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Key ideas

Secondary ideas

Algorithms

Terms and concepts

Matrices

A,B,C : any matrix

D : diagonal

F : Fourier

J : Jordan form

L : lower triangular

P : permutation

P : projection

Q : orthonormal columns

S : symmetric

U : upper triangular

U : right singular vectors as columns

V : left singular vectors as columns

X : (generalized) eigenvectors as columns

Λ : diagonal with eigenvalues on diagonal

Σ : diagonal with singular values on diagonal

Numbers

i : imaginary number

r : rank

z : complex number

λ : eigenvalue

σ : singular value

Row reduction

Solve Ax = b for x

Vector spaces

A set with addition,
multiplication rules

Orthogonality

Generalizes “perpendicular”

Decompositions

Express A as a product (or sum) of matrices

Eigensystems

Set of all pairs (λ,v)
satisfying Av = λv

Linear transformations

Functions that satisfy
f(cx+ y) = cf(x) + f(y)

Rank-nullity
theorem

A ∈Mm×n

dim(col(A)) + dim(null(AT )) = m
dim(row(A)) + dim(null(A)) = n

Data analysis

Symmetric matrices

Square matrix A with Aij = Aji

Complex numbers

matrices

vectors

upper, lower
triangular

pivots

elementary matrices

projections

RnCn Mm×n

linear independence affine space

The complete
solution to Ax = b

inner product space

generalizes length, angle

dot product

nullspace

span

basis

dimension

eigenvalues

λ

eigenvectors

v

eigenpairs

(λ,v)

multiplicity

algebraic or geometric

determinant

trace

characteristic polynomial

diagonalization

eigenspace

span of one
eigenvalue’s
eigenvectors

positive definite AAT and ATA

xTAx > 0
for all x

singular values

singular vectors

linearity conditions

roots of unity

ek=1

conjugate (transpose) Hermitian matrix

Gauss–Jordan elimination

Gram–Schmidt process

Makes a set into a basis

Least squares approximation

Line of best fit through points

Jordan form

Singular value decomposition

Principal
component

analysis

Discrete Fourier transform

± product of eigenvalues is

sum of eigenvalues is

span is

A = XΛX−1

has all roots

A = QJQT

are special types of

finds a polynomial trend

in two-dimensional data

give a notion of
applies to elements in any

A = QR

is multiplication by

When Ax = b

can’t be solved

A = LU
PA = LDU

gives column space, nullspace, which are both

makes rows satisfy

product of pivots is
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are the same as

always have positive

always have real

are positive semidefinite

are the square roots of AAT ’s and ATA’s common

A = UΣV T
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from a discrete signal creates a continuous function
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