Assignment 4

Introduction to Linear Algebra

Material from Lectures 12 - 17 Due Monday, March 14, 2022

Exercises are taken from the lecture notes.

12.3 Consider the 2-dimensional subspace $H \subseteq \mathbf{R}^4$ defined by

$$H = \left\{ (x, y, z, w) \in \mathbf{R}^4 : \begin{array}{rrrr} 2x + 3y - w &=& 0, \\ y - z + 2w &=& 0. \end{array} \right\}$$

- (1.) Express H as a span of two vectors.
- (2.) Apply the Gram–Schmidt process to the two vectors from above to get H as a span of two orthonormal vectors.
- (3.) The space \mathbf{R}^4 has the *xy*-plane as a 2-dimensional subspace, with basis $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}$. Give the change of basis matrix from the two vectors in part 2. to these two vectors.

13.4 Let $P(\mathbf{R})$ be the vector space of all polynomials $\mathbf{R} \to \mathbf{R}$, with scalar multiplication and polynomial addition defined as you would expect. You may assume that the following is an inner product on $P(\mathbf{R})$:

$$\langle p(x), q(x) \rangle = \int_0^\infty p(x)q(x)e^{-x} dx$$

- (1.) Check that p(x) = 2x 1 and q(x) = x + 3 are not orthogonal to each other.
- (2.) Using the Gram-Schmidt process on p(x) and q(x) as in part 1., find a polynomial $r(x) \in P(\mathbf{R})$ that is orthogonal to p(x). Give your answer as r(x) = ax + b, for $a, b \in \mathbf{Z}$.

14.3 Let $A \in \mathcal{M}_{n \times n}$. Show that $\det(A) = 0$ is equivalent to saying that there is a nonzero vector \mathbf{x} for which $A\mathbf{x} = 0$.

16.5 Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be the 2 × 2 matrix for which $A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$ and $A\begin{bmatrix}6\\2\end{bmatrix} = \begin{bmatrix}3\\1\end{bmatrix}$. This is described in the picture below.

- (1.) What is the eigensystem of A? Express $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ as linear combinations of the eigenvectors of A.
- (2.) Using the task above, compute $A\begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $A[\begin{bmatrix} 0\\ 1 \end{bmatrix}$. Use this to construct the matrix of A.
- (3.) Using eigenvalues, explain why A is invertible.
- **17.1** Let $A \in \mathcal{M}_{n \times n}$ and let $\chi(t)$ be its charactristic polynomial.
 - (1.) Show that $\chi(0) = (-1)^n \det(A)$. That is, show that the constant term in $\chi(t)$ is $(-1)^n$ times the determinant of A.
 - (2.) Show that the coefficient of t^{n-1} in $\chi(t)$ is -trace(A).