Midterm

Introduction to Linear Algebra Material from Lectures 1 - 12

Fall 2021

- This midterm lasts 1 hour and 40 minutes.
- This midterm has 8 questions. Each question is worth 5 points.
- Your grade will be Q1+Q2+(highest 5 from Q3 Q8). That is, the lowest scoring question from Q3 Q8 will be dropped.
- This is an open-book midterm. All work submitted must be your own. You may not communicate with other students during the midterm.
- Write your answer for each question on a separate page. Do not answer more than one question on a single page.
- Questions 1 and 2 do not need justification. Questions 3 8 require justification.

Question	Grade
1	
2	
3	
4	
5	
6	
7	
8	
Total	/35

- 1. Answer the following True / False questions. You do not need to show your reasoning.
 - (a) If **u** and **v** are unit vectors, then $|\mathbf{u} \cdot \mathbf{v}| \leq 1$
 - (b) The matrix $\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$ is upper triangular.
 - (c) Any two vectors in \mathbf{R}^n are either parallel or perpendicular.
 - (d) Any two vectors in a basis of \mathbf{R}^n are either parallel or perpendicular.
 - (e) Any two vectors in an orthogonal basis of \mathbf{R}^n are either parallel or perpendicular.
 - (f) If all vectors in a set are orthogonal to each other, then they are linearly independent.
 - (g) The set of 3×3 matrices that are not symmetric is a vector subspace of $\mathcal{M}_{3\times 3}$.

(h) The function
$$\langle f,g\rangle = \int_0^1 (f(x) + g(x))^2 dx$$
 is an inner product on $C[0,1]$.

- (i) Any symmetric matrix with non-negative entries and a zero diagonal is a distance matrix for some appropriate inner product space.
- (j) The determinant of a rank one matrix is always 0.

- 2. Answer the following short answer questions. You do not need to show your work.
 - (a) If $\mathbf{v} \in \mathbf{R}^n$, then the dimensions of $(\mathbf{v}^T \mathbf{v})(\mathbf{v} \mathbf{v}^T)$ are ______
 - (b) The length of the vector $\begin{bmatrix} a \\ b \\ a-b \end{bmatrix}$ is ______
 - (c) The product abc in the *LU*-decomposition

$$\underbrace{\begin{bmatrix} 6 & 0 & -2 \\ 1 & 3 & 4 \\ -3 & -8 & 2 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} 6 & 0 & -2 \\ 0 & 3 & 13/3 \\ 0 & 0 & 113/9 \end{bmatrix}}_{U}$$

is _____

- (d) If the rank of $A \in \mathcal{M}_{5\times 6}$ is 3, then the rank of A^T is ______ (e) The determinant of the matrix $A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 0 \end{bmatrix}$ is $\det(A) = _$ ______

3. Consider the following vectors and matrices.

$$\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} 1 \\ -\sqrt{6} \\ 1 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & \sqrt{6} & 2 \\ 3 & 0 & 0 \\ \sqrt{6} & 1 & 7/4 \end{bmatrix}$$

- (a) Find the angle between \mathbf{v} and \mathbf{w} .
- (b) Find two different triples $a, b, c \in \mathbf{R}$ so that $a\mathbf{v} + b\operatorname{diag}(\mathbf{w}\mathbf{w}^T) + cA\mathbf{w} = \begin{bmatrix} 2\\ -1\\ -5/4 \end{bmatrix}$.

Recall that
$$\operatorname{diag}(M) = \begin{bmatrix} M_{11} \\ M_{22} \\ \vdots \\ M_{nn} \end{bmatrix}$$
 is the column vector of the diagonal entries of M .

- 4. Consider the matrix $A = \begin{bmatrix} a & b & c & d & e \\ a & 0 & c & 0 & e \\ 0 & b & 0 & d & 0 \end{bmatrix}$, for $a, b, c, d, e \in \mathbf{R}_{\neq 0}$.
 - (a) Express $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as a linear combination of the basis vectors from the column space and left nullspace of A.
 - (b) Express $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$ as a linear combination of the basis vectors from the row space and nullspace of A.

You may place restrictions on a, b, c, d, e to avoid division by 0.

- 5. Let $S \subseteq \mathcal{M}_{2 \times 2}$ be the space of symmetric 2×2 matrices.
 - (a) Show that $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis for S.
 - (b) Extend B to an orthogonal basis for $\mathcal{M}_{2\times 2}$.

You may use the fact that $\mathcal{M}_{2\times 2} = \operatorname{span}(B')$, where

$$B' = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

- 6. Consider the hyperplane $H = \{(x, y, z, w) : 2x 4y + 2z 1w = 0\} \subseteq \mathbf{R}^4$.
 - (a) Give a basis for this subspace.
 - (b) Find two vectors $\mathbf{a}, \mathbf{b} \in \mathbf{R}^4$ not in H, for which:
 - the projection of **a** onto H is not the same as the projection of **b** onto H, and
 - the error in projecting both \mathbf{a} and \mathbf{b} onto H is 5.

7. Consider the matrix $A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & -1 & 0 \\ 3 & 2 & 3 \end{bmatrix}$.

(a) Give the LU-decomposition of A.

(b) Give the 2nd row of R in the QR-decomposition of A.

8. Consider the matrix
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$
.

- (a) How many nonzero terms are in the permutation formula of det(A)?
- (b) Express (do not evaluate) the determinant of A using the recursive formula.
- (c) Use the pivot definition of the determinant to evaluate your answer from part (b).