are given can be simplified using the following observations:

T5

1
0
0

 =

1
0
1

 , T8

0
1
0

 =

2
1
0

 , T8

0
0
1

 =

0
1
0

 .
Using this, we get a clearer description of what S does to R3:

S

1
0
1

 =

1
0
1

 , S

2
1
0

 =

0
1
1

 , S

0
1
0

 =

1
1
0

 .
To get the matrix of S, we first describe what S does on the standard basis vectors e1, e2, e3.
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Note that

S

1
0
0

 = S

1

2

2
1
0

− 1

2

0
1
0

 =
1

2
S

2
1
0

− 1

2
S

0
1
0

 =
1

2

0
1
1

− 1

2

1
1
0

 =

−1/2
0

1/2


for e1, and

S

0
0
1

 = S

1
0
1

− 1

2

2
1
0

+
1

2

0
1
0

 = S

1
0
1

− 1

2
S

2
1
0

+
1

2
S

0
1
0

 =

1
0
1

− 1

2

0
1
1

+
1

2

1
1
0

 =

3/2
0

1/2


for e3. For e2 we already know what happens. Applying the proof of Theorem 18.9 on the
construction of the matrix associated to a linear transformation, we get that the matrix of S is

S =

−1/2 1 3/2
0 1 0

1/2 0 1/2

 .
Exercise 24.1. We place z in the denominator and multiply by the conjugate:

1

z
=

1

x+ yi
=

1

x+ yi
· x− yi
x− yi =

x− yi
x2 + y2

=
x

x2 + y2
+

−y
x2 + y2

i.

We are allowed to multiply by the conjugate, since at least one of x, y are non-zero. The answer makes
sense also because at least one of x, y are non-zero. That is, we are never dividing by zero.

Exercise 24.2. 1.

z + w = (x+ yi) + (a+ bi)

= (x+ a) + (y + b)i

= (x+ a)− (y + b)i

= (a− yi) + (a− bi)
= z + w

2.

zw = (x+ yi)(a+ bi)

= xa+ xbi+ yai− yb
= (xa− yb) + (xb+ ya)i

= (xa− yb)− (xb+ ya)i

= xa− yb− xbi− yai
= (x− yi)a− (x− yi)bi
= (x− yi)(a− bi)
= z w

3.
z = x+ yi = x− yi = x+ yi = z

4.
z + z = (x+ yi) + (x− yi) = (x+ x) + (y − y)i = 2x

5.
z − z = (x+ yi)− (x− yi) = (x− x) + (y + y)i = 2yi
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6. Since zz−1 = 1, we have that

z−1 =
1

z
=

1

x+ yi
=

1

x+ yi

x− yi
x− yi =

x− yi
x2 + y2

=
z

|z|2 .

7. Suppose that |z| = 0. Then

0 = |z| =
√
x2 + y2 =⇒ 0 = x2 + y2.

Since x2 > 0 and y2 > 0, but their sum is equal to zero, it must be that x = y = 0, so z = 0.
Conversely, suppose that z = 0. Then |z| =

√
02 = 0.

8.
|z| = |x+ yi| = |x− yi| =

√
x2 + (−y)2 =

√
x2 + y2 = |x+ yi| = |z|

9.

|zw| = |(x+ yi)(a+ bi)|
= |xa+ xbi+ yai− yb|
= |(xa− yb) + (xb+ ya)i|
=
√

(xa− yb)2 + (xb+ ya)2

=
√

(xa)2 − 2xayb+ (yb)2 + (xb)2 + 2xbya+ (ya)2

=
√

(xa)2 + (yb)2 + (xb)2 + (ya)2

=
√

(x2 + y2)(a2 + b2)

=
√
x2 + y2

√
a2 + b2

= |z||w|

10. For this question we work backwards, doing invertible operations (adding / subtracting, multi-
pliying / dividing by nonzero numbers):

|z + w| 6 |z|+ |w|
⇐⇒ |(x+ yi) + (a+ bi)| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒ |(x+ a) + (y + b)i| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒
√

(x+ a)2 + (y + b)2 6
√
x2 + y2 +

√
a2 + b2 (definition)

⇐⇒ (x+ a)2 + (y + b)2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (squaring)

⇐⇒ x2 + 2ax+ a2 + y2 + 2yb+ b2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (expanding)

⇐⇒ 2ax+ 2yb 6 2
√

(x2 + y2)(a2 + b2) (cancelling)

⇐⇒ ax+ yb 6
√

(x2 + y2)(a2 + b2) (dividing by 2)

⇐⇒ (ax)2 + 2axyb+ (yb)2 6 x2a2 + x2b2 + y2a2 + y2b2 (squaring)

⇐⇒ 2axyb 6 x2b2 + y2a2 (cancelling)

⇐⇒ 0 6 x2b2 − 2axyb+ y2a2 (rearranging)

⇐⇒ 0 6 (xb− ya)2 (rearranging)

This last line is clearly a true statement, and since all operations were reversible, the first line is also
true.

Exercise 25.2. 1. First we note that, for every n ∈ N,

‖sin(nx)‖2 = ‖cos(nx)‖2 = π,
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which follows by double angle identities and subsitution. Then we compute:

a0 =
1

2π

∫ 2π

0
f2(x) dx =

2π

2π
= 1

a1 =
1

π

∫ 2π

0
f(x) sin(x) dx = − 2

π

∫ π

0
sin(x) dx = − 4

π

a2 =
1

π

∫ 2π

0
f(x) sin(2x) dx =

2

π

∫ π

0
sin(2x) dx = 0

a3 =
1

π

∫ 2π

0
f(x) sin(3x) dx = − 2

π

∫ π

0
sin(3x) dx = − 4

3π

a4 =
1

π

∫ 2π

0
f(x) sin(4x) dx =

2

π

∫ π

0
sin(4x) dx = 0

a3 =
1

π

∫ 2π

0
f(x) sin(3x) dx = − 2

π

∫ π

0
sin(5x) dx = − 4

5π

This follows by the periodicity of sin. For cos we have even simpler results, as the integral from
0 to π of cos(nx) is already zero. That is,

b1 = b2 = b3 = b4 = b5 = 0.

2. For n = 4, the samples are (0,−1), (π/2,−1), (π, 1), (3π/2, 1), and we get the Fourier transform
to be

1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



−1
−1
1
1

 =
1

2

[
0 i− 1 0 −i− 1

]
.

3.
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Index of notation

v vector 5

v •w dot product (inner product) of two vectors v, w 6

‖v‖ norm of the vector v 8

M matrix 12

Mm×n, Mm×n(F) space of m× n matrices (with elements in the field F) 12

V vector space 30

col(A) column space of the matrix A 33

null(A) nullspace of the matrix A 34

rank(A) rank of the matrix A 38

row(A) row space of the matrix A 51

U⊥ the orthogonal complement of the vector space U 56

projv(u) the projection of the vector u onto the vector v 60

projV (u) the projection of the vector u onto the vector space V 61

〈u,u〉 the inner product of vectors u,v 73

det(A) the determinant of the matrix A 81
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Index

absolute value, 130
additive identity, 13
adjacency matrix, 53
affine space, 31, 40, 49
algebraic multiplicity, 92, 101, 109
algebraically closed, 97
angle, 73
anti-commutative, 90
augmented matrix, 19
axiom of choice, 45

basis, 44
block matrix, 12

Cartesian coordinates, 130
Cauchy–Schwarz inequaity, 74
Cauchy–Schwarz inequality, 9
change of basis matrix, 46, 127
characteristic polynomial, 92
codimension, 47, 56
cofactor, 81, 88
cofactor matrix, 81
colinear, 9
column space, 33
complex conjugate, 130, 132
complex numbers, 97, 130
component, 5
conjugate, 103, 130, 132
conjugate transpose, 132
covariance, 123
cross product, 90
cycle, 110
cyclic matrix, 15

dendrogram, 78
determinant, 80, 81, 84
diagonal matrix, 13, 21, 99
diagonalization, 100
dimension, 47, 56
direct sum, 32
discrete Fourier transform, 137
distance, 8
distance matrix, 75
dot product, 6

eigenpair, 91
eigenspace, 93
eigensystem, 91
eigenvalue, 91
eigenvector, 91, 96

generalized, 110
elementary matrix, 21

elementary row operations, 17
elimination, 21
elimination matrix, 21
entry, 12
error vector, 60
Euler’s formula, 131
exponential form, 131
extend to a basis, 46

field, 6
Fourier basis, 135
Fourier coefficient, 135
Fourier matrix, 133, 137
Fourier series, 135
free variable, 35
full column rank, 41
full rank, 38, 41
full row rank, 41

Gauss–Jordan elimination, 21
Gaussian elimination, 18, 21
general position, 41
generalized eigenvector, 110
geometric multiplicity, 93, 109
Gram–Schmidt process, 69

Hadamard product, 13
Hermitian, 132
hyperplane, 19

identity matrix, 12
image, 126
imaginary number, 130
imaginary part, 130
incidence matrix, 52
inner product, 6, 73
inner product space, 73
inverse, 14
isomorphism, 126

Jordan block, 111
Jordan form, 111

kernel, 126

least squares, 64
left eigenvector, 96
left inverse, 16
left nullspace, 51
length, 8, 73
line, 7
linear combination, 6, 32
linear dependence, 43
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linear independence, 38, 43
linear map, 125
linear transformation, 125
linearity, 125

matrix, 12
diagonal, 99
identity, 12
zero, 12

matrix addition, 13
matrix equation, 15
matrix multiplication, 13
mean-centered, 121
min-max normalization, 123
minimal spanning set, 44
minor, 81
modulus, 130
multiple, 6
multiplicative identity, 13
multiplicity

algebraic, 92, 101
geometric, 93

multiplier, 21

nontrivial vector, 5
norm, 8, 73
normalization, 123
nullity, 39, 47
nullspace, 34

orthogonal, 9, 54, 73
orthogonal complement, 56
orthonormal, 54
outer product, 29

parallel, 9
parallelogram, 81
parallelotope, 81
parity, 84
particular solution, 39
permutation, 83
permutation matrix, 21
perpendicular, 9
piecewise continuous, 134
pivot, 21, 35
plane, 7
polar coordinates, 131
position matrix, 75
positive definite, 107
principal component, 122

projection, 5, 60, 61
projection matrix, 60
proper subspace, 30

purely imaginary number, 130

range, 126
rank, 38
rank approximation, 116
rank-nullity theorem, 39, 52
real part, 130
rectangular coordinates, 130
reduced row echelon form, 35
reflection, 62
right eigenvector, 96
right inverse, 16
roots of unity, 131
rotation matrix, 55
row space, 51

sample covariance, 121
scalar, 6, 30
semidefinite, 107
sign, 84
similar matrix, 102, 112
singular, 26
singular value decomposition, 116
singular values, 115
singular vectors, 116
skew-symmetic, 90
skew-symmetric matrix, 28
span, 32, 33
spanning set, 44
special solution, 34
spectrum, 91
standard basis, 44, 89
standard form, 130
submatrix, 81
subspace, 30
symmetric matrix, 28, 105

trace, 73, 97
transpose, 14, 51
transposition, 83
triangle inequality, 9, 74
triangular matrix, 13
trivial vector, 5

unit cube, 80
unit vector, 8
unitary, 132

Vandermonde, 66, 137
variance, 123
vector, 5

unit, 8
vector space, 30
volume, 80

zero matrix, 12
zero vector, 5
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