Key ideas

[ Secondary ideas ]

[ Algorithms ]

Terms and concepts

are AAT’s (right signular vectors) and AT A’s (left singular vectors)

-

are the square roots of AA”’s and A7 A’s common

-

xTAx >0
for all x

always have positive

algebraic or geometric

/

always have real

4

are positive semidefinite

;

D

product of pivots is

positive definite

y

1

~N

' AAT and AT A

1

i-\

Matrices
A, B,C : any matrix
D : diagonal
F': Fourier
J : Jordan form
L : lower triangular
P : permutation
P : projection
Q : orthonormal columns
S : symmetric
U : upper triangular
U : right singular vectors as columns
V' . left singular vectors as columns
X : (generalized) eigenvectors as columns
A : diagonal with eigenvalues on diagonal
3. : diagonal with singular values on diagonal
Numbers

1 ¢ imaginary number
: rank

: complex number
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)[ Symmetric matrices ]
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[ Singular value decomposition ]

A=LU
PA=LDU
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Principal
component
analysis

dimensionality reduction

conjugate (transpose)

Hermitian matrix
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roots of unity

Complex numbers ](

rank 7 approximation of data
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eigenvectors

Set of all pairs (A, v)
satisfying Av = A\v

makes rows satisfy
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Decompositions

Express A as a product (or sum) of matrices

( Jordan form ]

dot product

The complete
solution to Ax = b
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generalizes length, angle
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Row reduction

gives column space, nullspace, which are both

vectors
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Solve Ax = b for x

is multiplication by \'

Vector spaces
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A set with addition,
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Line of best fit through points Makes a set into a basis vectors
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perpendicular version of

)[ Least squares approximation ]

[ Gram—Schmidt process ]
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finds a polynomial trend /

in two-dimensional data

)[ Data analysis ](
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of degree d has d roots that are all

Orthogonality

Generali
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Linear transformations
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[ Discrete Fourier transform
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from a discrete signal creates a continuous function
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as a vector space are

dim(col(A)) + dim(null(AT)) = m
dim(row(A)) + dim(null(A))

Functions that satisfy
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