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This course will use Gilbert Strang’s Introduction to Linear Algebra. You are encouraged to read the
Preface to the textbook, available at math.mit.edu/linearalgebra before the first lecture.

Part I

Vector spaces

Lecture 1: Vectors and matrices

The first week will be a review of material you have seen before, but the setting may be broader, with
different emphasis, and with different examples.

1.1 Vector review

Definition 1.1. Let n ∈ N. A vector in Rn is an ordered set of n elements.

The zero vector , or a trivial vector , denoted 0, is vector for which all elements are 0. Vectors that
are not the zero vector are called nontrivial . A vector is usually thought of as a column of numbers,
or a point in n-dimensional space, or the arrow to that point. All notions of a vector will be used
interchangeably.

Example 1.2. The vector v = [ 3
1 ] in R2 can also be thought of as the arrow to (3, 1) or simply the

point (3, 1) itself.

R

R

(3, 1)

v

Multiplying the vector by elements of R we get other vectors “going in the same direction” as v.

R

R

v

2v

2
3v

−1
2v

0v

Vectors are combined together in linear combinations.

Definition 1.3. A linear combination of vectors is a vector v ∈ Rn when it is expressed as a sum of
other vectors v1,v2, . . . ,vk ∈ Rn, and scalars a1, a2, . . . , ak ∈ R multiplying them. That is,

v = a1v1 + a2v2 + · · ·+ akvk.

For k = 1, a linear combination of vectors v1, . . . , vk is called a multiple of the vector v1.

Example 1.4. Every vector in the plane is a linear combination of (at most) two vectors, representing
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the x-direction and y-direction.

R

R

(3, 1)

(3, 0)

(0, 1)
v

w

u

v = w + u =

[
3
0

]
+

[
0
1

]
=

[
3 + 0
0 + 1

]
=

[
3
1

]

R

R

(3, 1)

(2, 2)(−2, 2)

(1,−1)

v

r
s

−1
2s

v = r− 1
2s =

[
2
2

]
− 1

2

[
−2
2

]
=

[
2− 1

2 · (−2)
2− 1

2 · 2

]
=

[
2 + 1
2− 1

]
=

[
3
1

]

The entries of vectors, and the numbers multiplying them, do not need to be numbers - they simply
need to be elements of a field , a term which we will not define here.

Example 1.5. Some common examples of fields are Q,R,C.

� The set N is not a field because although 1 ∈ N, there is no x ∈ N for which 1 + x = 1 (the
additive identity does not exist).

� The set Z is not a field because although 2 ∈ Z, there is no number x ∈ Z for which 2x = 1
(multiplicative inverses do not exist).

Unless otherwise noted, we will use the field R.
A key idea of vectors and their linear combinations that that they fill a part of the space in which

they reside. The “part” of the space is another space itself.

Example 1.6. Linear combinations can be described geometrically. For example:

� Linear combinations of (1, 1) and (0, 0) form the line y = x in the plane R2

� Multiples of (1, 1, 1) form a line in 3-space R3

� Linear combinations of (1, 1, 1) and (1, 1, 0) form the plane x− y = 0 in R3

� Linear combinations of (1, 1, 1), (1, 1, 0), and (0, 1, 1) fill all of R3. For example, 7
9
−5

 = −7

1
1
1

+ 14

1
1
0

+ 2

0
1
1

 .
� Linear combinations of (1, 1, 1), (1, 1, 0), (0, 1, 1), and (1, 0, 1) still fill all of R3. For example, 7

9
−5

 = −7

1
1
1

+ 14

1
1
0

+ 2

0
1
1

+ 0

1
0
1

 = −5

1
1
1

+ 13

1
1
0

+

0
1
1

−
1

0
1

 .

R

R y = x

R
R

R

(1, 1, 1)

R
R

R

x− y = 0
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Definition 1.7. The dot product , or inner product of two vectors v = (v1, . . . , vn),w = (w1, . . . , wn) ∈
Rn, is the real number v ·w := v1w1 + · · ·+ vnwn ∈ R.

In other words, the dot product is a function Rn ×Rn → R. Working out the individual compo-
nents, we see that v · (u + w) = v · u + v ·w, a fact which you show in Exercise 1.2. The dot product
of a vector v with itself is the square of the norm, or length, or distance of the vector v. The norm is
denoted ‖v‖, so we have

‖v‖ :=
√

v · v, or ‖v‖2 = v · v = v2
1 + v2

2 + · · ·+ v2
n.

We know the inside of the square root will be nonnegative, as we are summing squares. The norm
satisfies the following properties, for any v ∈ Rn:

� Non-negative: ‖v‖ > 0

� Positive definite: ‖v‖ = 0 if and only if v = 0

� Multiplicative: ‖cv‖ = |c|‖v‖ for any c ∈ R

These properties follow immediately from the properties of the real numbers and the definition of the
norm above.

Definition 1.8. A vector v ∈ Rn is a unit vector if ‖v‖ = 1.

Proposition 1.9. For any u,v nonzero in Rn:

1. The vector v
‖v‖ is a unit vector.

2. The angle θ between u and v is computed by the relation u·v
‖u‖‖v‖ = cos(θ)

3. The Cauchy–Schwarz inequality holds: |u · v| 6 ‖u‖‖v‖

4. The triangle inequality holds: ‖u + v‖ 6 ‖u‖+ ‖v‖

Proof. To prove 1., we need to show that the norm of v
‖v‖ is 1. This follows aswwww v

‖v‖

wwww2

=
v

‖v‖
· v

‖v‖
=

1

‖v‖2
(v · v) =

1

‖v‖2
‖v‖2 = 1.

To prove 2., we use the law of cosines on the triangle formed by the origin 0, u and v:

θ

R

R

u

v

‖u− v‖2 = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)
(u− v) · (u− v) = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)

u · u− 2u · v + v · v = ‖v‖2 + ‖u‖2 − 2‖v‖‖u‖ cos(θ)
−2u · v
−2‖v‖‖u‖

= cos(θ)

To prove 3., use the fact that cos(θ) 6 1, then take the absolute value of the equation from part 2.
To prove 4., we can either draw a parallelogram and notice that the diagonal is u + v, and that it is
shorter than the sum of the sides, which are u and v. Or we can use algebra and part 3.

R

R

u

v

v

u
u + v

‖u + v‖2 = (u + v) · (u + v)
= u · u + 2u · v + v · v
6 ‖u‖2 + 2|u · v|+ ‖v‖2
6 ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2
= (‖u‖+ ‖v‖)2
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As a result of part 2., if u is perpendicular to v, then θ = π/2, and so cos(θ) = 0. That is, u is
perpendicular to v if and only if u · v = 0.

Definition 1.10. Two non-zero vectors v, w are parallel if there exists c ∈ R6=0 with v = cw. If
c = 1, then the two vectors are colinear . In the opposite case, when the dot product vTw = 0, the
vectors are called perpendicular , or orthogonal .

Sometimes “parallel” is used when c > 0 and “anti-parallel” for c < 0. We will see orthogonality
later in Lecture 7.

1.2 Matrix review

Definition 1.11. Let m,n ∈ N. An m × n matrix over R is an ordered set of m · n elements. The
space of all m × n matrices over R is denoted Mm×n(R) or simply Mm×n, when the field is not
relevant or clear from context.

Comparing Definition 1.11 with Definition 1.1, we see that a vector in Rn is just a n× 1 (or 1×n)
matrix. Similarly to vectors, the elements of matrices may be over other fields, not necessarily R. A
two matrices of particular importance are the zero matrix 0, or 0 (all entries are zero) and the identity
matrix I, or 1, (all entries are zero except the diagonal, which is all 1’s), given by

0 :=


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , I :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
These are square matrices. Sometimes to emphasize the size of the matrix, we write 0n and In for
matrices with n rows and n columns. For an m × n matrix A, the entry in row i and column j is
denoted Aij or (A)ij or A(i, j) or aij . That is,

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .
Sometimes instead of giving specfic numbers, you are given specific submatrices. These are called
block matrices. For example, if A ∈M2×3, B ∈M2×5, C ∈M3×3, and D ∈M3×5, then[

A B
C D

]
∈M5×8 and

[
C 0
I D

]
∈M6×8

are both block matrices. The identity I and zero 0 matrices are used without specifying their size as
blocks in a block matrix. The matrix I will always be square, but 0 can be any shape. Finally, there
are three special types of square matrices:

∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗


upper triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
∗ ∗ 0 · · · 0
∗ ∗ ∗ · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · ∗


lower triangular matrix

aij = 0 if i > j


∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗


diagonal matrix

aij = 0 if i 6= j
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The symbol “∗” represents any number, and they do not all have to be the same. The two on the left
are called triangular matrices. We will see several times over why these are special.

Definition 1.12. There are several common matrix operations.

� sum: the sum of A ∈Mm×n and B ∈Mm×n has ij-entry (A+B)ij = Aij +Bij

� product : the product of A ∈Mm×n and C ∈Mn×m has ij-entry (AB)ij =
∑n

k=1AikBkj

� Hadamard product : the Hadamard product, or entry-wise product, of A ∈ Mm×n and B ∈
Mm×n has ij-entry (A ◦B)ij = AijBij

Remark 1.13. Matrix addition has the following properties:

� addition is commutative: A+B = B +A

� addition is assocative: A+ (B + C) = (A+B) + C

� multiplication by a number is distributive over addition: c(A+B) = cA+ cB

Multiplication does not have all these properties:

� multiplication is not always commutative: AB 6= BA

� multiplication is assocative: A(BC) = (AB)C and A(Bx) = (AB)x

� multiplication is distributive over addition: C(A+B) = CA+ CB and (A+B)C = AC +BC

Here A,B,C are matrices of the appropriate size, c ∈ R, and x is a vector.

Example 1.14. The identity (also called the multiplicative identity) and zero (also called the additive
identity) matrices have special properties with addition and multiplication. For any A ∈Mm×n:

� the product of A with I is A itself: AI = IA = I

� the product of A with 0 is is 0: A0 = 0A = 0

� the sum of A and 0 is A itself: A+ 0 = 0 +A = A

In the second property, the zero matrix 0 does not have the same size every time it is used.

Definition 1.15. Let A be an n×n matrix. The inverse of A is a matrix B for which AB = BA = I.

Note that the inverse of a matrix A does not always exist. When it does, it is usually denoted
A−1. As a result of the first property from Example 1.14, the inverse of the identity matrix is itself:
II = I, so I−1 = I.

Moreover, if A ∈ Mm×n and m 6= n, then there may be a matrix B ∈ Mn×m for which AB = I,
but not necessarily BA = I, in which case B is called a right inverse of A. We will later see algorithms
that compute the inverse, for now we just look at some examples.

Example 1.16. The inverse of the difference matrix is a sum matrix . That is, for

A =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

 , B =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 ,
we have AB = I. Both of these matrices are triangular, or more specifically, lower triangular. These
matrices get their names from what they do to a vector x = (x1, x2, x3, x4):

Ax =


x1

x2 − x1

x3 − x2

x4 − x3

 , Bx =


x1

x2 + x1

x3 + x2 + x1

x4 + x3 + x2 + x1

 .
8



Example 1.17. The cyclic matrix C does not have an inverse. That is, there is no vector x for which

Cx =

 1 0 −1
−1 1 0
0 −1 1

x1

x2

x3

 =

x1 − x3

x2 − x1

x3 − x2

 =

a1

a2

a3

 = a,

for any chosen a. It is immediate that a = 0 has a solution, when x1 = x2 = x3. But it is also
immediate that a = (1, 2, 3) is not a solution, because adding the three equations

x1 − x3 = 1, x2 − x1 = 2, x3 − x2 = 3,

gives 0 on the left side and 6 on the left. In this situation, we say:

� when a1 + a2 + a3 = 0, there is a solution to Cx = a, or equivalently,

� all linear combinations x1c1 + x2c2 + x3c3 lie on the plane given by a1 + a2 + a3 = 0,

where C = [c1 c2 c3]. If we consider a1, a2, a3 as changing along the x, y, z axes,respectively, we see
the collection of linear combinations x1c1 + x2c2 + x3c3 is indeed a plane:

a1

a2

a3

(1, 0,−1)

1.3 Exercises

Exercise 1.1. Consider the four vectors v =

 0
6
−1

, w =

−3
−4
−5

, z =

0
0
1

, y =

−5
5
−4

.

1. Find a, b, c ∈ R with av + bw + cz = y.

2. Write your solution from part (a) as an equation Ax = y, where A is a 3× 3 matrix and x is a
vector in R3.

Exercise 1.2. Check that the dot product from Definition 1.7 is distributive over vector addition.
That is, show that v · (u + w) = v · u + v ·w, for any u,v,w ∈ Rn.

Exercise 1.3. Let v ∈ R3 be non-trivial, and let w, z ∈ R3 be non-trivial vectors perpendicular to
v. Show that the halfway point between w and z is also perpendicular to v.

Exercise 1.4. A non-square matrix A may have (non-square) matrices B,C for which AB = I and
CA = I, in which case we call B a right inverse and C a left inverse for A. Let A =

[
1 0 −2
3 −1 1

]
.

1. Construct a right inverse for A, that is, a 3 × 2 matrix B for which AB = I. Make it so that
BA 6= I.

2. Try to construct a left inverse for A, that is, a 3× 2 matrix C for which CA = I. Is it possible?

Exercise 1.5. Recall the definition of the inverse of a matrix A, which is a matrix B for which AB =
BA = I. Show that B is unique. That is, show that if there exists a matrix C with AC = CA = I,
then C = B.

Exercise 1.6. This question is about triangular matrices.

9



1. Show that the product of two lower trinagular matrices is lower triangular.

2. Show that the product of two upper trinagular matrices is upper triangular. The concept of a
transpose, introduced in the next lecture, will make this computation easier, given your work
from part (a).

3. What form will the product of a lower triangular with an upper triangular matrix have? Can
you come up with an example where the result is a diagonal matrix, but the original matrices
are not diagonal?
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Lecture 2: Elimination and inverses

This lecture reviews how to solve linear systems, and goes into more detail. Recall the three elementary
row operations:

1. add a multiple of one row to another row

2. swap two rows

3. multiply a row by a nonzero number

These are not all equal operations: the third is a special case of the first, and the second changes some
key aspects of the linear system. We will understand these operations as matrix multiplication.

2.1 Gaussian elimination

The main object of study for this lecture is the matrix equation Ax = b, where A ∈ Mm×n, b ∈ Rn

and x is a column of n variables x1, . . . , xn. You should understand this equation in two ways:

� by the columns of A: a linear combination of the n columns of A produces the vector b

� by the rows of A: the m equations from the m rows of A describe m planes meeting at the point
x ∈ Rn

Note that the word plane comes from a flat surface living in space (that is, R3). It is more precise to
say hyperplane to describe all the points in Rn satisfying a single equation.

Example 2.1. Let A =
[

3 2
1 −2

]
and b = [ 11

1 ], with x = [ xy ]. As columns of A, we have a linear
combination

xa1 + ya2 = b, or x

[
3
1

]
+ y

[
2
−2

]
=

[
11
1

]
.

As rows of A, we have two equations 3x + 2y = 11 and x − 2y = 1, giving the lines in the following
picture.

R

R

x− 2y = 1

x− 2y = −1

3x+ 2y = 11

The point (3, 1) where both lines meet the single solution x that solves the given matrix equation
Ax = b. Observe that:

� If the lines were parallel and not colinear, there would be no solutions, because the lines would
not intersect. For example, if instead of 3x+ 2y = 11 we had x− 2y = −1.

� If the lines were parallel and colinear, there would be infinitely many solutions, because the lines
would intersect at all points. For example, if instead of 3x+ 2y = 11 we had 2x− 4y = 2.

Example 2.2. two special cases: A = I and b = 0.

Previously Gaussian elimination was presented in no particular order. The algorithm we use here
has a specific order. We start from the top and work downwards to get zeros below all the pivots.
For a matrix equation Ax = b, where A ∈ Mm×n, we apply this process to the augmented matrix
[A b] ∈Mm×(n+1), which is just A with the last column b.

11



Example 2.3. We use the augmented matrix
[

3 2 11
1 −2 1

]
from Example 2.1.[

3 2 11
1 −2 1

]
3 is the first pivot[

3 2 11
0 −2− 2

3 1− 11
3

]
1

3
is the multiplier `21 previous matrix multiplied by

[
1 0
−1
3 1

]
[
3 2 11
0 −8

3
−8
3

]
−8

3
is the second pivot

The geometric interpretation of applying the row operation comes from x−2y = 1 becoming −8
3 y = −8

3 ,
which can be drawn the same as y = 1. Note that the point of intersection does not change.

R

R

x− 2y = 1

3x+ 2y = 11

R

R

−8
3 y = −8

3

3x+ 2y = 11

Definition 2.4. The previous and next examples introduce key concepts for elimination on an m×n
matrix A and on the augmented m× (n+ 1) matrix [A b].

� The pivot in row i is the first nonzero value that appears in row i. If the first nonzero value is
the last entry (in the vector b) or all entries of row i are 0, the pivot in row i does not exist.

� Row j is multiplied by the multiplier `ij , and the resulting row is subtracted from row i to get
a zero below the pivot of row j.

� The row operation of subtracting `ij times row j from row i is done by the elimination matrix
Eij . This is the identity matrix I with −`ij in ij-position.

� The row operation of swapping row i with row j is done by the permutation matrix Pij . This is
the identity matrix I with the row i and row j swapped.

Both elimination and permuatation matrices are called elementary matrices. A permuatation matrix
has a slightly more general definition.

Definition 2.5. A permutation matrix is the identity matrix I with a different rearrangement of rows.
For example, 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


are all 4 × 4 permutation matrices. The identity matrix I is a trivial permutation matrix, or not
considered a permutation matrix.

Example 2.6. Let A =
[

0 6 −2
4 8 −4
−2 2 7

]
and b =

[
2
8
12

]
. For this augmented matrix, the first pivot seems to

be zero, but we cannot have that, so we swap the second row with the first row. Elementary matrices

12



are given on the right. 0 6 −2 2
4 8 −4 8
−2 2 7 12

 0 can not be a pivot

 4 8 −4 8
0 6 −2 2
−2 2 7 12

 swap first two rows, 4 is first pivot previous matrix multiplied by

0 1 0
1 0 0
0 0 1


4 8 −4 8

0 6 −2 2
0 6 5 16

 −1

2
is multiplier `31, 6 is second pivot previous matrix multiplied by

1 0 0
0 1 0
1
2 0 1


4 8 −4 8

0 6 −2 2
0 0 7 14

 1 is multiplier `32, 7 is third pivot previous matrix multiplied by

1 0 0
0 1 0
0 −1 1



This is now a system Ux = c, for U =
[

4 8 −4
0 6 −2
0 0 7

]
and c =

[
8
2
14

]
. Equivalently, we have three equations:

4x+ 8y − 4z = 8,

6y − 2z = 2,

7z = 14.

Note that U is upper triangular. To find the vector x which solves this system, use back substitution
from the bottom row up to find z = 2, y = 1, x = 2.

Remark 2.7. There are two cases which we have not considered for a matrix equation Ax = b, but
which were mentioned in Example 2.1. Both of these happen when an n× n matrix we get less than
n pivots. If elimination produces in the augmented matrix [A b] a row of:

� all zeros except the last entry: then there are no solutions, because it implies an equation such
as 0x+ 0y + 0z = 1, or 0 = 1.

� all zeros: then there are inifinitely many solutions, because we then only have n − 1 equations
but still n unknowns, so one of the unknowns can be freely chosen.

In both of these cases the matrix A is called singular .

2.2 Inverses and factorization

In Lecture 1.2 an inverse matrix in Definition 1.15 for a matrix A ∈Mn×n was simply described as a
matrix B for which AB = I. However, this matrix B exists if and only if, equivalently:

� A has n pivots, or

� the only solution to Ax = 0 is x = 0.

Then we write A−1 instead of B.

Remark 2.8. We note some common inverses.

� The inverse of a 2× 2 matrix exists if and only if ad− bc 6= 0:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]

13



� The inverse of a diagonal matrix exists iff the entries on the diagonal are nonzero:
d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn


−1

=


1/d1 0 0 · · · 0

0 1/d2 0 · · · 0
0 0 1/d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/dn


� Similarly, the inverse of an upper triangular matrix exists iff the entries on the diagonal are

nonzero. If some are zero, it immediately means we are missing some pivots (as everything
below the diagonal is zero).

Taking the inverse of a product of matrices reverses their order: (AB)−1 = B−1A−1. This follows as

AB(B−1A−1) = A(BB−1)A−1 (commutativity of multiplication)

= AIA−1 (definition of inverse)

= (AI)A−1 (commutativity of multiplication)

= AA−1 (property of identity matrix)

= I (definition of inverse)

Finally we come to a constructive definition of the inverse of a matrix, which, instead of Gaussian
elimination, uses Gauss–Jordan elimination. This starts with the usual Gaussian elimination proce-
dure, but then runs it in reverse, upside down: start from the bottom and work upwards to get zeros
above all the pivots.

Example 2.9. Let A =
[

4 8 −4
0 6 −2
−2 2 1

]
, for which we want to find the inverse. To do this, we work with the

block matrix [A I], and on it we do not only Gaussian elimination on the matrix, as in Example 2.6,
but also Gauss–Jordan elimination, which clears the matrix above the pivots. Elementary matrices
are given on the left. 4 8 −4 1 0 0

0 6 −2 0 1 0
−2 2 1 0 0 1

 4 is first pivot

4 8 −4 1 0 0
0 6 −2 0 1 0
0 6 −1 1/2 0 1

 −1

2
is multiplier `31, 6 is second pivot

 1 0 0
0 1 0

1/2 0 1


4 8 −4 1 0 0

0 6 −2 0 1 0
0 0 1 1/2 −1 1

 1 is multiplier `32, 1 is third pivot

1 0 0
0 1 0
0 −1 1


4 8 −4 1 0 0

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 0
0 1 2
0 0 1


4 8 0 3 −4 4

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above third pivot, second line

1 0 4
0 1 0
0 0 1


4 0 0 13/3 −8/3 20/3

0 6 0 −1 −1 −2
0 0 1 1/2 −1 1

 0 above second pivot

1 −8/6 0
0 1 0
0 0 1


1 0 0 13/12 −2/3 5/3

0 1 0 −1/6 −1/6 −1/3
0 0 1 1/2 −1 1

 multiply by the pivot reciprocals

1/4 0 0
0 1/6 0
0 0 1
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We have now reached the matrix [I A−1]. To see the submatrix on the right is really the inverse, first
multiply the elementary matrices together to get E. Above we showed that

E[A I] = [I B]

for some matrix B (which we are trying to show is the inverse of A). Block multiplication tells us that

E[A I] = [EA EI] = [EA E] =⇒ EA = I and E = B.

It follows that BA = I, which means that B is the inverse of A.

Remark 2.10. We now have a new, equivalent definitionf of A ∈ Mn×n. not having an inverse: If
Gauss–Jordan elimination of [A I] results in [J B], where J is almost I, but has some zeros on the
diagonal, then A has no inverse.

We are now at the final theme of this lecture: factorization, or decomposition. We want to describe
a matrix A in terms of simpler, triangular matrices. We will do this in four ways:

A = LU, A = LDU, PA = LU, PA = LDU.

A is the original matrix, L is a lower triangular matrix, U is upper triangular, D is diagonal, and P is
a permutation matrix. The first two ways are for matrices that do not require row swaps when doing
elimination, otherwise row swaps are caputred in the permutation matrix P . Note that we must do
all the permutations first.

Example 2.11. Consider the matrix A =
[ 4 8 −4

0 6 −2
−2 2 1

]
from Example 2.9. Using the elementary matrices

from the first two steps, we find:

E32E31A =

1 0 0
0 1 0
0 −1 1

 1 0 0
0 1 0

1/2 0 1

 4 8 −4
0 6 −2
−2 2 1

 =

4 8 −4
0 6 −2
0 0 1

 = U,

since U is upper triangular. Next, observe that the inverse E−1
ij of an eliminatoin matrix Eij is almost

the same as Eij , except: where Eij had −`ij in the ij-position, E−1
ij has `ij in the ij-position. That

is, for this example we have

E−1
31 =

 1 0 0
0 1 0
−1/2 0 1

 , E−1
32 =

1 0 0
0 1 0
0 1 1

 , E−1
31 E

−1
32 =

 1 0 0
0 1 0
−1/2 1 1

 = L,

because L is upper triangular. Now we have the desired result

A = LU, or

 4 8 −4
0 6 −2
−2 2 1


︸ ︷︷ ︸

original matrix

=

 1 0 0
0 1 0
−1/2 1 1


︸ ︷︷ ︸

lower triangular factor

4 8 −4
0 6 −2
0 0 1


︸ ︷︷ ︸

upper triangular factor

.

We can also factor U further as DU , placing the pivots of U in a separate matrix:

A = LDU or

 4 8 −4
0 6 −2
−2 2 1

 =

 1 0 0
0 1 0
−1/2 1 1

 4 0 0
0 6 0
0 0 1


︸ ︷︷ ︸
diagonal factor

1 2 −1
0 1 −1/3
0 0 1

 .

We finish off the lecture with some useful types of matrices.

Definition 2.12. Let A be an n×m matrix.
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� The transpose of A is an m× n matrix denoted AT , with (AT )ij = Aji.

� The matrix A is symmetric if m = n and Aij = Aji for all i, j.

� The matrix A is skew-symmetric if m = n and Aij = −Aji for all i, j.

Observe that another way to express that A is symmetric is to say that A = AT , and another way to
express that A is skew-symmetric is to say A = −AT .

Remark 2.13. The transpose can be thought of as a functionMm×n →Mn×m. It plays nicely with
the addition, multiplication, and inverse functions we have seen in Definitions 1.12 and 1.15:

� the transpose of a sum is the sum of the transposes: (A+B)T = AT +BT

� the transpose of a product is the product oif the transposes, but reversed: (AB)T = BTAT

� the transpose of an inverse is the inverse of the tranpose: (A−1)T = (AT )−1

Moreover, the dot product of two vectors from Definition 1.7 can be thought of as matrix multiplication,
if we use the transpose:

v ·w = vTw

∈ Rn ∈ Rn ∈M1×n ∈Mn×1

(1)

This is why we need to be careful with the multiplication symbol ·, always being aware of the sizes of
objects we are working with. That is because multiplying the other way wvT gives an n× n matrix,
which is called the outer product :

v =


1
2
3
4

 ∈ R4, vTw =
[
1 2 3 4

] 
1
−1
2
−2

 = 1 · 1 + 2 · (−1) + 3 · 2 + 4 · (−2) = −3 ∈ R =M1×1

w =


1
−1
2
−2

 ∈ R4, wvT =


1
2
3
4

 [1 −1 2 −2
]

=


1 −1 2 −2
2 −2 4 −4
3 −3 6 −6
4 −4 8 −8

 ∈M4×4

Example 2.14. Taking the transpose of a product of a matrix with a vector is just like taking the
tranpose of two matrices. Using the property from Equation (1) and the observations in Remark 2.13,
we see some interesting results. For A ∈Mm×n and x,y ∈ Rn, we have

Ax · y = (Ax)Ty = xTATy = xT (ATy) = x · (ATy).

Remark 2.15. We end this lecture with an observation about symmetric matrices: If A ∈ Mn×n is
symmetric, then its decomposition into A = LDU has L = UT .

2.3 Exercises

Exercise 2.1. Construct a 3× 3 matrix A which has:

1. pivots 1,2,3

2. pivots 1,2,3 and multipliers `32 = 4, `31 = 5 and `21 = 6

3. only two pivots 1 and 2, but no zeros in any positions

Exercise 2.2. Let A be a 3× 3 matrix.
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1. Find the pivots when A has each of the following forms. The numbers a, . . . , i are all nonzero.a b c
d e f
g h i


all pivots

0 b c
0 e f
0 h i


no first pivot

a b c
d bd/a f
d bd/a i


no second pivot

0 b c
0 e ce/b
0 e ce/b


no first or third pivot

2../ Write a function that takes in such a matrix and returns a list of the three pivots. You may
assume that all of the pivots exist.

3../ Run your function on 1000 random 3× 3 matrices with entries in the range [−1, 1]. What is the
range and the average of all the pivots? How often do you get a zero?

In Python, you may use consider A as a list of lists [[a,b,c],[d,e,f],[g,h,i]].

Exercise 2.3. This question is about the three permutation matrix examples given in Definition 2.5.

1. Is the product of all three a permutation matrix?

2. Are the inverses of each still permutation matrices?

Exercise 2.4. Suppose that Ai ∈ Mn×n has an inverse A−1
i , for i = 1, . . . , k. What is the inverse of

the k-fold product A1A2 · · ·Ak?

Exercise 2.5. Using Gauss–Jordan elimination, find the inverse matrix of A =
[

0 2 −1
1 0 −4
2 2 2

]
.

Exercise 2.6. Decompose the matrix A from Example 2.6 as PA = LDU .
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Lecture 3: The column space and the nullspace

This lecture will introduce what it means to be “in the solution space” to an equation Ax = b.

3.1 Vector spaces and the column space

Recall that a field is a set with nice properties, such as R,Q,C. Fields have addition and multiplication
built into them.

Definition 3.1. Let V be a set and F a field. The elements of F are called scalars. The set V is a
vector space if there are two operations

� addition +: V × V → V ,

� scalar multiplication · : F × V → V ,

that satisfy the follow properties, for every u,v,w ∈ V and a, b ∈ F :

1. addition has an identity element: there exists 0 ∈ V with 0 + v = v

2. addition has inverse elements: there exists −v ∈ V with v + (−v) = 0

3. scalar multiplication has an identity element: there exists 1 ∈ F with 1v = v

4. addition is commutative: u + v = v + u

5. addition is associative: u + (v + w) = (u + v) + w

6. scalar multiplication is distributive over addition: a(u + v) = au + av

7. scalar multiplication is distrbutive over field addition: (a+ b)v = av + bv

8. field multiplication is compatible with scalar multiplication: (ab)v = a(bv)

If V is a vector space and W ⊆ V is a subset of V and is a vector space on its own, with the same
two operations satisfying the same properties, then W is a subspace of V . It is immediate that every
vector space is a subspace of itself, so whenever W ⊆ V is a subspace and W 6= V , we say W is a
proper subspace of V .

Example 3.2. We consider some basic examples of vector spaces.

� The empty set ∅ is not a vector space, because vector space must contain the zero vector.

� The set V = {0} is a vector space, called the trivial or zero vector space.

� The spaceM2×2 is a vector space, with addition being matrix addition, and scalar multiplication
the usual scalar multiplication over R. This space is 4-dimensional, though we will see the notion
of dimension next lecture.

� For V = R2, the set W = {c(2, 1) : c ∈ R} ⊆ V , which is all the multiples of v = (2, 1), is a
subspace of R2. The set U = {c(2, 1)+(0, 1) : c ∈ R} ⊆ V , which is the same as W but shifted
up by 1 unit, is not a vector space, as (0, 0) 6∈ U .

R

R

(0, 0)

W

U
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Remark 3.3. We make some observations about vector spaces and subspaces.

� Every vector space and subspace must contain the zero vector.

� Any line through the origin is a subspace of Rn.

� A subspace containing u and v must contain every linear combination au + bv.

Example 3.4. Combining the above remark and Example 3.2, we see that U = {all upper triangular
matrices

[
a b
0 d

]
} ⊆ M2×2 is a subspace of M2×2, as is D = {all diagonal matrices

[
a 0
0 d

]
} ⊆ M2×2.

Moreover, D is a subspace of U .

Example 3.5. Let V be any vector space, such as Rn, and S = {v1, . . . ,vk} ⊆ V any collection of
elements of V . Then the space of all linear combinations of elements of S, written W = {

∑n
i=1 civi :

ci ∈ F}, is a subspace of V . This space is called the span of the vectors in S, and we say V is spanned
by those vectors.

Definition 3.6. Let V,W be two vector spaces. Their direct sum, or simply sum, is the vector space

V ⊕W := {(v,w) : v ∈ V,w ∈W},

with vector addition and scalar multiplication defined component-wise. That is, c(v,w) = (cv, cw).
This general approach is taken in case V and W are not subspaces of a common space. If there exists
a vector space U with V,W ⊆ U , then we have the vector space

V +W := {v + w : v ∈ V,v ∈W}.

In this case, we have all linear combinations of vectors from both spaces. This is called the subspace
generated by U and V . It is the smallest subspace containing U ∪ V , which itself is not necessarily a
subspace.

Note that V ⊕W and V + W are subspaces, but V ∪W is not. These three spaces are not the
same, in fact V ⊕W is never equal to V +W (though there may be a nice function between the two.

Example 3.7. We note some common exmples of vector spaces generated by other spaces:

� The vector space generated by V and any of its subspaces W is the original space: V +W = V

� The vector space generated by two spans is the span of the union:

span({v1,v2}) + span({w1,w2}) = span({v1,v2} ∪ {w1,w2}) = span({v1,v2,w1,w2})

See Exercise 3.3 for more details on why the union of two vector spaces V ∪W is not the same as +.

The reason we are talking about vector spaces is that the matrix product Ax from the matrix
equation Ax = b, over all possibilities x, describes a vector space. This space has a particular name.

Definition 3.8. For an m × n matrix A, the column space of A, denoted C(A) or col(A), is the set
of all vectors v ∈ Rm that are linear combinations of the columns of A. That is, it consists of the
vectors

v = c1

a11
...

am1

+ c2

a12
...

am2

+ · · ·+ cn

a1n
...

amn

 ,
for ci ∈ R for all i. Since this is a linear combination of vectors, col(A) is a subspace of Rm.

In other words, the equation Ax = b has a solution if and only if b ∈ col(A). Note that ∈ col(A)
always.
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Example 3.9. Consider the following matrices:

I =

[
1 0
0 1

]
A =

1 2 3
2 4 6
3 6 9


The column space col(I) is all of R2, since any vector (a, b) ∈ R2 can be described as a [ 1

0 ] + b [ 0
1 ],

which is a linear combination of the columns of I. The column space of A is all multiples of the vector[
1
2
3

]
, since the second and third rows are multiples of the first row.

3.2 The nullspace of a matrix

Definition 3.10. For an m × n matrix A, the nullspace of A is the set of all vectors x ∈ Rn with
Ax = 0. It is denoted N(A) or null(A).

The nullspace is a vector space, but it is not always a subspace of the column space. Indeed, the
nullspace lives inside Rn, but the column space lives in Rm. When m = n, the n-dimensional 0 vector
is always in the intersection of the two spaces. This is not saying much, however, as the interection of
any two vector spaces contains at least the zero vector.

Example 3.11. The nullspace of the matrix A =
[

2 −1
4 −2

]
consists of the vectors in x ∈ R2 for which

Ax = 0. By elimination, we see the second line is a multiple of the first, so the nullspace is all pairs
(x1, x2) for which 2x1 − x2 = 0, or x1 = x2/2. Choosing x2 = 1 (though we could choose any other
value) we get x1 = 1/2, so the nullspace is all multiples of the vector (1/2, 1).

The choice (1/2, 1) was a special solution, but there are many other solutions.

Remark 3.12. Elimination on a matrix does not change its nullspace. We can see this by considering
the original equation Ax = 0 and the elminiated equation EAx = 0. Since E is an elmentary matrix,
it has an inverse, so Ax = E−10 = 0. Hence x satisfies the first equation iff it satisfies the second
equation.

To compute the nullspace in general, we do Gaussian and Gauss-Jordan elmination, and end up
with 1 on the diagonal.

Example 3.13. Compute the nullspace of the matrix A =
[ 2 −2 2 4 8

1 5 −3 0 1
3 3 −1 −5 6

]
. We begin with Gaussian

elmination to get zeros below the first pivot:

`21 =
1

2
, `31 =

3

2
:

2 −2 2 4 8
0 6 −4 −2 −3
0 6 −4 −11 −6

 .
We continue to get a zero below the second pivot:

`32 = 1 :

2 −2 2 4 8
0 6 −4 −2 −3
0 0 0 −9 −3

 .
The third pivot is −9. Now we move upward and clear the entries above the third pivot:2 −2 2 0 20/3

0 6 −4 0 −7/3
0 0 0 −9 −3

 .
Next, get a zero above the second pivot:2 0 2/3 0 53/9

0 6 −4 0 −7/3
0 0 0 −9 −3

 .
20



Finally, multiply through by the pivot reciprocals to get pivots that are 1:1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3

 .
This is called the reduced row echelon form, or RREF , of A. We continue solving for the nullspace
after the following definitions.

Definition 3.14. In the example above, the columns 1,2,4 are the pivot columns and 3,5 are the free
columns. The variables x1, x2, x4 are the pivot variables and x3, x5 are the free variables.

The nullspace null(A) from Example 3.13 is defined as a linear combination of as many vectors as
there are free columns. Each free column gives a nonzero x that will be in the nullspace, by setting
that free variable to 1, all other free variables to 0, and choosing the earlier pivot variables to be the
negative entries in those rows:

1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3



−1/3
2/3
1
0
0


︸ ︷︷ ︸

s

=

0
0
0

 ,
1 0 1/3 0 53/18

0 1 −2/3 0 −7/18
0 0 0 1 1/3



−53/18

7/18
0
−1/3

1


︸ ︷︷ ︸

r

=

0
0
0

 .

The two vectors s, r are the special solutions for the nullspace of A. Hence the nullspace is

null(A) = {as + br : a, b ∈ R} =

a

−1/3
2/3
1
0
0

+ b


−53/18

7/18
0
−1/3

1

 : a, b ∈ R

 ,

so for example, something like 
−108

18
6
−13
36

 = 6


−1/3
2/3
1
0
0

+ 36


−53/18

7/18
0
−1/3

1


is in the nullspace.

Remark 3.15. Note that the pivot columns create an identity matrix in RREF of A, as do the free
variable rows in the special solutions.

If a square matrix has full rank, its nullspace contains only the zero vector.

3.3 Exercises

Exercise 3.1. Check that the subspace W ⊆ V from in the fourth example in Example 3.2 satisfies
the conditions of being a vector space from Definition 3.1.

Exercise 3.2. Let V = span({u,v,w}) and W = span({u + v,v + w}). Show that W ⊆ V .

Exercise 3.3. Consider the following vector spaces:

V = span


1

1
0

 ,
0

1
1

 , W = span


1

0
1

 ,
 0
−1
0

 .

21



1. Show that R3 is a subspace of V +W by describing an arbitrary vector (x, y, z) ∈ R3 as a linear
combination of the elements of V and W .

2. Show that V ∪W 6= V +W by finding a vector in V +W that is not in V ∪W .

Exercise 3.4. Create a matrix with no zero columns that has:

1. size 3×3 and column space the xy-plane (that is, all linear combinations of (1, 0, 0) and (0, 1, 0))

2. size 3× 4 and column space the xy-plane

3. size 2×2, column space all of R2, and no zero entries. Describe [ 1
0 ] and [ 0

1 ] as linear combinations
of the columns.

Exercise 3.5. Let I be the 2 × 2 identity matrix. For each of the following matrices, bring it to
RREF and drescribe its nullspace as a span of vectors.

A =
[
I I

]
B =

[
I I
0 I

]
C =

[
I I
I I

]
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Lecture 4: Completely solving Ax = b

Previously we saw how to solve Ax = 0, by doing elimination until we get an upper triangular matrix
Rx = 0, whose solutions x are the same solutions that solve the first equation.

4.1 Rank and the particular solution

We begin with the example from the previous lecture,

A =

2 −2 2 4 8
1 5 −3 0 1
3 3 −1 −5 6

 , R =

1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3

 , EA = R

for some product of elimination matrices E. The columns 1,2,4 are the pivot columns and the columns
3,5 are the free columns (this is true for both R and A). It is immediate that columns 1,2,4 of R can
not be written one as a linear combination of the others - that is, these three columns are linearly
independent . Again, this is true for both R and A.

Definition 4.1. The rank of a matrix A is the number of pivots of A, and is denoted rank(A).

The rank can also be though of as the number of columns in A that are not linear combinations of
the others. Reducing the matrix A to RREF reveals which columns are combinations of others. Since
only row operations were performed, any linear (in)dependence among the columns is preserved.

Example 4.2. When a matrix has rank 1, all the columns are multiples of the first one. For example,

A =

1 2 3
1 2 3
1 2 3


has rank one, and its column space is all the multiples of (1, 1, 1). To find its nullspace, we first get

its RREF, which is
[

1 2 3
0 0 0
0 0 0

]
, which has special solutions1 2 3

0 0 0
0 0 0

−2
1
0

 =

0
0
0

 ,
1 2 3

0 0 0
0 0 0

−3
0
1

 =

0
0
0

 ,
hence its nullspace is the span of

[−2
1
0

]
and

[−3
0
1

]
.

Remark 4.3. A rank 1 square n× n matrix may be expressed as a product of a n× 1 vector with a
1× n vector, since all the columns are multiples of the first column. For example,

A =

1 2 3
1 2 3
1 2 3

 =

1
1
1

 [1 2 3
]

= vwT .

Example 4.4. The identity matrix I has full rank. The zero matrix 0 has rank 0.

Definition 4.5. The number of special solutions to Ax = 0 is called the nullity of A.

The nullity is the number of free columns of A, and the smallest number of vectors used to define
null(A) as a span. If A ∈Mm×n, then we have a very powerful equation, which we will see later:

rank(A) + nullity(A) = n.

This is called the rank-nullity theorem.
So far we have constructed all solutions to the matrix equation Ax = 0. Now we do the same for

the equation Ax = b, where b 6= 0.

23



Example 4.6. Recall Example 3.13 from the previous lecture, which we revisited at the beginning
of this lecture. Instead of Ax = 0, we consider Ax = b, which, after elimination, becomes Rx = d =
[d1 d2 d3]T . The vector x = 0 is not a solution anymore, but we can find a quick solution by setting
the variables corresponding to the free columns equal to 0:

1 0 1/3 0 53/18
0 1 −2/3 0 −7/18
0 0 0 1 1/3



x1

x2

0
x4

0

 =

d1

d2

d3

 , or
x1 = d1,
x2 = d2,
x3 = d3.

This is called a particular solution to Ax = b. This particular solution solution x = [d1 d2 0 d3 0] will
also solve Ax = b, because if A = ER, for some elimination matrix E, then d = Eb.

Remark 4.7. What we have done so far can be summarized as follows:

� The special solutions x = s, r solve Ax = 0

� The particular solution x = p solves Ax = b

Finally, we get the complete solution to the system Ax = b is the sum of the particular and special
solutions. That is, x = p + x3s + x5r solves the system, for any x3, x5 ∈ R, because

A(p + x3s + x5r) = Ap + x3As + x5Ar = b + x3 · 0 + x5 · 0 = b.

The suggested approach is to first find the special solution by doing elimination on the augmented
matrix [A b] to get the matrix [R d]. Then the particular solution is immediate from d, and the
special solutions can be found by solving Rs = 0, where s among all free variables has a single 1 (all
others are 0).

Example 4.8. Consider the matrix equation

[
4 −8 2
−10 12 1

]x1

x2

x3

 =

[
6
−16

]
RREF−−−−−→

[
1 0 −1
0 1 −3/4

]x1

x2

x3

 =

[
7/4
1/8

]
.

The complete solution to this equation is

x =

7/4
1/8
0

+ x3

 1
3/4
1

 ,

for any x3 ∈ R. This equation represents two planes intersecting in space, the particular solution is a
point on the line of intersecton, and the special solution is a vector in the direction of the line. The
line is the nullspace.
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4.2 Different types of complete solutions

Now we consider the implications for the complete solution given the rank of the matrix.

Definition 4.9. Let A ∈Mm×n.

� If m > n and A has n pivots, then A has full column rank .

� If m 6 n and A has m pivots, then A has full row rank .

� If m = n and A has n pivots, then A has full rank .

If A ∈ Mm×n has full column rank, then in row reduced echelon form it looks like the block matrix[
I
0

]
, where I is of size n× n and the zero matrix 0 has size (m− n)× n. Then:

• all columns of A are pivot columns,

• there are no free variables, so there are no special solutions,

• the nullspace contains only the zero vector null(A) = {0},
• if Ax = b has a solution, there is one unique solution.



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



Example 4.10. The equation Ax = b with A an m × 3 matrix with full column rank represents m
planes intersecting in space. If the planes all intersect in one point, there is a solution to this equation.

If A ∈Mm×n has full row rank, then in row reduced echelon form it looks like the block matrix [I 0],
where I is of size m×m and the zero matrix 0 has size m× (n−m). Then:

• all rows of A have pivots, so there are no zero rows,

• there are n−m special solutions,

• the column space is all of Rm,

• Ax = b has a solution for any vector b


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



Remark 4.11. We can summarize every matrix A ∈Mm×n as one of the following four situations.

� rank(A) = m, rank(A) = n: Then A is square and invertible, and Ax = b has exactly 1 solution.

� rank(A) = m, rank(A) < n: Then A is wider than it is taller, and Ax = b has infinitely many
solutions.

� rank(A) < m, rank(A) = n: Then A is taller than it is wider, and Ax = b has 0 or 1 solution.

� rank(A) < m and rank(A) < n: Then A can have any shape, but it is not full rank, and Ax = b
has either 0 or infintely many solutions.

4.3 Exercises

Exercise 4.1. Consider the two vectors v = [a a a a]T and w = [1 1 1 1]T . What will be the rank of
the 4× 4 matrix vwT ? Your answer should depend on a.

Exercise 4.2. Find the complete solution to Ax = b, for

A =

[
3 0 −9 −3 0
6 0 −21 0 2

]
, x =


x1

x2

x3

x4

x5

 , b =

[
9
−1

]
.
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Exercise 4.3. Suppose you know that the solution to a matrix equation Ax = b, where A ∈ M2×3,
is the vector

x =

 7
4
−2

+ x2

−3
1
0

 ,
for any x2 ∈ R. Construct one possible matrix A and vector b for which this could be the solution.

Exercise 4.4. For the following matrices A,B, find the ranks of ATA, AAT , BTA, BBT :

A =

[
2 0 3
−1 1 3

]
, B =


−1 3
9 0
7 0
−3 1

 .
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Lecture 5: Independence, basis, dimension

We have now arrived at the next big theme of this course: dimension.

5.1 Linear independence

Recall that the rank of a matrix was the number of pivots the matrix had. Another way to describe
the rank is to use linear independence of the columns.

Definition 5.1. Let {v1,v2, . . . ,vk} ⊆ Rn be the columns of a matrix A ∈Mn×k. These vectors are
linearly independent if

� the only solution to Ax = 0 is x = 0, or equivalently, if

� x1v1 + x2v2 + · · ·+ xkvk = 0 implies xi = 0 for all i.

If a set of vectors is not linearly independent, then the set is linearly dependent . Every set of
vectors is either linearly independent or linearly dependent. We often say “the vectors are linearly
independent” instead of “the set of vectors is linearly independet”, but both are correct uses of the
term.

Example 5.2. The vectors [ 1
1 ] and [ 2

2 ] are linearly dependent, because [ 1 2
1 2 ]

[−2
1

]
= [ 0

0 ]. The vectors
[ 1

1 ] and [ 2
2.1 ] are linearly independent, because attempting to solve Ax = 0 will lead to x = 0.

Another equivalent way of saying that the vectors in the columns of A are linearly independent is
to say that (A) 6= {0}. This is equivalent to the first definition given in Definition 5.1.

Remark 5.3. If there are more than 3 vectors in a collection of vectors from R3, the set must be
linearly dependent. This follows from the fact that a 3×4 matrix A can have rank at most 3, so there
will be at least one special solution Ax = 0.

Recall the span of a collection of vectors from Example 3.5, and the columns of a matrix spanning
its column space, as well as the vectors from special solutions spanning the nullspace.

Definition 5.4. Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . The set S spans V if V =
span(S). Then S is called a spanning set of V . If for every other spanning set S′ of V , the size of S
is less than or equal to the size of S′. then S is called a minimal spanning set .

Example 5.5.

� The vector space R3 is spanned by the vectors
[

1
0
0

]
,
[

0
1
1

]
,
[

0
0
1

]
.

� The column space of a matrix is spanned by its columns. We can also talk about the row space
of a matrix A, which is defined simply as the column space of the matrix AT , and written
row(A) = col(AT ).

The idea of a minimal spanning set from Definition 5.4 can be made more precise with the idea of
linear independence from Definition 5.1.

Definition 5.6. Let V be a vector space and S = {v1, . . . ,vk} ⊆ V . The set S is a basis for V if S
spans V and V is linearly independent.

Example 5.7. The standard basis for R3 consists of the vectors
[

1
0
0

]
,
[

0
1
1

]
,
[

0
0
1

]
. In general, the

standard basis for Rn consists of the n vectors that have zeros everywhere except in position i, for
each i = 1, . . . , n. These vectors are often denoted e1, . . . , en.

The standard basis is not the only basis for Rn, and every n×n matrix will full rank has columns
that give a basis for Rn. We end this part with an example of how to directly relate a basis with a
span.
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Example 5.8. Consider the following vectors in R4. We know they span a subpsace of R4, because
the span of any vectors is a vector space, but what is this space? In other words, what is a basis for
the space that there four vectors span?

u =


3
2
7
1

 v =


1
−1
2
3

 w =


5
5
12
5


The first approach is to make them rows of a matrix and do Gaussian elimination. That will give us
zero rows, which will correspond to linearly dependent vectors.3 2 7 1

1 −1 2 3
5 5 12 5

 −→

3 2 7 1
0 −5/3 −1/3 8/3
0 0 0 0


We see immediately that there are two pivots, so the first two rows (vectors u, v) are linerarly
independent. That is, u and v form a basis for span{u,v,w}. The second approach is to make
them columns of a matrix and do Gaussian elimination. That will give us free columns, which will
correspond to linearly dependent vectors.

3 1 5
2 −1 5
7 2 12
1 3 5

 −→


3 1 5
0 −5/3 13/3
0 0 0
0 0 0


Note that the non-free (pivot) columns indicate which of the original columns are basis vectors. We
have reached the same conclusion as in the first approach.

5.2 Change of basis and dimension

The word basis is another name for minimal spanning set . It is often difficult to consider all possible
spanning sets, so we use the basis definition more often. We now observe three key conclusions:

� bases are not unique

� every basis of a vector space must have the same number of vectors

� defining a vector space is equivalent to defining a basis for that vector space

The last conclusion comes from the fact that a basis B spans V , that is, span(B) = V .

Remark 5.9. Given a basis for a vector space V , every vector in V can be expressed as a linear
combination of of vectors of that basis. For some vector space it is very obvious: 4

−2
8

 = 4

1
0
0

− 2

0
1
0

+ 8

0
0
1

 .
However, if we have a different basis, how can we figure out what the linear combination is in the
other basis? This is where the change of basis matrix appears. Suppose that B and B′ are bases for
V , with

B = {v1, . . . ,vk}, B′ = {w1, . . . ,wk}, v ∈ V.

The coefficients for expressing v in the basis B are in the solution vector x to [v1 · · · vk]x = v.
Similarly, the coefficients for expressing v in the basis B′ are in the solution vector y to [w1 · · · wk]y =
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v. These two vectors are related by the equation | |
a1 · · · ak
| |


︸ ︷︷ ︸

change of basis matrix

x = y, where

 | |
v1 · · · vk
| |

ai = wi.

Definition 5.10. Let V be a vector space. The dimension of V is the number of vectors in any basis
of V . It is denoted dim(V ).

This assumes a very important point: all vector spaces have a basis. The proof of this statement relies
on something called the “axiom of choice”, which is a foundational assumption of mathematics that
has not been proved. The axiom of choice says that given an infinite collection of sets, you may take
a single element from every set.

Example 5.11. We have already seen dimension, but under different names.

� The dimension of Rn is n

� The dimension of the column space of A is the rank of A

The dimension of the nullspace has a particular name, we call it the nullity ofA, and write dim(null(A)) =
nullity(A).

Recall the definition of U ⊕ V and U + V from Definiton 3.6. There we saw that if U = span(B)
and V = span(B′), then U + V = span(B ∪B′). A similar statement holds for dimension.

Remark 5.12. Let V be a vector space with subspaces U,W .

� The intersection U ∩W is a subspace of V

� The sum + of vector spaces satisfies dim(U +W ) = dim(U) + dim(W )− dim(U ∩W )

� The sum ⊕ of vector spaces satisfies dim(U ⊕W ) = dim(U) + dim(W )

The third statement does not need that U,W be subspaces of the same space. Statements like this do
not exist for the union of vector spaces spaces, because that is not necessarily a vector space.

Remark 5.13. Let V be a vector space and U ⊆ V . If dim(U) = dim(V ), then U = V . This follows
by taking the basis u1, . . . , un of U , and asking if there are any vectors in V which cannot be expressed
as linear combinations of the ui. If no, then the spaces are the same. If there exists some v, then
u1, . . . ,un,v is a linearly independent set of n+ 1 vectors in V , which is impossible.

Definition 5.14. Let V be a vector space with dim(V ) = n, and U ⊆ V a subspace of dimension
dim(U) = k. The codimension of U in V is codim(U) = n− k.

For example, lines are codimension 1 in R2, but codimension 2 in R3. The set of points in Rn

that satisfy one linear equation (that goes through the origin) is codimension 1.

Example 5.15. The space of n × n matrices has dimension n2. It has as a subspace the space of
n×n upper triangular matrices, which has dimension n(n+ 1)/2. For n = 2, a basis for each of these
spaces is [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
in the first case, and [

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
in the second case.
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5.3 Exercises

Exercise 5.1. Find two different sets of linearly independent vectors from the vectors1
0
1

 ,
0

1
0

 ,
2

0
1

 ,
2

0
2

 ,
3

0
2

 .
Exercise 5.2. For a 2× 2 matrix, linear independence on the columns only depends on if one column
is a multiple of the other.

(a)./ Generate 10 000 random 2 × 2 matrices, with real number entries in the range [−5, 5]. How
many have column space dimension 1?

(b)./ Repeat the same as in part (a), but use integer entries in the range [−5, 5]. How many have
column space dimension 1? Bonus: How many would you expect to have dimension 1?

Exercise 5.3. Consider the basis B for R3 and a vector v,

B =


1

2
3

 ,
−1

1
−1

 ,
3

0
6

 , v =

−3
−1
5

 .
Express v in terms of B.

Exercise 5.4. Consider the plane P = {(x, y, z) ∈ R3 : 2x − 4y − 5z = 0}, which is a subspace of
R3. What is its basis?

Exercise 5.5. Find the change of basis matrix from
{

[ 3
2 ] ,
[−1

1

]}
to
{[−2

3

]
, [ 0

5 ]
}

.

Exercise 5.6. Prove the claims from Remark 5.12.
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Lecture 6: The rank-nullity theorem

With this lecture we will finish constructing the row / column / null spaces, and move on to doing
something with these spaces.

6.1 Looking ahead

Before we do that, we take a quick look ahead and cover some topics necessary for your machine
learning course.

6.1.1 Planes and hyperplanes

In Rn, a hyperplane is H = {v ∈ Rn : aTv = [a1 a2 · · · an]v = a0, ai ∈ R}, or all the vectors in
Rn that satisfy a single linear equation. If a0 = 0, it goes through the origin and has the same vector
operations as Rn, so is a subspace. If a0 6= 0, it is still called an (affine) subspace, and every vector in
it may be expressed as

v = a + v′.

Vector addition and scalar multiplication are defined by, for v = a + v′ and w = a + w′, and c ∈ R:

� v + w = a + (v′ + w′)

� cv = a + cv′

6.1.2 Partial derivatives

We have seen functions f : R → R, such as f(x) = x2, but there are functions f : R3 → R, such as
f(x) = x2

1 − 2x2 + x2x
3
3. The partial derivative of f with respect to xi is

∂f

∂x1
∂f

∂x2
∂f

∂x2

 =

 2x1

2 + x3
3

3x2x
2
3

 ,

where in each case f is considered as a function of a single variable, and the other variables are treated
as constants. IN the case of a single variable function, the derivative at a point was the slope of the
function at that point. In functions of multiple variables, such as the f above, the vector above is the
gradient of f , or the vector of partial derivatives.

6.1.3 Projections

Let v ∈ Rn. The vector v can be projected onto:

� another vector w ∈ Rn, resulting in projw(v) = wTv
wTw

w

� a hyperplane U ⊆ Rn

� any subspace V ⊆ Rn, resulting in projV (v) = A(ATA)−1ATv, where the columns of A are
linearly independent basis vectors of V

The simplest projections are onto the individual axes or planes in 3 dimensional space. For example,
the projecion onto the xy-plane is:

projxy-plane

([
a
b
c

])
=

[
a
b

]
=

1 0
0 1
0 0

[1 0 0
0 1 0

]1 0
0 1
0 0

−1 [
1 0 0
0 1 0

]ab
c

 .
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6.2 The four fundamental spaces

Given a matrix A ∈Mm×n and what results after applying row operations R ∈Mm×n, we have seen
three related vector spaces:

� the column space col(A) 6= col(R), which is the span of the columns

� the null space null(A) = null(R), which is the span of the special solutions to Ax = 0 or Rx = 0

� the row space row(A) = row(R), which is the span of the rows

Note that row(AT ) = col(A) and col(AT ) = row(A). So what is null(AT )?

Definition 6.1. Let A ∈Mm×n. The left nullspace of A is the nullspace of AT .

These four vector spaces, called the four fundamental subspaces, come together in very nice ways,
which we now discuss. Let A ∈Mm×n:

1. there are subspace relations:

� col(A) ⊆ Rm and null(AT ) ⊆ Rm are subspaces

� col(AT ) ⊆ Rn and null(A) ⊆ Rn are subspaces

2. there are dimension relations:

� dim(col(A)) = dim(col(AT )) = rank(A) = rank(AT )

� dim(col(A)) + dim(null(AT )) = m

� dim(col(AT )) + dim(null(A)) = n

The last statement is called the rank-nullity theorem. We now look at more relations among these
vector spaces.

Remark 6.2. Vectors in the column space of A are perpendicular to vectors in the left nullspace. For
example, consider the matrix

A =

[
1 2 3
2 4 6

]
, col(A) = span

{[
1
2

]
,

[
2
4

]
,

[
3
6

]}
= span

{[
1
2

]}
.

The left nullspace is

null(AT ) = null

1 2
2 4
3 6

 = null

1 2
0 0
0 0

 = span

{[
−2
1

]}
.

Taking the dot product of the basis vectors, we find

[
1 2

] [−2
1

]
= −2 + 2 = 0,

and so every vector in col(A) is perpendicular to every vector in null(AT ).

Example 6.3. For a practical application of these spaces, consider the following two matrices, both
representations of the directed graph below. In A, the rows correspond to edges, and the columns
correspond to vertices: each row has a −1 for the vertex where the edge starts and a 1 for the vertex
where the edge ends. In B, entry Bij is 1 if there is a directed edge from vi to vj , and 0 otherwise.

A =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 B =


0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0


v1

v2 v3

v4

e2

e3

e5

e1

e4
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Bringing the matrix AT to row reduced echelon form gives informsation about the row space of A and
the left nullspace of A. The linearly independent rows of A are the rows corresponding to the edges
e2, e2, e4, and these edges form a spanning tree of the graph. The dependent row 3, corresponding
to edge e3, is dependent because adding it would create a cycle in the graph (among v1, v2, v3), and
cycles contain redundant information, so we want to get rid of cycles. Similarly we get a cycle if we
add row 5, corresponding to edge e5, because then we have a cycle of four edges.

6.3 Exercises

Exercise 6.1. Find a basis for the column space, nullspace, row space, and left nullspace of

A =


0 1 a a a a
0 0 1 b b b
0 0 0 1 c c
0 0 0 0 0 0

 ,
for a, b, c ∈ R. Be sure to consider situations when each of a, b, c are zero and when they are not.
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Lecture 7: Orthogonality

The vector space pairs column space / nullspace and row space / left nullspace are special because
of the relationship of each element of the pair to the other. In this lecture we will generalize this
relationship.

7.1 Orthogonal spaces

Recall from Lecture 1 that two vectors u,v ∈ Rn are orthogonal if uTv = 0. Note that in this case
we have something that looks like the Pythagorean theorem:

‖u + v‖2 = (u + v) · (u + v) = u · u + 2 u · v︸︷︷︸
0

+v · v = ‖u‖2 + ‖v‖2.

If u,v are orthogonal and both have length 1, then they are called orthonormal

Definition 7.1. Two subspaces U, V ⊆ Rn are orthogonal if every pair of vectors u ∈ U,v ∈ V is
orthogonal.

Example 7.2. For A ∈Mm×n, the nullspace null(A) and the row space row(A) are orthognal to each
other. Recall that x ∈ null(A) if Ax = 0. Another way of saying this is, for ri ∈ Rn a row of A, that

− r1 −
− r2 −

...
− rm −

x =


r1 · x
r2 · x

...
rm · x

 =


0
0
...
0

 ,
and since the rowspace row(A) = span({r1, . . . , rm}), we see that v ·x = 0 for any v ∈ row(A) and for
any x ∈ null(A). Applying the same observation to the transpose AT , we see that the left nullspace of
A (which the nullspace of AT ) is orthogonal to the column space of A (which is the row space of AT ).

Remark 7.3. To check that two vector spaces are orthogonal, it suffices to check that every pair of
elements u ∈ B, v ∈ B′ are orthogonal, for B a basis of U and B′ a basis for V .

We now consider orthogonality in the context of particular matrices.

Example 7.4. The matrix Rθ :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
is called the rotation matrix , since the angle between

v ∈ R2 and Rθv ∈ R2 is exactly θ. The columns of Rθ are orthogonal, as

[
cos(θ) sin(θ)

] [− sin(θ)
cos(θ)

]
= − cos(θ) sin(θ) + sin(θ) cos(θ) = 0,

for any angle θ. The columns are also orthonormal, as

[
cos(θ) sin(θ)

] [cos(θ)
sin(θ)

]
= cos2(θ) + sin2(θ) = 1,

[
− sin(θ) cos(θ)

] [− sin(θ)
cos(θ)

]
= sin2(θ) + cos2(θ) = 1.

Example 7.5. The matrix A ∈M3×6 does not have all orthogonal rows and columns, as row reduction
shows we have only two pivots, meaning the row rank = column rank is 2:

A =

1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 RREF−−−−−→

1 2 0 1 2
0 0 1 1 1
0 0 0 0 0

 , AT =


1 1 2
2 2 4
3 4 8
4 5 10
5 6 12

 RREF−−−−−→


1 0 0
0 0 0
0 1 2
0 0 0
0 0 0

 .
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That is, columns 1 and 3 of A describe the 2-dimensional column space orthogonal to the 1-dimensional
left nullspace of row 3. Analogously, columns 2,4,5 ofA describe the 3-dimensional nullspace orthogonal
to the row space of rows 1 and 2 of A:

col(A) = span


1

1
2

 ,
3

4
8

 is orthogonal to null(AT ) = span


 0
−2
1

 ,

null(A) = span




−2
1
0
0
0

 ,

−1
0
−1
1
0

 ,

−2
0
−1
0
1


 is orthogonal to row(A) = span




1
2
3
4
5

 ,


1
2
4
5
6


 .

We are left with a 2 × 2 invertible submatrix of A, hiding in the intersection of the pivot rows and
pivot columns. This submatrix is important for finding left and right inverses of non-square matrices,
and for singular value decomposition, which we will see later in the course.

A =

 1 2 3 4 5
1 2 4 5 6
2 4 8 10 12

 , Ainv =

[
1 3
1 4

]
.

7.2 Orthogonal relationships

Definition 7.6. If two subspaces U, V ⊆ Rn are orthogonal and dim(U) + dim(V ) = n, then each is
the orthogonal complement of the other in Rn. That is, U is the orthogonal complement of V , written
U = V ⊥, and V is the orthogonal complement of U , written V = U⊥.

Remark 7.7. Recall the concept of codimension from Definition 5.14. The codimension of a space is
equal to the dimension of its orthogonal complement. That is, codim(U) = dim(U⊥).

Remark 7.8. It follows that, whenever we have orthogonal complements U = V ⊥, with U, V ⊆ Rn

subspaces, then:

� U + V = Rn, or in other words,

� any x ∈ Rn can be expressed as a sum x = u + v of two elements, u ∈ U and v ∈ V .

Theorem 7.9. Let U, V be subspaces of Rn. Then

1. (U⊥)⊥ = U

2. (U + V )⊥ = U⊥ ∩ V ⊥

3. (U ∩ V )⊥ = U⊥ + V ⊥

Proof. We only prove the second point, you will prove the other points in your homework. Recall
that U + V = {u + v : u ∈ U,v ∈ V }. Take u ∈ U , v ∈ V , and x ∈ (U + V )⊥. To see that
(U + V )⊥ ⊆ U⊥ ∩ V ⊥, notice that u,v ∈ U + V , hence

u · x = 0 =⇒ x ∈ U⊥, v · x = 0 =⇒ x ∈ V ⊥,

and so x ∈ U⊥ ∩V ⊥. Since the vectors were arbitrary, we get that (U +V )⊥ ⊆ U⊥+V ⊥. To see that
U⊥ ∩ V ⊥ ⊆ (U + V )⊥, take y ∈ U⊥ ∩ V ⊥, which means that both y ∈ U⊥ and y ∈ V ⊥. Consider the
arbitrary element u + v ∈ U + V , for which

y · (u + v) = y · u + y · v = 0 + 0 = 0,

meaning that y ∈ (U+V )⊥. Again, since the vectors are arbitrary, it follows that U⊥∩V ⊥ ⊆ (U+V )⊥.
Combining these two statements, we get that (U + V )⊥ = U⊥ ∩ V ⊥.
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Example 7.10. Combining Example 7.2 and the rank-nullity theorem from Lecture 6, for A ∈Mm×n
we see that

� the nullspace and row space are orthogonal complements: null(A) = row(A)⊥

� the left nullspace and column space are orthogonal complements: null(AT ) = col(A)⊥

That is, along with Remark 7.8, any x ∈ Rn can be written as a sum x = xr + xn, where xr ∈ row(A)
and xn ∈ null(A). It follws that no row of A can be in the nullspace of A.

We finish this lecture with an observation about bases of Rn.

Remark 7.11. Recall that to be a basis of Rn, a set of vectors has to be linearly independent and
had to span Rn. It follows that:

� If a set of n vectors is linearly independent, it spans Rn.

� If n vectors span Rn, they must be linearly independent.

The second fact comes from considering an n× n matrix A whose columns span Rn, or equivalently,
where for every b ∈ Rn there is a unique solution x in Ax = b. If we argue that the columns are
linearly dependent, then there must be at least one special solution, and so infinitely many solutions
to Ax = b, but this contradicts what we originally assumed.

7.3 Exercises

Exercise 7.1. Confirm the observation from Remark 7.3. That is, let B = {u1, . . . ,uk} be a basis
for a vector space U ⊆ Rn, and let B′ = {v1, . . . ,v`} be a basis for a vector space V ⊆ Rn. If you
know that ui · vj = 0 for all i, j, check that u · v = 0 for arbitrary elements u ∈ U and v ∈ V .

Exercise 7.2. Check that the claim about the angle between v and Rθv from Example 7.4 is indeed
true.

Exercise 7.3. Let A ∈ Mm×n. Show that there is a bijective function f : row(A) → col(A). Hint:
use orthogonality and the decomposition of vectors described in Remark 7.10.
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Part II

Operations

Lecture 8: Projections and least squares

Now begins a new part of this course, in which we apply the knowledge about the objects we have
learned so far, and put the objects into functions to see their relationships.

8.1 Projecting onto lines and spaces

Projecting a vector v onto some other vector or onto a plane will produce a new vector that points
along the other vector (in the first case) or lies in the plane (in the second case). Projections of a
vector v can be understood in (at least) two ways:

1. the projection of v is the part of v that lies on the subspace to which you are projecting

2. the projection of v produces another vector v′, so projecting is simply multiplying by a matrix:
Av = v′

Both of these approaches are correct.

Example 8.1. Projecting v ∈ R3 onto the y-axis is multiplying v by
[

0 0 0
0 1 0
0 0 0

]
. Projecting v onto the

xy-plane is multiplying v by
[

1 0 0
0 1 0
0 0 0

]
.

In general, projecting a vector u onto a vector v uses the formula for the angle between them,
from Proposition 1.9. Given two such arbitrary vectors, we want to compute the vector p, which goes
in the direction of v, and is one side of a right triangle with u as hypotenuse.

u

v

p
θ

cos(θ) =
u · v
‖u‖‖v‖

=
adjacent

hypotenuse

Since the hypotenuse has length ‖u‖, the adjacent, which is p, must have length u·v
‖v‖ . The vector v

may not have unit magnitude, but the vector v
‖v‖ does, and it goes in the same direction as v. Hence

p may be expressed as
u · v
‖v‖

v

‖v‖
=

u · v
‖v‖2

v =
u · v
v · v

v. (2)

Definition 8.2. The projection of u onto v is the vector projv(u) = u·v
v·vv. The difference u− projvu

is called the error vector .

Example 8.3. We note two trivial examples of projections.

� Projecting u onto a line which is orthogonal to u gives the zero vector. This makes sense,
because u · v = 0 for all v in this line. In this case the error vector is equal to u.

� Projecting u onto the line on which u already lies gives back u. This also makes sense, because
the line is all vectors cu, for c ∈ R, and for v = cu, the expression u·v

v·v becomes 1
c , and 1

cv = u.
In this case the error vector is the zero vector.
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Considering the dot product as multiplication of matrices, Equation (2) becomes

uTv

v · v
v =

vTu

v · v
v = v

vTu

v · v
=

vvTu

v · v
=

1

v · v
vvT︸ ︷︷ ︸
P

u. (3)

The matrix P is the rank one projection matrix . The idea for it being rank one is that the projection
goes to a 1-dimensional subspace, a line.

Remark 8.4. The error vector e = u− p from Definition 8.2 is also a type of projection, but onto a
different vector, one that is orthogonal to v and p.

u

v

w

p

e

To get a matrix for the projection of u onto w, we want the result to be e = u − p. Since p = Pu,
we quickly see that e = (I − P )u. Hence the projection matrix is I − P .

Next we consider the more general situation of projection a vector onto a subspace. Since all vector
spaces have a spanning set, we consider a subspace to be a span of vectors. Combining these vectors
as columns of a matrix, we get the column space.

Definition 8.5. Let V = span{v1,v2, . . . ,vk} ⊆ Rn, and let A be the matrix with these vectors as
its columns. For any u ∈ Rn, the projection of u onto V is the vector

projV (u) = A(ATA)−1AT︸ ︷︷ ︸
P

u.

We assume the vi are linearly independent, as otherwise ATA does not have an inverse. If the vi are
not independent, remove the vectors that depend on others (this does not change the span).

The motivation for this expression is slightly more tedious, and comes from observing that for
p = Ax the projection (for some appropriate x), the vector u−Ax is orthogonal to the column space
of A.

Remark 8.6. Since V ⊥ is the orthogonal complement of V , by Remark 7.8, every u ∈ Rn can be
expressed as u = v + v′, where v ∈ V and v′ ∈ V ⊥. Since matrix multiplication is linear, and using
the trivial projections from Example 8.3, it follows that

projV (u) = projV (v + v′) = projV (v) + projV (v′) = v + 0 = v,

projV ⊥(u) = projV ⊥(v + v′) = projV ⊥(v) + projV ⊥(v′) = 0 + v′ = v′,

and so we always have v = projV (v) + projV ⊥(v) for any v ∈ Rn. This gives a matrix for projecting
onto the orthogonal complement, as

projV ⊥(u) = u− projV (u) = u−A(ATA)−1ATu = (I −A(ATA)−1AT )︸ ︷︷ ︸
P

u.
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8.2 Least squares

One of the main applications of projections is finding the the closest solution to a linear system that
has no exact solution

Example 8.7. Asking for a line y = ax+ b that goes through the three points (1, 4), (7, 1), (5, 3) is
impossible, because the points are not colinear. This is equivalent to asking for a solution to three
equations, or to a linear system.

R

R

4 = a+ b
1 = 7a+ b
3 = 5a+ b

1 1
7 1
5 1

[a
b

]
=

4
1
3



There is no solution to this matrix equation, because [4 1 3] is not in the column space of the matrix
on the left. However, we still want to find a line that is “as close as possible”, and projections help us
do that.

Remark 8.8. Above we had a matrix equation Ax = b for which b 6∈ col(A). However, we can
project b onto col(A), which will guarantee a solution. That is, we can always write b = p + e, where
p ∈ col(A) and e is orthogonal to col(A).

Definition 8.9. Let A ∈ Mm×n and b ∈ Rm, with b = p + e and p ∈ col(A). The least squares
solution to Ax = b is a vector x̂ that, equivalently,

� makes the distance between Ax and b as small as possible

� makes the number ‖Ax− b‖ as small as possible

� makes the number ‖Ax− b‖2 as small as possible

The reason for using the square of the length is to not have square roots, which are hard to deal with.
The last two statements are equivalent because a < b iff a2 < b2 for a, b nonnegative.

The first approach to finding the least squares solution is to use calculus, because that is how to
find the minimum of a quadratic function.

Example 8.10. Using the equation Ax = b fom Example 8.7, we have

‖Ax− b‖2 =

wwwwww
1 1

7 1
5 1

[a
b

]
−

4
1
3

wwwwww =

wwwwww
 a+ b

7a+ b
5a+ b

−
4

1
3

wwwwww =

wwwwww
 a+ b− 4

7a+ b− 1
5a+ b− 3

wwwwww ,
which simplifies to

M(a, b) = (a+ b− 4)2 + (7a+ b− 1)2 + (5a+ b− 3)2. (4)

To find its minimum, we take the derivative. Since this is a function in two variables, we have two
derivatives to take.

∂M

∂a
= 2(a+ b− 4) + 2(7a+ b− 1)(7) + 2(5a+ b− 3)(5) = 150a+ 26b− 52

∂M

∂b
= 2(a+ b− 4) + 2(7a+ b− 1) + 2(5a+ b− 3) = 26a+ 6b− 16

Having these derivatives be zero produces a new matrix equation to solve:[
150 26
26 6

] [
a
b

]
=

[
52
16

]
:

[
150 26 52
26 6 16

]
RREF−−−−−→

[
1 0 −13

28
0 1 131

28

]
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We now see the line y = −13
28x+ 131

28 is the best approximation:

R

R

zoom in−−−−−−→

R

R

(5, 3)

y = ax+ b

The vertical distances from the points to the line have been minimized. Indeed, for example with
(5, 3), minimizing the vertical distance between it and the line y = ax+ b means making the value

‖(5, 5a+ b)− (5, 3)‖2 = ‖(5− 5, 5a+ b− 3)‖2 = (5− 5)2 + (5a+ b− 3)2 = (5a+ b− 3)2,

which is exactly the third term in M(a, b) from Equation (4).

Remark 8.11. The “distance” from a point to the line can be throught of as the shortest length - not
always the vertical distance. This is sometimes called the perpendicular distance, and will be solved
by the method presented later in Lecture 17.

8.3 Exercises

Exercise 8.1. Show that projecting twice onto a line is the same as projecting once. That is, if P is
the projection matrix from Equation (3), show that P 2 = P .

Exercise 8.2. Let v = (1, 1, 1) ∈ R3.

1../ Take random vectors in the unit square in R3, and plot the average error, up until 1000 vectors,
when projecting to v.

2. What does this number converge to?

3. Bonus: Prove this limit.

Exercise 8.3. Find the projection of v = (−3,−1, 6) onto the plane 3x+ 4y− 9z = 0 and its normal
vector.

Exercise 8.4. Let A ∈Mm×n. Show that A and ATA have the same nullspace.

Exercise 8.5. Using the setup from Example 8.7, finished in Example 8.10, to come to the same
conclusion (that is, the same best fit linear equation), but use the projection matrix instead of partial
derivatives.
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Lecture 9: The Gram–Schmidt process

In this lecture we finish up the idea of least squares from Lecture 8, by improving it with polynomial
solutions, instead of just linear solutions.

9.1 Least squares for polynomials

Recall Example 8.7 from Lecture 8, which asked for a line of best fit to three points. The equation
of a line is y = ax + b, and we found the appropriate a and b. What if we wanted to be more
accurate, and find a quadratic function that goes through these three points? Quadratics have the
form y = ax2 + bx+ c.

Example 9.1. Three points always have a unique quadratic going through them (which can be found
by back-substitution), so we add another point (8, 2) for increased difficulty.

R

R

4 = a+ b+ c
1 = 49a+ 7b+ c
3 = 25a+ 5b+ c
2 = 64a+ 8b+ c


1 1 1
49 7 1
25 5 1
64 8 1


︸ ︷︷ ︸

A

ab
c


︸︷︷︸
x

=


4
1
3
2


︸︷︷︸
b

The process then is very similar, except we have three variables:

M(a, b, c) = ‖Ax− b‖2 = (a+ b+c−4)2 +(49a+7b+c−1)2 +(25a+5b+c−3)2 +(64a+8b+c−2)2.

Taking the derivative in all three variables gives

∂M

∂a
= 14246a+ 1962b+ 278c− 512,

∂M

∂b
= 1962a+ 278b+ 42c− 84,

∂M

∂c
= 278a+ 42b+ 8c− 20,

which, when placed into a system, leads to the solutions a = 1
372 , b = −241

620 , c = 2068
465 , as shown in the

plot above.

Definition 9.2. Let v1 = (x1, y1), . . . ,vn = (xn, yn) ∈ R2. The degree-k polynomial a0 + a1x +
a2x

2 + · · ·+ akx
k that approximates the points vi is the least squares solution to the matrix equation

1 x1 x2
1 · · · xk1

1 x2 x2
2 · · · xk2

...
...

...
. . .

...
1 xn x2

n · · · xkn



a0

a1
...
ak

 =


y1

y2
...
yn


The matrix on the left is called the Vandermonde matrix. This is the same as we used before, but
with rows rearranged (the solution will be the same).
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9.2 Orthonormalizing a basis

We previously saw orthogonality and orthonormality in Section 7. We revisit it here from the per-
spective of bases.

Recall that for a set of vectors B = {v1, . . . ,vk} to be orthonormal , they need to be orthogonal
(that is, vi · vj = 0 whenever i 6= j), and they need to be of unit length (that is ‖vi‖ = 1 for all i).

Remark 9.3. Placing orthonormal vectors v1, . . . ,vk ∈ Rn as columns in a matrix Q will always give
QTQ = I.

Example 9.4. We have already seen the rotation matrix Rθ :=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
from Example 7.4 in

Lecture 7 has orthonormal columns:

RTθ Rθ =

[
1 0
0 1

]
.

Every single permutation matrix also has orthogonal columns:
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


︸ ︷︷ ︸

PT


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


︸ ︷︷ ︸

P

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Remark 9.5. Whenever Q ∈Mm×n has orthonormal columns, the lengths of v and Qv are the same,
for any v ∈ Rn. This follows directly from Remark 9.3:

‖Qv‖2 = (Qv) · (Qv) = (Qv)T (Qv) = (vTQT )Qv = vT (QTQ)v = vT Iv = vTv = v · v = ‖v‖2.

Remark 9.6. Suppose we have a subspace V with basis vectors v1, . . . ,vk as columns in A, but the
basis vectors are orthnormal. Using Definiton 8.5, we get that the projection matrix onto V simplifies
to A(ATA)−1AT = AI−1AT = AIAT = AAT . That is, for any w ∈ Rn, the projection onto V is

projV (w) = AATw =

 | |
v1 · · · vk
| |


− v1 −

...
− vk −

w = (vT1 w)v1 + (vT2 w)v2 + · · ·+ (vTkw)vk.

We are considering all the impacts of having an orthonormal basis, because a very helpful sim-
plification to many problems is to have an orthnormal basis. The basis you are given may not be
orthonormal, so you have to orthnormalize it. This process of making the basis orthonormal is the
Gram–Schmidt process.

Example 9.7. Consider the vectors v1,v2,v3,v4 ∈ R4, placed as columns in the matrix
1 2 0 2
2 0 1 1
0 2 1 1
1 0 1 2

 RREF−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
These vectors form a basis, but the basis is clearly not orthnormal. If it were, the computations below
should give values 1 on the diagonal and 0 everywhere else:

vT1 v1 = 6 vT1 v2 = 2 vT1 v3 = 3 vT1 v4 = 4

vT2 v2 = 8 vT2 v3 = 2 vT2 v4 = 4

vT3 v3 = 3 vT3 v4 = 4

vT4 v4 = 10
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The Gram-Schmidt process works by first creating a set w1,w2,w3,w4 of orthogonal vectors (making
the off-diagonal values 0). Then dividing each vector by its length, called normalizing , will give a set
of orthnormal vectors q1 = w1/‖w1‖,q2 = w2/‖w2‖,q3 = v3/‖w3‖,q4 = v4/‖w4‖. This will make
the diagonal values 1 in the dot product computations above.

� Step 1: Set w1 = v1 =


1
2
0
1

.

� Step 2: Project v2 onto w1, and subtract this from v2 to ensure the new vector will be
orthogonal to the previous vector. That is, set w2 to be the error vector when projecting to w1.
Using the formula from Definition 8.2, we get

w2 = v2 − projw1
(v2) = v2 −

wT
1 v2

wT
1 w1

w1 =


2
0
2
0

− 2

6


1
2
0
1

 =


5
3
−2

3
2
−1

3


� Step 3: Project v3 onto w1 and w2, and subtract these from v3 to make sure everything is still

orthogonal. The formula is

w3 = v3 − projw1
(v3)− projw2

(v3) = v3 −
wT

1 v3

wT
1 w1

w1 −
wT

2 v3

wT
2 w2

w2.

� Step 4: Repeat the same for v4 to get

w4 = v4 − projw1
(v4)− projw2

(v4)− projw3
(v4) = v4 −

wT
1 v4

wT
1 w1

w1 −
wT

2 v4

wT
2 w2

w2 −
wT

3 v4

wT
3 w3

w3.

We now have an orthogonal basis of vectors {w1,w2,w3} for R4. Note these do not (except for
the first one) point in the same directions as the original set of vectors {v1,v2,v3,v4}.

Example 9.7 showed how to get from one basis to another. Placing the original vectors v1,v2,v3,v4

as columns in a matrix A, and placing the resulting orthonormal vectors q1,q2,q3,q4 as columns in
a matrix A, a natural question arises: How are A and Q related?

Proposition 9.8. There exists a matrix R for which A = QR, or R = QTA, and it is given by

R =


− q1 −
− q2 −
− q3 −
− q4 −


 | | | |

v1 v2 v3 v4

| | | |

 =


qT1 v1 qT1 v2 qT1 v3 qT1 v4

0 qT2 v2 qT2 v3 qT2 v4

0 0 qT3 v3 qT3 v4

0 0 0 qT4 v4

 .
The proof of this statement follows immediately by observing that the construction of the qi meant

that qi · vj = 0 whenever j < i. Indeed, we first note that qi ·wj = 0 whenever i 6= j, since the qi
point in the same direction as the wi. So for example,

q4 · v3 = q4 ·
(
w3 + projw1

(v3) + projw2
(v3)

)
= q4 ·w3︸ ︷︷ ︸

0

+ q4 · projw1
(v3)︸ ︷︷ ︸

0 because q4·w1=0

+ q4 · projw2
(v3)︸ ︷︷ ︸

0 because q4·w2=0

= 0.

Remark 9.9. Recall that to find the least squares solution to Ax = b, we projected b onto col(A)
as p. Since

Ax = b = p︸︷︷︸
in col(A)

+ e︸︷︷︸
orthogonal to col(A)
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has no solution, but
ATAx = ATb = ATp︸︷︷︸

in col(ATA)

+ATe︸︷︷︸
0

does, least squares was about solving ATAx = ATb. Using the result from Proposition 9.8, this
equation becomes

ATAx = ATb

(QR)T (QR)x = (QR)Tb

RTQTQRx = RTQTb

RTRx = RTQTb (since QTQ = I)

Rx = QTb (since R and RT have inverses)

x = R−1QTb (since R has an inverse)

which requires much less multiplications for a computer to do that x = (ATA)−1ATb.

9.3 Exercises

Exercise 9.1. Find the least squares degree 1,2,3,4 polynomials that approximate the points

(−7, 2), (−6,−2), (−2,−1), (0, 3), (3, 0), (4, 1).

Plot all the functions and points together to confirm that the higher degree polynomials are better
approximations to the points.

Exercise 9.2. Check that the columns of the 2×2 rotation matrix (introduced in Lecture 7.1) and of
the 3×3 permutation matrices (introduced in Lecture 2.2) are all orthogonal. Are they orthonormal?
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Lecture 10: Inner products and distances

We now take a small detour from Strang’s Linear Algebra and work with the material from Strang’s
Learning from Data, Chapter IV.10. Similar topics are convered in Lay’s Linear Algebra and its
applications, Section 6.7.

10.1 Functions on spaces

Definition 10.1. Let V be a vector space. An inner product on V is a function 〈 · , · 〉 : V 2 → R
such that for all v,u,w ∈ V and all c ∈ R,

� (positive definite) 〈v,v〉 > 0 with 〈v,v〉 = 0 if and only if v = 0

� (symmetric) 〈v,u〉 = 〈u,v〉

� (multiplicative) 〈cv,u〉 = c〈v,u〉 = 〈v, cu〉

� (blinear) 〈v + u,w〉 = 〈v,w〉+ 〈u,w〉

A vector space closed under an inner product is called an inner product space.

We have already seen an example of the inner product before in Lecture 1, Definition 1.7, where
the dot product of two vectors was introduced. Just like there, every inner product has a notion of
distance associated to it: the norm, or length, of v in an inner product space V is

√
〈v,v〉 = ‖v‖.

Example 10.2. There are many examples of inner product spaces besides Rn with the dot product.

� The space Mm×n of all m× n matrices over R is an inner product space when using 〈A,B〉 :=
trace(ATB). The trace is the sum of the entries on the diagonal.

� The space C[0, 1] of all continuous functions with domain [0, 1] and inner product

〈f, g〉 :=

∫ 1

0
f(x)g(x) dx

is an inner product space. Adjusting the domain to any interval [a, b] ⊆ R still makes this an
inner product space.

Theorem 10.3. The inner product 〈 · , · 〉 in any inner product space V 3 v,w satisfies:

� 〈v,w〉 6 ‖v‖‖w‖ with equality iff v and w are linearly dependent

� ‖v + w‖ 6 ‖v‖+ ‖w‖

Example 10.4. Using the first point of Theorem 10.3, we can show that the functions sin(x) and
cos(x) are linearly independent in C[0, 2π]. We find that

〈sin(x), cos(x)〉 =

∫ 2π

0
sin(x) cos(x) dx =

∫ 2π

0

sin(2x)

2
dx =

− cos(4π)

4
− − cos(0)

4
= 0,

‖sin(x)‖2 =

∫ 2π

0
sin2(x) dx =

∫ 2π

0

1− cos(2x)

2
dx = π −

(
sin(4π)

4
− sin(0)

4

)
= π,

‖cos(x)‖2 =

∫ 2π

0
cos2(x) dx =

∫ 2π

0

cos(2x) + 1

2
dx =

(
sin(4π)

4
− sin(0)

4

)
+ π = π.

Since 0 6=
√
π
√
π = π, these functions are linearly independent. Also note that the positive definite

property of the inner product is satisfied.

The notions of angle between vectors, orthogonality, unit length, all apply to inner product spaces
in the same way they applied to Rn with the dot product.
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Example 10.5. The angle between the matrices A =
[

4 1
−1 0
7 2

]
and B =

[
0 2
3 −1
2 0

]
is

cos−1

(
trace(ATB)

trace(ATA)trace(BTB)

)
= cos−1

 trace
([

4 −1 7
1 0 2

] [ 0 2
3 −1
2 0

])
trace

([
4 −1 7
1 0 2

] [ 4 1
−1 0
7 2

])
trace

([
0 3 2
2 −1 0

] [ 0 2
3 −1
2 0

])


= cos−1

(
trace ([ 9 9

4 2 ])

trace ([ 66 18
18 5 ]) trace

([
13 −3
−3 5

]))

= cos−1

(
11

1278

)
≈ 89.51◦

Remark 10.6. The Gram–Schmidt process in Lecture 9 was done on vectors using the usual norm
in Rn. By obeserving that the projection operation can be given in terms of inner product, the
Gram–Schmidt process can be applied to any inner product space:

projv(u) =
vTu

vTv
v =

v · u
v · v

v =
〈v,u〉
〈v,v〉

v.

10.2 Distance matrices

Recall the points from Exercise 9.1 in Lecture 9. If the points were located elsewhere but their relative
position to each other was the same, we could still solve the least squares problem, up to some x-shift
and y-shift. This situation has two advantages:

� only requires relative information: measurements only need to be made among the data, not
between data and something else (like a reference point - the origin)

� allows for spaces that are not Rn: on the sphere, on a grid, with barriers, etc

Example 10.7. Consider the distances among the four points, slightly adapted from Exercise 9.1.

R

R

a

c

b

d

a = (1, 3)
b = (5, 4)
c = (7, 1)
d = (8, 2)

X =

[
1 5 7 8
3 4 1 2

]

The matrix X is called the position matrix . We can easily compute the distance matrix D among
these points. But the relationship among the two is not so clear.

D =


‖a− a‖ ‖a− b‖ ‖a− c‖ ‖a− d‖

‖b− b‖ ‖b− c‖ ‖b− d‖
‖c− c‖ ‖c− d‖

‖d− d‖

 =


0
√

17
√

40
√

50

0
√

13
√

13

0
√

2
0


The key lies in fixing one of the points as a reference point. Without loss of generality, we simply
say a = 0. Then the first line of D becomes the lengths ‖ · ‖ of all the vectors involved. Notice that
the lengths of the vectors are on the diagonal of XTX, so we can create a column vector from the
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diagonal of the matrix XTX, which will be diag(XTX) = [0
√

17
√

40
√

50]. In particular, we have

XTX =
1

2

diag(XTX)
[
1 1 1 1

]
+


1
1
1
1

diag(XTX)T −D

 . (5)

Similar to how we have seen matrix decompositions A = LU and A = QR, there is a Cholesky
decompositon A = UTU , which will give X, up to a shift. For this example, we have

XTX =
1

2




0√
17√
40√
50

 [1 1 1 1
]

+


1
1
1
1

 [0 √
17
√

40
√

40
]
−


0

√
17
√

40
√

50√
17 0

√
13
√

13√
40
√

13 0
√

2√
50
√

13
√

2 0




=
1

2




0 0 0 0√
17
√

17
√

17
√

17√
40
√

40
√

40
√

40√
50
√

50
√

50
√

50

+


0
√

17
√

40
√

50

0
√

17
√

40
√

50

0
√

17
√

40
√

50

0
√

17
√

40
√

50

−


0
√

17
√

40
√

50√
17 0

√
13
√

13√
40
√

13 0
√

2√
50
√

13
√

2 0


 .

We do not finish the computation, but in the end we will recover X as

X ′ =

[
0 4 6 7
0 1 −2 −1

]
.

Remark 10.8. If instead we have a set of vectors vi, . . . ,vk, then the distance matrix would be
defined as Dij = ‖vi − vj‖. Note that this means the distance matrix is always symmetric and has a
zero diagonal.

Example 10.9. If D is simply symmetric and has a zero diagonal, there is no guarantee that is
represents distance among points in a space like Rn, or even any inner product space. Consider the
distance matrix

D =


0 1 1 1
1 0 3 3
1 3 0 3
1 3 3 0

 ,
coming from four points a, b, c, d. As in the previous example, we let the first point a = 0, so that
we get ‖b‖ = ‖c‖ = ‖d‖ = 1. We also see that

32 = ‖b− c‖2

= 〈b− c,b− c〉
= 〈b,b− c〉 − 〈c,b− c〉
= 〈b,b〉 − 〈b, c〉 − 〈c,b〉+ 〈c, c〉
= ‖b‖2 − 2〈b, c〉+ ‖c‖2

= 1− 2〈b, c〉+ 1.

Rearranging, we conclude that 〈b, c〉 = −7/2, which contradicts the fact that the inner product must
be positive definite. Hence D can not be a distance matrix of points from an inner product space.

Distance matrices can highlight clustering among the data. That is, given a distance matrix, we
can “connect” points that lie close to each other and so discover which groups of points are close to
each other.

Example 10.10. Consider the distances between the 20 largest cities in Latvia, in kilometers. As
a distance matrix, it is difficult to get information from it, but we can group cities by distance into
clusters. This could be useful, for example, in trying to decide where to build a factory or distribution

47



center.

Bauska
Cesis

Daugavpils
Dobele

Jekabpils
Jelgava
Jurmala
Kuldiga
Liepaja
Ogre

Olaine
Rezekne

Riga
Salaspils
Saldus
Sigulda
Talsi

Tukums
V almiera
V entspils



0 119 152 62 103 37 68 149 196 53 46 194 62 54 111 91 136 89 145 191
119 0 174 137 96 115 93 200 271 66 97 155 79 69 180 30 159 130 27 220
152 174 0 214 79 186 203 301 344 156 185 89 187 166 263 170 281 235 194 340
62 137 214 0 158 29 47 87 141 81 41 249 59 72 51 108 78 34 158 129
103 96 79 158 0 129 134 242 297 85 122 91 117 96 208 92 215 171 116 276
37 115 186 29 129 0 38 115 170 54 19 220 40 47 80 86 98 51 139 154
68 93 203 47 134 38 0 111 179 49 22 221 18 39 88 65 80 39 112 142
149 200 301 87 242 115 111 0 79 159 120 331 129 149 42 175 48 72 214 48
196 271 344 141 297 170 179 79 0 221 181 389 195 212 92 244 127 141 288 98
53 66 156 81 85 54 49 159 221 0 40 172 32 11 130 38 129 87 91 191
46 97 185 41 122 19 22 120 181 40 0 211 21 31 90 68 96 50 120 156
194 155 89 249 91 220 221 331 389 172 211 0 203 183 299 166 300 259 163 362
62 79 187 59 117 40 18 129 195 32 21 203 0 21 103 50 98 57 100 159
54 69 166 72 96 47 39 149 212 11 31 183 21 0 120 40 119 77 94 180
111 180 263 51 208 80 88 42 92 130 90 299 103 120 0 153 61 52 198 89
91 30 170 108 92 86 65 175 244 38 68 166 50 40 153 0 137 104 54 200
136 159 281 78 215 98 80 48 127 129 96 300 98 119 61 137 0 47 170 62
89 130 235 34 171 51 39 72 141 87 50 259 57 77 52 104 47 0 147 105
145 27 194 158 116 139 112 214 288 91 120 163 100 94 198 54 170 147 0 229
191 220 340 129 276 154 142 48 98 191 156 362 159 180 89 200 62 105 229 0



To get the dendrogram above, each city begins in its own cluster. The two closest cities are connected
to create one cluster of 2 cities (Ogre and Salaspils). Create larger clusters by measuring the distance
between every pair of clusters ci and cj , with distance defined to be

(distance between ci and cj) =
1

|ci||cj |
∑
vi∈ci

∑
vj∈cj

‖vi − vj‖.

For clusters of size 1, note that |ci| = |cj | = 1, and the distance reduces to the usual distance. This is
the average method of drawing a dendrogram. In the diagram above, the last 3 clusters to be joined
are colored differently, but any number can be chosen here.

10.3 Exercises

Exercise 10.1. For each of the following “definitions”, show that each cannot be an inner product.

� For A,B ∈Mn×n, let 〈A,B〉 = trace(A+B)

� For f, g ∈ C[0, 1], let 〈f, g〉 =
∣∣∣ dfdx dgdx ∣∣∣

� For a, b ∈ R, let 〈a, b〉 = a2 + b2

Exercise 10.2. Check the conditions for the space of m×n matrices over R from Example 10.2 being
an inner product space. What is the distance between [ 1 2 3

4 5 6 ] and [ 0 1 2
3 4 5 ]?

Exercise 10.3. Consider the following three matrices in M2×2:

A =

[
1 2
2 1

]
, B =

[
2 0
−1 1

]
, C =

[
0 −3
3 2

]
.

Using the Gram–Schmidt process to find an orthonormal basis for span{A,B,C}. Use the inner
product on matrices given in Example 10.2.

Exercise 10.4. Given the distance D matrix below, construct the dendrogram using the same average
distance method as in Example 10.10. After every step, give the new distance matrix, which measures
the distances among the clusters.

D =



0 12 10 13 2 11
12 0 3 9 13 8
10 3 0 6 14 5
13 9 6 0 15 1
2 13 14 15 0 7
11 8 5 1 7 0
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Lecture 11: Determinants, part 1

This and the following lecture will deal with the determinant , which is a number associated to a
matrix. This number has deep properties related to all the topics we have already seen.

11.1 The recursive definition

The determinant is a function det : Mn×n → R. Before we get to definitions and new ideas, we look
back at some topics we have seen that are related to the determinant.

Example 11.1. We have already come across the determinant in several disguises.

� The determinant of a 1× 1 matrix [a] is a. The matrix is not invertible is a = 0.

� The determinant of a 2× 2 matrix
[
a b
c d

]
is ad− bc. The matrix is not invertible if ad− bc = 0.

� (to be proved later) The determinant is the product of the pivots, up to a sign change.

� (to be proved later) The determinant is zero if and only if the matrix is not invertible.

These are all important facts, especially the last two. The determinant of a matrix is ofteen denoed
by vertcal lines on the side. It has geometrical consequences, as the following example shows.

Example 11.2. Recall that a parallelogram is the shape made by the vectors a, b, and a + b. A
parallelotope is the generalization of this shape to higher dimensions. As vectors, the sides of the
parallelotope are v1, v2, . . . ,vn for vi ∈ Rn. As points, they are the vertices of the parallelotope. The
n-dimensional volume of the parallelotope is the absolute value of∣∣∣∣∣∣

| | |
v1 v2 · · · vn
| | |

∣∣∣∣∣∣ .
For example, the volume of the parallelogram made by the vectors a = (1, 3) and b = (4, 2) is the
absolute value of ∣∣∣∣1 4

3 2

∣∣∣∣ = 2− 12 = −10,

so the area is 10.

We now give a precise definition of the determinant so that we can prove the previous and further
strong claims.

Definition 11.3. Let A ∈Mn×n. The determinant det(A) of A is:

� if n = 1, then det(A) = A11

� if n > 2, then det(A) =
n∑
j=1

(−1)i+jAij det(Aij), for any i ∈ {1, . . . , n}

The matrix Aij is the (n − 1) × (n − 1) submatrix of A produced when the ith row and jth column
are removed. The number det(Aij) is called the ij-minor of A.

The determinant of a matrix is also denoted by vertical lines on the side, instead of the usual
square brackets. The word cofactor often appears when talking about determinants: this is the ij-
minor multiplied by (−1)i+j . Then we get the cofactor matrix cofac(A) of A, defined as the n × n
matrix for which cofac(A)ij = (−1)i+j det(Aij).
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Example 11.4. Let A =
[

0 3 4
2 −1 2
1 5 −2

]
. Using Definition 11.3 and Example 11.1 with i = 1 we see that

det(A) =

∣∣∣∣∣∣
0 3 4
2 −1 2
1 5 −2

∣∣∣∣∣∣
= (−1)1+10

∣∣∣∣−1 2
5 −2

∣∣∣∣+ (−1)1+23

∣∣∣∣2 2
1 −2

∣∣∣∣+ (−1)1+34

∣∣∣∣2 −1
1 5

∣∣∣∣
= 0− 3(−4− 2) + 4(10 + 1) = 18 + 44 = 62.

We would have gotten the same result with i = 2 or i = 3.

Now we consider the determinant for some simple matrices.

Proposition 11.5. Let A ∈Mn×n.

� If A = In, then det(A) = 1.

� If A is upper (or lower) triangular, then det(A) is the product of the diagonal entries.

Proof. The first point follows by induction. For n = 1, we clearly have det([1]) = 1. For larger n, use
the recursive definition of the determinant, since the only nonzero entries of I are on the diagonal.
We see that

det(In) =
n∑
j=1

(−1)1+j(In)1j det(Iij) = (−1)1+1(In)11 det(In−1) = 1 · 1 · 1 = 1.

The second point follows similarly, using induction, but instead across the bottom row (top row for
lower triangular).

Example 11.6. Recall that elementary matrices are either elimination matrices or permutation ma-
trices. The second point from Proposition 11.5 implies the determinant of an elimination matrix is
always 1, since it is lower (or upper) triangular with 1’s on the diagonal. For a permutation matrix,
swapping two rows (one pair) gives a determinant of -1, but swapping three rows (two pairs) gives a
determinant of 1: ∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1,

∣∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣ = 1.

Permutation matrices with an odd number of row swaps have determinnt -1, and permuattion matrices
with an even number of row swaps have determinant 1.

Next we describe some more general properties of the determinant.

Proposition 11.7. Let A ∈Mn×n. As a function of the rows of A, the determinant is:

� multilinear , that is, det(r1 . . . , ca + b, . . . , rn) = cdet(r1, . . . ,a, . . . , rn) + det(b, . . . , ri, . . . , rn)

� alternating , that is, det(r1 . . . , ri, . . . , rj , . . . , rn) = −det(r1 . . . , rj , . . . , ri, . . . , rn)

Proof. The first point follows by induction on n, and by using the recursive definition to expand along
row i. The statement is immediately true for a 1× 1 matrix. For the inductive step, notice that

detA = det(r1, . . . , ca + b, . . . , rn)

=
n∑
j=1

(−1)i+j(ca + b)j det(Aij)

= c

 n∑
j=1

(−1)i+j(a)j det(Aij)

+

 n∑
j=1

(−1)i+j(b)j det(Aij)

 ,

and Aij is the same in both cases. We do not prove the second point.
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Remark 11.8. There are two immediate consequences of Proposition 11.7:

� a matrix with a zero row has determinant zero:

det(r1 . . . , 0, . . . , rn) = det(r1 . . . ,a−a, . . . , rn) = det(r1 . . . ,a, . . . , rn)−det(r1 . . . ,a, . . . , rn) = 0

� a matrix with two equal rows has determinant zero:

det(r1 . . . ,a, . . . ,a, . . . , rn)︸ ︷︷ ︸
original order

= −det(r1 . . . ,a, . . . ,a, . . . , rn)︸ ︷︷ ︸
rows swapped

,

and only 0 is its own negative.

11.2 Properties and applications

We finish this lecture by proving that the determinant is multiplicative, that is, that det(AB) =
det(A) det(B) for any n× n matrices A,B.

Proposition 11.9. Let A,B ∈Mn×n.

� If E is an elementary matrix and A is invertible, then det(EA) = det(E) det(A) = det(AE).

� If D is a diagonal matrix and A is invertible, then det(DA) = det(D) det(A) = det(AD).

� If A and B are invertible, then det(AB) = det(A) det(B).

Proof. The first point follows by multilinearity from Proposition 11.7 and Example 11.6, which gives
that det(E) = ±1. Elimination matrices are row operations, so in terms of the rows r1, . . . , rn of A,

det(EA) = det(r1, . . . , rj − `ijrj , . . . , rn)

= det(r1, . . . , rj , . . . , rn)︸ ︷︷ ︸
det(A)

−`ij det(r1, . . . , rj , . . . , rn)︸ ︷︷ ︸
0 because two rows the same

= det(A)

= det(A) det(E).

The eqution for permutation matrices follows from the alternating property of the determinant.
The second point follows by Propositon 11.5, which says that det(D) is the product of its diagonal

entries, and by the definition of the determinant:

det(DA) =
n∑
j=1

(−1)i+j(DA)ij det((DA)ij) = Dii

n∑
j=1

(−1)i+jAij det((DA)ij).

Using induction we get that det(DA) = D11D22 · · ·Dnn det(A) = det(D) det(A). Commutativity of
diagonal matrices with others gives us that det(DA) = det(AD).

The third point follows by first noticing that the statement is true when det(A) = 0. Indeed, it
must also be true that det(AB) = 0, since if det(AB) 6= 0, then AB is invertible, and so has an inverse
C. But then I = (AB)C = A(BC), and A has an inverse, which is a contradiciton. So if det(A) = 0,
then

0 = det(A) det(B) = det(AB) = 0,

and the statement holds. If det(A) 6= 0, then A is invertible, and may be expressed as

F` · · ·F1︸ ︷︷ ︸
upper tri.

Ek · · ·E1︸ ︷︷ ︸
lower tri.

P︸︷︷︸
permutation

A = D,
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where D is a diagonal matrix. This comes from the process of elimination. Recall that diagonal
matrices commute with all other matrices, and we use this fact, and the first result, to get that

det(AB) = det
(
P−1E−1

1 · · ·E
−1
k F−1

1 · · ·F−1
` DB

)
= det(P−1) det(E−1

1 ) · · · det(E−1
k ) det(F−1

1 ) · · · det(F−1
` ) det(DB)

= det(P−1) det(E−1
1 ) · · · det(E−1

k ) det(F−1
1 ) · · · det(F−1

` ) det(D) det(B)

= det
(
P−1E−1

1 · · ·E
−1
k F−1

1 · · ·F−1
` D

)
det(B)

= det(A) det(B).

A direct consequence is that the determinant is the product of the pivots, up to a sign change,
and that the determinant is zero iff the matrix is not invertible.

11.3 Exercises

Exercise 11.1. Show with a counter example that the set of all invertible n × n matrices is not a
subspace of Mn×n. That is, show it is not a vector space.

Exercise 11.2. Recall the definition of an inverse of a matrix A, which was a matrix B such that
AB = BA = I. Show that the statement AB = I implies BA = I.

Exercise 11.3. How many cofactors, or minors, of the matrix below are nonzero? How many terms
in the recursive definition of the determinant are nonzero?

A =

1 1 1
2 2 0
1 1 0


Exercise 11.4. Let A ∈Mn×n. Show that det(A) = 0 is equivalent to saying that there is a nonzero
vector x for which Ax = 0.
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Lecture 12: Determinants, part 2

This lecture is the final lecture containing topics for the midterm. We finish off the first part of the
semester with more properties of the determinant, some applications, and an alternative definition
using combinatorics.

12.1 More properties and applications

First we describe how the determinant works with transposes and inverses.

Proposition 12.1. Let A ∈Mm×n.

� det(AT ) = det(A)

� If A is invertible, then det(A−1) = det(A)−1

Proof. The first statement follows from PA = LU decomposition and from Proposition 11.9. The
second statement follows from Proposition 11.9 and the fact that AA−1 = I:

AA−1 = I =⇒ det(AA−1) = det(I)

=⇒ det(A) det(A−1) = 1

=⇒ det(A−1) =
1

det(A)
= det(A)−1.

Recall after Definition 11.3 the ij-minor of a matrix A was the determinant of the submatrix after
the ith row and jth column are removed. The ij-cofactor was the ij-minor multiplied by (−1)i+j .

Proposition 12.2. Let A ∈Mn×n be invertible, and let Cij = (−1)i+j det(Aij) be the ij-cofactor of
A. Then the ij-entry in the inverse is

(A−1)ij =
Cji

det(A)
.

In general, for C the cofactor matrix of A, we have ACT = det(A)I, or A−1 = CT / det(A).

Proof. This comes from the recursive definition of the determinant, which states that

det(A) = A11C11 +A12C12 + · · ·+A1nC1n = AT
1 C1,

det(A) = A21C21 +A22C22 + · · ·+A2nC2n = AT
2 C2,

and so on, where Ai is the ith row of A ad Ci is the ith row of C. Moreover, for i 6= j, the sum

det(A′) = Ai1Cj1 +Ai2Cj2 + · · ·+AinCjn = AT
i Cj

of some new matrix A′ must be zero, as this is the determinant for a matrix whose ith and jth rows
are the same. That is, Aj1 does not appear in Cj1, so having Aj1 = Ai1 is allowed for this determinant.
Remark 11.8 told us that a matrix with two equal rows has determinant zero. Hence

− AT
1 −

− AT
2 −
...

− AT
n −


 | | |

C1 C2 · · · Cn

| | |

 =


det(A) 0 · · · 0

0 det(A) · · · 0
...

...
. . .

...
0 0 · · · det(A)

 ,
or ATC = det(A)I. This becomes ACT = det(A)I because CT / det(A) is the inverse of A, so it can
be multiplied on the left or on the right.
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This formula generalizes the formula for the inverse of the 2 × 2 matrix A =
[
a b
c d

]
and A−1 =

1
ad−bc

[
d −b
−c a

]
. The determinant is still in the denominator, but the cofactors come from larger matrices

and so the inverse is not just about rearranging elements.

Example 12.3. Consider the matrix

A =


1 0 0 1 0
0 1 0 5 0
0 0 2 8 0
7 2 9 3 6
0 0 0 3 1

 , det(A) = −136.

This matrix is invertible, and the (4, 4)-entry of the inverse will be

(A−1)44 =
(−1)4+4

−136

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

∣∣∣∣∣∣∣∣ =
−1

68
.

A final application of the determinant that we will see is in a physical setting. Recall the standard
basis from Example 5.7 in Lecture 5.

Definition 12.4. Let v1, . . . ,vn−1 ∈ Rn, arranged as columns of A ∈Mn×(n−1), and let e1, . . . , en ∈
Rn be the standard basis vectors. The cross product of the vectors vi is the vector

X(v1, . . . ,vn−1) :=
n∑
i=1

(−1)i+n det(Ai)ei =

∣∣∣∣∣∣∣
| | | e1

v1 v2 · · · vn−1
...

| | | en

∣∣∣∣∣∣∣ ,
where Ai ∈ M(n−1)×(n−1) is A with the ith row removed. The expression on the right is a formal
determinant, since we can’t put in a whole vector ei in a single entry.

Example 12.5. What does the cross product represent? In three dimensions, it is the right-hand rule
of physicists, determining the direction a moving charge from a rotating magnetic field. The vector
computed will be perpendicular to the initial vectors:2

3
4

×
1

0
1

 = (−1)1+3

∣∣∣∣3 0
4 1

∣∣∣∣
1

0
0

+ (−1)2+3

∣∣∣∣2 1
4 1

∣∣∣∣
0

1
0

+ (−1)3+3

∣∣∣∣2 1
3 0

∣∣∣∣
0

0
1

 =

 3
2
−3

 .
Remark 12.6. The cross product has several interesting properties:

� X(v1, . . . ,vn−1) = 0 iff the set of vectors v1, . . . ,vn−1 is linearly dependent

� For n = 2, the length of the cross product is ‖u× v‖ = ‖u‖‖v‖| sin(θ)|

� The cross product is related to the dot product by (u× v)×w = (u ·w)v− (v ·w)u

� The cross product is anti-commutative, or skew-symmetic: a× b = −b× a

12.2 A combinatorial definition

Recall the previous discussion that the determinant of a permutation matrix P depended on the parity
of the permutation. We now define this concept in detail.

Definition 12.7. Let S = (a1, . . . , an) be an ordered set. A permutation of S is either

� a bijective function σ : (1, . . . , n)→ (1, . . . n), or
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� a rearrangement of the elements of S in a different order.

A transposition is a permutation in which only two elements are in a different order, that is, for which
σ(i) = i for all i = 1, . . . , n except two.

Note that on a set of size n there are n! permutations and n(n − 1)/2 transpositions. It is a
nontrivial fact to show that every permutation is a composition of transpositions, and the parity of
a permutation is odd or even depeding on if the number of transpositions necessary to represent it is
odd or even. The sign of a permutation σ is +1 if the parity of σ is even, and −1 is the parity of σ is
odd. This number is denoted by sgn(σ).

Remark 12.8. Another way to define the determinant of a matrix A is to say

det(A) =
∑

permutations σ

sgn(σ)A1σ(1)A2σ(2) · · ·Anσ(n) =
∑

permutations σ

sgn(σ)
n∏
i=1

Aiσ(i). (6)

Example 12.9. There are 3! = 6 permutations on a set of size 3, so a determinant of a 3× 3 matrix
is an alternating sum of 6 terms. The permutations are given below.

ρ
1 7→ 1
2 7→ 2
3 7→ 3

σ
1 7→ 2
2 7→ 1
3 7→ 3

τ
1 7→ 3
2 7→ 2
3 7→ 1

µ
1 7→ 1
2 7→ 3
3 7→ 2

ν
1 7→ 2
2 7→ 3
3 7→ 1

λ
1 7→ 3
2 7→ 1
3 7→ 2

The transpositions are σ, τ , µ. Note that ν = τ ◦σ and λ = σ◦τ , which gives us a complete description
of the signs of these permutations:

permutation σ ρ σ τ µ ν λ

sgn(σ) 1 −1 −1 −1 1 1

So if A =
[

4 −2 1
7 0 3
−1 −3 4

]
, then the determinant is

det(A) = A1ρ(1)A2ρ(2)A3ρ(3) −A1σ(1)A2σ(2)A3σ(3) + · · ·+A1λ(1)A2λ(2)A3λ(3)

= 4 · 0 · 4− ·(−2) · 7 · 4 + · · ·+ 1 · 7 · (−3)

= 77.

However, if we had a different matrix A =
[

4 0 0
7 0 3
0 −3 4

]
, then all permutations except one would have a

factor of zero in them. That is, since the product A1σ(1)A2σ(2) · · ·Anσ(n) has exactly one element in
each row and exactly one elemen in each column, none of the terms in the combinatorial definition of
the determinant can have two elements in the same row or in the same column. In other words,

det(A′) = sgn(µ) · 4 · 3 · (−3) = (−1) · (−36) = 36.

Taking 4 in row 1, column 1, we cannot take any other element in column 1, so we must take row 2,
column 3, to get a nonzero number. That leaves row 3, column 2 as the final factor (since columns 1
and 3 have already been used). All other terms in the expansion (6) will have at least one factor of 0,
so can be safely ignored.

12.3 Exercises

Exercise 12.1. Show that the cross product X(v1, . . . ,vn−1) is skew-symmetric, in the sense that
swapping the order of two entries puts a negative sign in front.
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Exercise 12.2. Find the parity of the two permutations below.

σ
1 7→ 1
2 7→ 3
3 7→ 2
4 7→ 4

ρ
1 7→ 3
2 7→ 1
3 7→ 2
4 7→ 4

Use this to find the determinant of the matrix A =

[
7 0 −1 0
3 0 2 0
0 −2 6 0
0 0 0 1

]
.
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Lecture 13: Eigenvalues and eigenvectors

� Fact 1: An n × n matrix has at most n eigenvalues. Some eigenvalues may be 0, some may be
complex.

� Fact 2: The roots of the characteristic polynomial det(A− λI) are the eigenvalues.

� Skill 1: Find eigenvectors and eigenvalues of a matrix

� Skill 2: Given only eigenvalues and eigenvectors of A, compute Ax for any x

� Skill 3: Given only eigenvalues and eigenvectors, construct a matrix with these eigenvalues and
eigenvectors

This lecture begins a key topic for understanding the properties of a matrix. Eigenvectors are unique
in that their direction does not change when multiplied by a matrix A (though their length may
change).

13.1 How to find them

Definition 13.1. Let A ∈ Mn×n. Whenever there is a vector v for which Av = λv, where λ ∈ R,
the vector v is called an eigenvector and λ is called its eigenvalue.

Example 13.2. Consider the following examples of eigenvectors and eigenvalues.

� The matrix A =
[

4 −1
0 2

]
has eigenvector [ 0

1 ] with eigenvalue 2. But A also has eigenvalue [ 0
2 ]

with eigenvalue 2.

� The matrix B =
[

0 −1
1 0

]
has no (real) eigenvalues. This is the rotation matrix with θ = π

2 . In
the second part of this lecture we will see how to get an eigenvalue from this matrix.

� The identity matrix has every vector as an eigenvector with eigenvalue 1.

� The projection matrix P = projU (from Lecture 8) has every vector in U as an eigenvector with
eigenvalue 1, and has every vector of U⊥ as an eigenvector with eigenvalue 0.

Eigenvectors v,w of a matrix A are called independent eigenvectors if the set {v,w} is linearly
independent.

Remark 13.3. Eigenvectors describe the direction in which a matrix changes Rn, and the eigenvalues

desribe the stretching that is done in that direction. For example, the matrix A =
[

23/10 −6/5
9/20 1/5

]
has

eigenvector v1 = [ 4
1 ] with eigenvalue 2, and eigenvector v2 = [ 2

3 ] with eigenvalue 1
2 .

R

R

v1

Av1

v2

Av2
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The vector v1 gets longer and v2 gets shorter as A is applied more times. Adjusting v1 and v2 so that
they make angles π

6 and π
3 with the x-axis, respectively, we can visually see what happens to vectors

on the unit circle as A is applied more times.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

A
0

A
1

A
2

A
3

A
4

A
5

The unit eigenvectors are marked with black circles around them. They are also distringuished from
other vectors because their “trajectory” as A is applied is a striaght line. Below in Remark 13.6 we
see what happens to vectors that are not exactly an eigenvector.

To find the eigenvalues λ, the equation det(A − λI) = 0 must be solved for λ. Once the possible
solutions λ are found, then Av = λv can be solved in each coordinate to find the corresponding
eigenvector v.

Example 13.4. Consider the matrix A =
[

2 3
−1 6

]
. What are its eigenvalues and corresponding eigen-

vectors? We must solve det(A− λI) = 0:

0 = det (A− λI)

= det

([
2 3
−1 6

]
−
[
λ 0
0 λ

])
=

∣∣∣∣2− λ 3
−1 6− λ

∣∣∣∣
= (2− λ)(6− λ) + 3

= 12− 8λ+ λ2 + 3

= λ2 − 8λ+ 15

= (λ− 5)(λ− 3).

Hence the eigenvalues are λ = 5 and λ = 3. To find the corrseponding eigenvectors, we solve:

Av = 3v ⇐⇒
[

2 3
−1 6

] [
v1

v2

]
= 3

[
v1

v2

]
⇐⇒

[
2v1 + 3v2

−v1 + 6v2

]
=

[
3v1

3v2

]
.

This is a linear system of 2 equations, which has solution (by back-substitution) v = [ 3
1 ], though

we can choose any value we want for v2 (and we choose 1 - to avoid such problems, we often take
eigenvectors with unit length). Similarly, λ = 3 has the eigenvector [ 3

1 ].

Definition 13.5. The function det(A− λI) is called the characteristic polynomial for the matrix A.

Remark 13.6. If A ∈Mn×n has n eigenvectors, then knowing them and their eigenvalues is enough
to know the effect of A on any matrix in Rn. In Example 13.4 we found two eigenvalues and two
eigenvectors. Then for any other vector we have

A

[
2
−2

]
= A

(
2

[
3
1

]
− 4

[
1
1

])
= 2A

[
3
1

]
− 4A

[
1
1

]
= 2 · 5

[
3
1

]
− 4 · 3

[
1
1

]
=

[
18
−2

]
.
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13.2 Properties and applications

Proposition 13.7. Let A ∈Mn×n.

� The eigenvalues of A and AT are the same.

� If A is upper or lower triangular, its eigenvalues are on its diagonal.

� If the rank of A is less than n, A has an eigenvalue 0 for a non-trivial eigenvector.

� If v is an eigenvector of A with eigenvalue λ, then v is an eigenvector of An with eigenvalue λn.

Proof. The first point follows by distributing transposes in a sum (see Remark 2.13) in

det(A− λI) = det((A− λI)T ) = det(AT − (λI)T ) = det(AT − λI),

so the characteristic polynomial, and hence the eigenvalues, of A and AT are the same.
The second point follows by using the standard basis of Rn as eigenvectors.
The third point follows by using a vector in the nullspace.
The fourth point follows from a repeated application of Av = λv:

Anv = An−1(Av) = An−1(λv) = λAn−2(Av) = λ2An−3(Av) = · · · = λnv.

We are allowed to move the λ from the right to the left of An−1 because λ is a number.

The first point above is similar to the determinant, however: row operations change the eigenvalues
(they do not change the determinant). The sum of the diagonal entries in a matrix is called the trace
of the matrix.

Definition 13.8. A Markov matrix is an n×n matrix with non-negative entries whose columns sum
up to 1.

Markov matrices of size n×n often model a situation with n positions, and probabilities of moving
from one position to the other. This is often used to model movement (of people, electricity).

Example 13.9. Consider a small circuit with probabilistic connections, as drawn below.

.5

.3

.3.1
.2

.1

.4

.5

.1 .4

.2

.5

.4

A =


.1 .5 .3 0
.3 .4 .2 .4
.1 .1 0 .4
.5 0 .5 .2

 v =


0.472562
0.665087
0.309207
0.488606



Assuming these probabilities stay the same over time, a common question to ask is: will some flow
repeat? Given an initial distribution of resources, how likely is that distribution to repeat after
some time? This is called the steady state of the system, and corresponds to the eigenvector v with
eigenvalue 1. We revisit this in Example 14.9 in the next lecture.

All Markov matrices have the eigenvalue 1 (they may have more eigenvalues), a claim justified
fully in Lecture 23.

Sometime we come across matrices (as in Example 13.2) that do not seem to have eigenvalues,
such as A =

[
0 −1
1 0

]
. Its characteristic polynomial is λ2 + 1. This polynomial has no real solutions,

but does have complex solutions.
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Definition 13.10. The complex numbers C are elements the set R×R, expressed as a+ bi, a, b ∈ R,
with a new operation:

(0, 1) · (0, 1) = (−1, 0) ⇐⇒ i · i = −1.

Remark 13.11. Here are some key properties of the complex numbers .

� multiplying a complex number by i is “rotating the vector by 90 degrees”

� skew-symmetric matrices have complex eigenenvalues

� every polynomial with real (or complex) coefficients has roots in the complex numbers

The last statement says that C is algebraically closed .

Proposition 13.12. Let A,B ∈Mn×n.

� The eigenvectors of A+B can not be expressed in terms of the eigenvectors of A and B.

� A and B have the same eigenvectors iff A and B commute (that is, AB = BA).

13.3 Exercises

Exercise 13.1. Consider the matrix A =
[

6 −5
5 −2

]
.

1. Find the eigenvalues and eigenvectors of A. Be careful, there may be complex numbers!

2. If v1 and v2 are the eigenvectors, compute the dot product v1 · v2. Is it a complex or a real
number?

Exercise 13.2. Consider the values λ1 = −3, λ2 = −2, λ3 = 5.

1. Construct two different 3× 3 matrices with λ1, λ2, λ3 as eigenvalues.

2. What are the eigenvectors v1,v2,v3 of the two matrices you created in part (a)?

3. If λ3 = −2, explain why every linear combination of v2 and v3 is an eigenvector.

Exercise 13.3. You are given that a matrix B has eigenvalues −1, 2, 5 and a matrix C has eigenvalues
9, 3, 1. Find the eigenvalues of the matrix

A =

[
B C
0 D

]
=



1 0 1 −2 0 0
−2 2 0 0 0 7
8 0 3 0 8 0
0 0 0 9 −9 0
0 0 0 0 3 0
0 0 0 −5 2 1

 .

Exercise 13.4. Construct a 2 × 2 matrix with eigenvector [ xy ] having eigenvalue λ, and eigenvector
[ zw ] having eigenvector µ.
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Lecture 14: Diagonalization

� Fact 1: Each eigenvalue has at least one nonzero eigenvector. Eigenvectors cannot be the zero
vector.

� Fact 2: An n×n matrix has exactly n eigenvalues, counting multiplicity. These are the roots of
the characteristic polynomial, counting multiplicity.

� Fact 3: It is not always possible to find linearly independent eigenvectors. That is, not every
matrix can be diagonalized.

� Skill 1: Diagonalize a matrix with linearly independent eigenvectors.

� Skill 2: Identify matrices that do not have linearly independent eigenvectors.

� Skill 3: Find eigenvalues and eigenvectors of powers of A and similar matrices to A.

The goal of this section is to reveal within each matrix a diagonal matrix. Diagonal matrices are easier
to deal with, because they act like numbers rather than matrices. That is, multiplication and all other
operations are much easier.

14.1 Diagonalizing matrices

We begin with an example by constructing a matrix from the eigenvectors.

Example 14.1. Let u = [ 1
1 ], v = [ 0

1 ], which are two linearly indepedent vectors in R2. Let A be a
matrix with these two as eigenvectors, and corresponding eigenvalues 2, 3, respectively. Such a matrix
A =

[
a b
c d

]
can be constructed by solving the equations

a+ b = 2
c+ d = 2

b = 0
d = 3

⇐⇒
[
a b
c d

]
=

[
2 0
−1 3

]
.

We already have two equations Au = 2u and Av = 3v, which can be combined into a single equation

A

 | |
u v
| |


︸ ︷︷ ︸

X

=

 | |
2u 3v
| |

 =

 | |
u v
| |

[2 0
0 3

]
︸ ︷︷ ︸

Λ

.

Let X be the matrix with eigenvalues of A as columns, and Λ be the diagonal matrix with eigenvalues
of A on the diagonal. Then AX = XΛ, or Λ = X−1AX. The inverse of X can be constructed because
the rank of X is 2, as the columns are linearly indepedent (that is, the column space is full rank).

Definition 14.2. A matrix A ∈Mn×n can be diagonalized if it has n linearly independent eigenvec-
tors. The process of expressing A as the product

A = XΛX−1 (7)

is called the diagonalization of A.

The order of the eigenvectors in X matches the order of the eigenvalues on the diagonal of Λ.

Remark 14.3. Note that X is not unique, but is unique up to scaling of columns: this follows from
the same observation that eigenvectors are unique only up to scaling. That is, if Ax = λx, then also
A(cx) = λ(cx), so cx is an eigenvector whenever v is an eigenvector, for any nonzero c ∈ R. In terms
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of diagonalization, if A = XΛX−1, continuing from Example 14.1, we could have the eigenvectors 5u
and −7v instead of just u and v. In that case,

X =

 | |
5u −7v
| |

 =

 | |
u v
| |

[5 0
0 −7

]
=⇒ X−1 =

 | |
u v
| |

[5 0
0 −7

]−1

=

[
1/5 0
0 −1/7

] | |
u v
| |

−1

,

and the decomposition in that case is

A =

 | |
u v
| |

[5 0
0 −7

]
︸ ︷︷ ︸

X

Λ

[
1/5 0
0 −1/7

] | |
u v
| |

−1

︸ ︷︷ ︸
X−1

=

 | |
u v
| |

Λ

[
5 0
0 −7

] [
1/5 0
0 −1/7

] | |
u v
| |

−1

=

 | |
u v
| |

Λ

 | |
u v
| |

−1

,

which is the same decomposition as we had previously, with just u and v. We used the fact that
diagonal matrices commute with each other.

Example 14.4. Consider diagonalization for different types of matrices:

� If A = In, then we the eigenvectors are the standard basis vectors of Rn, and the only eigenvalue
is 1. This eigenvalue has multiplicity n, because there are n linearly independent eigenvectors
with the same eigenvalue. That is, A = X = Λ = I.

� If A has all nonzero eigenvalues that are all the same, then A must be a multiple of the identity
matrix. Indeed:

Λ = kI =⇒ A = X−1(kI)X = kX−1IX = kX−1X = kI.

� If A ∈ M4×4 has two nonzero eigenvalues and two zero eigenvalues, then A may be diagonaliz-
able, but not always. For example:

A =


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 , det(A− λI) = λ2((1− λ)(−1− λ)− 3) = λ2(−4 + λ2),

and the roots of the characteristic polynomial are λ = 0 and λ = ±2. By solving the appropriate
matrix equation, we find the nonzero eigenvector / eigenvalue pairs to be

2 for


0
0
1
1

 , −2 for


0
0
−1
3

 .
For the zero eigenvalues, the corresponding eigenvector [ x y z w ]T will have z = 0 and w = 0,
but there will be no conditions on x, y, so by convention we choose e1 and e2 of the standard

62



basis of R4 to be the eigenvectors. Diagonalization still works:
0 0 1 0
0 0 0 1
1 −1 0 0
1 3 0 0


︸ ︷︷ ︸

X


2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

Λ


0 0 3

4
1
4

0 0 −1
4

1
4

1 0 0 0
0 1 0 0


︸ ︷︷ ︸

X−1

=


0 0 0 0
0 0 0 0
0 0 1 1
0 0 3 −1

 = A

However, this works because we essentially have a diagonal block matrix
[

0 0
0 B

]
, and the 2 × 2

matrix B had linearly independent eigenvectors. If we do not have a block matrix form with
zero eigenvalues, then we cannot diagonalize. Consider the matrix

C =

[
1 −1
1 −1

]
, det(C − λI) = (1− λ)(−1− λ) + 1 = λ2,

and the roots of the characteristic polynomial are only λ = 0. The matrix equation to solve is[
1 −1
1 −1

] [
x
y

]
= 0

[
x
y

]
⇐⇒ x− y = 0,

x− y = 0.

It seems like the only eigenvector is [ 1
1 ], but then X = [ 1 1

1 1 ] does not have full rank and can not
be diagonalized.

Remark 14.5. You may be tempted to think that a matrix being invertible is the same as being
diagonalizable, but this is not true. In fact, there is no direct relationship between being invertible
and diagonalizable, as the Venn diagram of such matrices below shows.

diagonalizableinvertible [
3 0
0 2

]
(3− λ)(2− λ)

3, [ 1
0 ] 2, [ 0

1 ]

[
0 0
0 1

]
λ(1− λ)

0, [ 1
0 ] 1, [ 0

1 ]

[
1 1
0 1

]
(1− λ)2

1, [ 1
0 ]

[
1 −1
1 −1

]
λ2

0, [ 1
1 ]

For eigenvalues λi and eigenvectors vi of A, invertibility asks whether or not λi = 0. Diagonalizability
asks whether or not the vi are independent.

Proposition 14.6. If A ∈ Mn×n has n different eigenvalues, then A has n linearly independent
eigenvectors. That is, A is diagonalizable.

14.2 Consequences of diagonalizability

Diagonalizability allows us to make some nice conclusions.

Remark 14.7. Let A ∈ Mn×n be diagonalizable, with eigenvector matrix X and corresponding
eigenvalue matrix Λ. Then:

� For any invertible B ∈ Mn×n, the matrix C = BAB−1 has the same eigenvalues as A, and has
eigenvector matrix BX. Here C and A are called similar matrices.

� For any k ∈ N, the matrix Ak is diagonalizable with the same eigenvectors as A, and with
eigenvalues on the diagonal of Λk.

� If |λi| = |Λii| < 1 for all i, then lim
k→∞

Akx = 0 for any x ∈ Rn.
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All of these facts follow directly from the diagonalizing equation A = XΛX−1. In the last point, for
complex eigenvalues λ = a+ bi, the absolute value is the product of λ with its conjugate λ∗ = a− bi:

|λ| = |a+ bi| = (a+ bi)(a− bi) = a2 − (bi)2 = a− b2i2 = a2 + b2.

Example 14.8. Consider the matrix A =
[

1/6 1/3
−1/6 2/3

]
. The roots of its characteristic polynomial are

given by

0 = det(A− λI) =

(
1

6
− λ
)(
−2

3
− λ

)
+

1

3
· 1

6
= λ2 − 5

6
λ+

1

6
⇐⇒ 0 = 6λ2 − 5λ+ 1,

which factors as 0 = (3λ − 1)(2λ − 1), so the eigenvalues are λ1 = 1
3 and λ2 = 1

2 . By solving the
appropriate matrix equations, we get the correspoinding eigenvectors to be v1 = [ 2

1 ] and v2 = [ 1
1 ], so

the diagonalization of A is

A =

[
2 1
1 1

]
︸ ︷︷ ︸

X

[
1/3 0
0 1/2

]
︸ ︷︷ ︸

Λ

[
1 −1
−1 2

]
︸ ︷︷ ︸X−1.

The eigenvalues of Ak then are computed by the equation

Ak =
(
XΛX−1

)k
= (XΛX−1)(XΛX−1) · · · (XΛX−1) = XΛ(X−1X) · · · (X−1X)ΛX−1 = XΛkX−1,

and Λk =
[

1/3k 0

0 1/2k

]
. Hence the eigenvectors of Ak are the same as those for A, and the eigenvalues

are siomply powers of the original eigenvalues. We can even construct the matrix Ak explicitly:

Ak = XΛkX−1

=

[
2 1
1 1

] [
1/3k 0

0 1/2k

] [
1 −1
−1 2

]
=

[
2/3k 1/2k

1/3k 1/2k

] [
1 −1
−1 2

]
=

1

6k

[
2k+1 − 3k 2(3k − 2k)
2k − 3k 2 · 3k − 2k

]
For example, when k = 5, we have

A5 =
1

7776

[
−179 422
−211 454

]
.

Example 14.9. Recall Markov matrices from Definition 13.8 in Lecture 13. The example we saw has
four eigenvalues and four eigenvectors:

A =


.1 .5 .3 0
.3 .4 .2 .4
.1 .1 0 .4
.5 0 .5 .2

 , Λ ≈


1 0 0 0
0 −.22 + .23i 0 0
0 0 −.22− .23i 0
0 0 0 .13

 , X =

 | | | |
v1 v2 v3 v4

| | | |

 .
A quick check shows that all eigenvalues have modulus less than 1 except the first one. The third
point from Remark 14.7 is a special case when all eigenvalues have modulus less than 1, and directly
implies that λki → 0 for any individual eigenvaluie λi, irrespective of the other eigenvalues (since Λ is
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diagonal). This means that for the Markov matrix A and any x ∈ R4,

lim
k→∞

Akx = lim
k→∞

Ak
(

projv1
(x) + projspan{v1}⊥(x)

)
=

(
lim
k→∞

Akprojv1
(x)

)
+

(
lim
k→∞

Akprojspan{v1}⊥(x)

)
=

(
lim
k→∞

Ak(av1)

)
+

(
lim
k→∞

Ak(bv2 + cv3 + dv4)

)
= a

(
lim
k→∞

Akv1

)
+ b

(
lim
k→∞

Akv2

)
+ c

(
lim
k→∞

Akv3

)
+ d

(
lim
k→∞

Akv4

)
= a

(
lim
k→∞

(1)kv1

)
+ b

(
lim
k→∞

(−.22 + .23i)kv2

)
+ c

(
lim
k→∞

(−.22− .23i)kv3

)
+ d

(
lim
k→∞

(.13)kv4

)
= av1 + 0v2 + 0v3 + 0v4

= projv1
(x).

Here we used some real numbers a, b, c, d to ease notation. Interpreting this result in the context of the
Markov matrix, we get that any initial distribution of resources will approach the (projection to the)
steady state of the system after enough time has passed. This is why steady states are so important
to dynamic systems like Markov matrices.

14.3 Exercises

Exercise 14.1. Decopose both matrices below in their XΛX−1-decomposition, where Λ is a diagonal
matrix with the eigenvalues, and X is the matrix with columns as eigenvectors.

A =

[
2 2
5 5

]
B =

1 2 3
0 4 5
0 0 6


Exercise 14.2. Let A ∈ M3×3 with the eigenvectors

[
1
2
1

]
,
[

0
1
0

]
,
[−1
−1
0

]
and eigenvalues −1, 2,−3,

respectively.

1. Construct the eigenvector matrix X and the eigenvalues matrix Λ.

2. Construct A by the diagonalization equation A = XΛX−1.

Exercise 14.3. Diagonalize the matrices A,B below and find what Ak and Bk look like, for any
k ∈ N. Your answers should have the value k in them.

A =

[
3 −1
−1 3

]
, B =

[
5 1
0 10

]
.
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Part III

Generalizations

Lecture 15: Special matrices

� Fact 1: Symmetric matrices can be decomposed with an orthonormal matrix of eigenvectors.

� Fact 2: Positive definiteness can be expressed in terms of pivots, eigenvalues, determinants, and
matix or vector multiplications.

� Skill 1: Apply the results of the spectral theorem

� Skill 2: Express a symmetric matrix as a sum of rank one matrices

� Skill 3: Check if a matrix is positive definite using equivalent properties

One reason we study symmetric and positive definite matrices is that theytie together pivots, eigen-
values, determinants, and other topics we have seen. Another reason is that ATA and AAT are both
symmetric and positive definite. Understanding ATA and AAT instead of A makes life much easier.

15.1 Symmetric matrices

Recall from Definition 2.12 in Lecture 2 that a matrix A ∈ Mn×n is symmetric if Aij = Aji for all
1 6 i, j 6 n. This property makes many of the previous computations we did before much easier.

Proposition 15.1 (The Spectral Theorem). For S ∈Mn×n symmetric:

� S has real eigenvalues and orthogonal eigenvectors

� S can always be diagonalized

It follows immediately that for S symmetric, its eigenvalue-eigenvector decomposition S = XΛX−1

becomes S = QΛQT , for Q having orthonormal columns. Recall that then its inverse is equal to its
transpose: Q−1 = QT . Although the statement above says “orthogonal”, not “orthonormal”, we can
make the vectors orthonormal by dividing by their length.

Example 15.2. Consider S = [ 1 2
2 4 ]. We can find its eigenvalues by solving

0 = det(S − λI) = (1− λ)(4− λ) = 4 = −5λ+ λ2 = λ(λ− 5),

for which λ1 = 0 and λ2 = 5. We find the eigenvectors by solving[
1 2
2 4

] [
x
y

]
= 0

[
0
y

]
⇐⇒ x+ 2y = 0

2x+ 4y = 0
=⇒

[
x
y

]
=

[
1
−1

2

]
= v1,[

1 2
2 4

] [
x
y

]
= 5

[
0
y

]
⇐⇒ x+ 2y = 5x

2x+ 4y = 5y
=⇒

[
x
y

]
=

[
1
2
1

]
= v2.

These vectors are orthogonal as v1 · v2 = 0. They both have length
√

5/2, so the normalized vectors
are

q1 =

[
2/
√

5

−1/
√

5

]
, q2 =

[
1/
√

5

2/
√

5

]
.

This gives us the diagonalization as[
1 2
2 4

]
︸ ︷︷ ︸

S

=

[
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]
︸ ︷︷ ︸

Q

[
0 0
0 5

]
︸ ︷︷ ︸

Λ

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

]
︸ ︷︷ ︸

QT

.
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Remark 15.3. The fact that S = QΛQT , where Q has orthonormal columns, allows us to write S in
another way. If S ∈M3×3, then

S =

 | | |
u v w
| | |


︸ ︷︷ ︸

Q

λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

Λ

− uT −
− vT −
− wT −


︸ ︷︷ ︸

QT

=

 | | |
λ1u λ2v λ3w
| | |


︸ ︷︷ ︸

QΛ

− uT −
− vT −
− wT −



= λ1uuT + λ2vvT + λ3wwT ,

which is a sum of 3× 3 rank one matrices. This description will be important for the next lecture.

We finish off the first part of this lecture with another comment about the relationship between
pivots and eigenvalues.

Remark 15.4. Let A ∈ Mn×n. Below are the main facts about pivots and eigenvalues summarized,
along with a new one:

� det(A) = (product of pivots) = (product of eigenvalues)

� trace(A) = (sum of eigenvalues)

� (number of pivots > 0) = (number of eigvals > 0) whenever A is symmetric

This last fact is counting multiplicity. It follows from the LDU -decomposition of a symmetric matrix,
which turns into LDLT .

15.2 Positive definite matrices

The second part of this lecture focuses on special types of symmetric matrices.

Definition 15.5. A symmetric matrix with all positive eigenvalues is called positive definite. A
symmetric matrix with some positive and some zero eigenvalues is called (positive) semidefinite.

Finding eigenvalues is computationally intensive for large matrices, so we use the relationship with
pivots from Remark 15.4 to determine when eigenvalues are positive. This gives several quick ways to
determine when a matrix is positive definite.

Example 15.6. The 2 × 2 symmetric matrix
[
a b
b c

]
has pivots a, c − b2

a , so the pivots are positive iff
a > 0 and ac− b2 > 0. For example, all the symmetric matrices[

1 10
10 200

]
,

[
22 −3
−3 2

]
,

[
3 0
0 2

]
are positive definite because they have positive eigenvalues.

Remark 15.7. The n×n positive definite matrix S with eigenvector v and positive eigenvalue λ has

Sv = λv =⇒ vTSv = λvTv = λ(v2
1 + · · · v2

n) > 0.

Even more, for any x ∈ Rn, we can express it as a linear combination a1v1+· · · anvn of the orthonormal
eigenvectors v1, . . . ,vn of S, and by orthonormality of these vectors,

xTSx = (a1v1 + · · ·+ anvn)T (a1λ1v1 + · · ·+ anλnvn) = a2
1λ1‖v1‖2 + · · ·+ a2

nλn‖vn‖2 > 0.

In other words, saying S is positive definite is equivalent to saying that xTSx > 0 for any vector
x ∈ Rn (except of course the zero vector).
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Proposition 15.8. The previous remark has some nice consequences:

� If S, T ∈Mn×n are positive definite, then S + T is positive definite.

� If A ∈Mm×n has independent columns, then ATA is positive definite.

Proof. The first point follows from distributing

xT (S + T )x = xTSx + XTT .

The second point comes from rewriting

xT (ATA)x = (Ax)T (Ax) = ‖Ax‖2 > 0.

The proof of the second claim implies that ATA (and also AAT ) is always positive semidefinite.
We have now arrived at a nice summary of positive definite matrices.

Proposition 15.9. The following statements about S ∈Mn×n symmetric equivalent.

� S is positive definite

� S has all positive pivots

� S has all positive eigenvalues

� Every top-left submatrix of S has positive determinant

� xTSx > 0 for any nonzero x ∈ Rn

� There exists A ∈Mm×n with independent columns and S = ATA

Example 15.10. Let’s check all the claims above on a simple matrix S =
[ 2 −1 0
−1 2 −1
0 −1 2

]
. For the pivots,

we quickly row reduce: 2 −1 0
−1 2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 −1 2

 →

2 −1 0
0 3/2 −1
0 0 4/3


The pivots are 2, 3/2, 4/3, which are all positive. The eigenvalues are the roots of

det(S − λI) =

15.3 Exercises

Exercise 15.1. Let a ∈ R be nonzero.

1. Find the eigenvalues of
[

0 a
−a 0

]
.

2. Find the eigenvalues of
[

0 0 a
0 ia 0
−a 0 0

]
.

3. Using a, construct a 4× 4 skew-symmetric matrix that has all imaginary eigenvalues.

4. Construct a 3× 3 symmetric matrix that has three pivots a and no zero entries.

Exercise 15.2. Let A ∈Mm×n. Show that AAT and ATA are both symmetric matrices.

Exercise 15.3. The numbers a, b, c are chosen randomly from the set of integers {−3,−2, . . . , 2, 3},
with replacement, to create a matrix A =

[
a b
0 c

]
.

1. What is the probability that A is symmetric?
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2. What is the probability that A is positive definite?

Exercise 15.4. Consider the two symmetric matrices below, for a, b ∈ R:

A =

1 2 2
2 a 2
2 2 1

 , B =

b 2 0
2 b 3
0 3 b

 .
1. Find the pivots for both matrices. For what values of a, b will the pivots be positive?

2. Find the eigenvalues for both matrices. For what values of a, b will the eigenvalues be positive?

3. Find the upper left determinants for both matrices. For what values of a, b will the determinants
be positive?

4. Choose some b so that pivots, eigenvalues, determinants are positive. Find theQΛQT -decomposition
for B.
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Lecture 16: Singular value decomposition

� Fact 1: No matter what size A has, AAT and ATA have the same nonzero eigenvalues

� Fact 2: The eigenvectors of AAT and ATA are related by A and the singular values σi

� Fact 3: The SVD contains orthonormal bases of the four fundamental subspaces

� Skill 1: Compute the rank r approximation to A

� Skill 2: Decompose a non-square matrix A by the SVD

This lecture has a very practical application - image compression. An image can be considered as
a matrix with entries in the range of colors. Colors are on a specturm, so there is a minimum and
maximum color number.

16.1 Eigenvalues of symmetric matrices

The word singular so far has been used when talking about matrices. A square matrix is singular if
its determinant is zero, and non-singular otherwise.

Definition 16.1. Let A ∈Mm×n. The singular values of A are

� the square roots of the positive eigenvalues of AAT or ATA, if A is not symmetric;

� the positive eigenvalues of A, if A is symmetric.

The first definition is the same as the second when A is symmetric.

Very often A is not symmetric, but always both AAT and ATA are symmetric. That is they have
real eigenvalues - but they also have the same eignvalues. To see this, note that for λ 6= 0,

ATAx = λx =⇒ AAT (Ax) = λ(Ax),

AATy = λy =⇒ ATA(ATy) = λ(ATy).

That is, λ is an eigenvalue of AAT whenever λ is an eigenvalue of ATA, and λ is an eigenvalue of ATA
whenever λ is an eigenvalue of AAT . This implies that:

� AAT and ATA have the same number k of nonzero eigenvalues, and they are equal

� if AAT has more eigenvalues (when m > n) than ATA, then the extra ones are zero

However, this does not imply that AAT and ATA have the same number of independent eigenvectors!

Example 16.2. Let’s do a quick example before making a general observation about the relationship

of the eigenvectors of AAT and ATA. Consider the matrix A =
[

1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

]
∈M3×5, for which

AAT =

16 19 24
19 25 33
24 33 45

 ∈M3×3, ATA =


14 14 14 15 18
14 14 14 15 18
14 14 14 15 18
15 15 15 17 21
18 18 18 21 27

 ∈M5×5.

We can find the eigenvalues and eigenvectors of both AAT and ATA, as they are square:

AAT : (λ1, λ2, λ3) ≈ (83.38, 2.49, 0.13)

ATA : (λ1, λ2, λ3, λ4, λ5) = (83.38, 2.49, 0.13, 0, 0)
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Applying the decomposition from Remark 15.3, we can write them as sums of rank one matrices. We
do this only for AAT :

AAT ≈ 83.38︸ ︷︷ ︸
λ1

0.17 0.23 0.3
0.23 0.3 0.4
0.3 0.4 0.53


︸ ︷︷ ︸

u1uT
1

+ 2.49︸︷︷︸
λ2

 0.69 0.08 −0.45
0.08 0.01 −0.05
−0.45 −0.05 0.3


︸ ︷︷ ︸

u2uT
2

+ 0.13︸︷︷︸
λ3

 0.14 −0.31 0.15
−0.31 0.69 −0.34
0.15 −0.34 0.17


︸ ︷︷ ︸

u3uT
3

.

Notice the very large eigenvalue and the two smaller ones. This decomposition will be useful when we
ignore the smaller eigenvalues.

Remark 16.3. Let A ∈ Mm×n. Let u1, . . . ,um ∈ Rm be the eigenvectors of AAT and v1, . . . ,vn ∈
Rn be the eigenvectors of ATA. Without loss of generality, we assume that n > m, so vm+1, . . . ,vn
are all eigenvectors for the zero eigenvalue. Let σ1, . . . , σm ∈ R be such that

AATui = σ2
i ui and ATAvi = σ2

i vi,

for all i = 1, . . . ,m. We may do this because AAT and ATA are both positive semidefinite (so we can
take square roots of the eigenvalues). We use σ instead of λ because these are the singular values -
the letter σ is the letter “s” in English. The relationship among the ui, vi, σi and the original matrix
A is then given by

ATui = σivi and Avi = σiui,

as multiplying the left equation by A on the left means the equation on the right must be true (for
the previous equation to hold). We now get a decomposition

A

 | | |
v1 v2 · · · vm
| | |

 =

 | | |
σ1u1 σ2u2 · · · σmum
| | |

 ,
which, after using the orthonormality of the eigenvectors v1, . . . ,vm and decomposing the right side,
becomes

A =

 | | |
u1 u2 · · · um
| | |



σ1

σ2

. . .

σm



− vT1 −
− vT2 −

...
− vTm −

 = σ1u1v
T
1 + σ2u2v

T
2 + · · ·+ σmumvTm.

We now consider an examle of how decomposition lets us reduce the size of information.

Example 16.4. Suppose we want to transmit via some medium the flag of Latvia, as a matrix:

L =


r r r r r r r r r r
r r r r r r r r r r
w w w w w w w w w w
r r r r r r r r r r
r r r r r r r r r r


There are 50 pieces of information, but we can easily see this is a rank one product of two vectors:

L = uvT =


r
r
w
r
r

 [1 1 1 1 1 1 1 1 1 1
]
.

So now instead of sending 5 × 10 pieces of data, we can just send 5 + 10, a 70% reduction in size.
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What if the flag is more complex, such as the flag of navy ships of Latvia:

W =



w w w r w r w w w
w w w r w r w w w
r r r r w r r r r
w w w w w w w w w
r r r r w r r r r
w w w r w r w w w
w w w r w r w w w


.

We can reduce the 7× 9 pieces of data by singular value decomposition. For ease of notation, change
r to 1 and w to 0. We then simply compute the eigenvalues and eigenvectors of WW T and W TW .
We are lucky and see there are only 2 nonzero eigenvalues:

(σ2
1, σ

2
2) ≈ (18.93, 5.07), u1 ≈



−0.23
−0.23
−0.63

0
−0.63
−0.23
−0.23


,u2 ≈



−0.44
−0.44
0.33

0
0.33
−0.44
−0.44


, v1 ≈



−0.29
−0.29
−0.29
−0.5

0
−0.5
−0.29
−0.29
−0.29


,v2 ≈



0.29
0.29
0.29
−0.5

0
−0.5
0.29
0.29
0.29


.

Reducing from 7× 9 = 63 to 2 + 2× 7 + 2× 9 = 34 is done by the decomposition

W = σ1u1v
T
1 + σ2u2v

T
2 .

Definition 16.5. Let A ∈Mm×n, and let σ1, σ2, . . . be the eigenvalues of AAT (or ATA) in decreasing
order. The rank r approximation of A is the sum

σ1u1v
T
1 + · · ·+ σrurv

T
r ∈Mm×n,

for every 1 6 r 6 rank(A).

16.2 Bases in the decomposition

The rank r approximation to A ∈ Mm×n, for r 6 rank(A) 6 min{m,n}, gives a decomposition of A
into three matrices, using eigenvalues and eigenvectors of AAT and ATA:

A =

 | | |
u1 u2 · · · ur
| | |


︸ ︷︷ ︸

eigenvectors of AAT


σ1

σ2

. . .

σr


︸ ︷︷ ︸

eigenvalues


− vT1 −
− vT2 −

...
− vTr −


︸ ︷︷ ︸

eigenvectors of ATA

. (8)

This equation can be generalized, and it reveals bases for the four fundamental subspaces that we
have already seen in Lecture 6.

Definition 16.6. The singular value decomposition of A ∈Mm×n is A = UΣV T , where

� U ∈Mm×m has the eigenvectors of AAT as columns,

� V ∈Mn×n has the eigenvectors of ATA as columns,

� Σ ∈ Mm×n has the eigenvalues of AAT (or ATA) on the diagonal of its upper left rank(A) ×
rank(A) submatrix, in decreasing order from the largest in Σ11.

72



The order of the eigenvectors in U and V corresponds to the order of the eigenvalues in Σ. Moreover,
this decomposition contains orthonormal basis vectors of other subspaces:

column space left nullspace
m− r rows,
n− r columns

row space

nullspace

A =

 | | | |
u1 · · · ur ur+1 · · · um
| | | |



σ1

. . . 0
σr

0 0





− vT1 −
...

− vTr −
− vTr+1 −

...
− vn −



The vectors ui are called the left singular vectors and the vi are called the right singular vectors of A.

Example 16.7. Let’s compute the full SVD for a matrix, and get the appropriate bases. Consider

A =

 1 1
2 2
−1 −1

 , AAT =

 2 4 −2
4 8 −4
−2 −4 2

 , ATA =

[
6 6
6 6

]
.

It is immediate that A has rank 1, as the rows are all multiples of the first row. We already know
both ATA and AAT have the same eigenvalues, so we just find them for the easier of the two, ATA.
The roots of the characteristic polynomial are found by

0 = det(ATA− λI) = (6− λ)2 − 36 = 36− 12λ+ λ2 − 36 = λ2 − 12λ = (λ− 12)λ,

so the eigenvalues are 12 and 0. Hence the only singular value is σ1 = 2
√

3. To find the eigenvectors,
we row reduce the appropriate augmented matrices, remembering to normalize the eigenvectors.

12 for AAT :

−10 4 −2 0
4 −4 −4 0
−2 −4 −10 0

 RREF−−−−−→

1 0 1 0
0 1 2 0
0 0 0 0

 =⇒ u1 =

−1/
√

6

−2/
√

6

1/
√

6


0 for AAT :

 2 4 −2 0
4 8 −4 −0
−2 −4 2 0

 RREF−−−−−→

1 2 −1 0
0 0 0 0
0 0 0 0

 =⇒ u2 =

1/
√

2
0

1/
√

2

 ,u3 =

−2/
√

5

1/
√

5
0


12 for ATA :

[
−6 6 0
6 −6 0

]
RREF−−−−−→

[
1 −1 0
0 0 0

]
=⇒ v1 =

[
1/
√

2

1/
√

2

]
0 for ATA :

[
6 6 0
6 6 0

]
RREF−−−−−→

[
1 1 0
0 0 0

]
=⇒ v2 =

[
−1/
√

2

1/
√

2

]
We could have also found v1 by ATu1 = 2

√
3v1. This gives us the complete decomposition

A =

−1/
√

6 1/
√

2 −2/
√

5

−2/
√

6 0 1/
√

5

1/
√

6 1/
√

2 0


︸ ︷︷ ︸

U

3
√

2 0
0 0
0 0


︸ ︷︷ ︸

Σ

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
︸ ︷︷ ︸

V T

,

as well as bases

col(A) = span


−1/

√
6

−2/
√

6

1/
√

6

 , null(AT ) = span


1/
√

2
0

1/
√

2

 ,
−2/

√
5

1/
√

5
0

 ,

row(A) = span

{[
1/
√

2

1/
√

2

]}
, null(A) = span

{[
−1/
√

2

1/
√

2

]}
.
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Remark 16.8. If A is symmetric, then the SVD is the same as the QΛQT -decomposition. In this
way, the SVD is a more general decomposition that captures the nice properties of the QΛQT -
decomposition.

16.3 Exercises

Exercise 16.1. This question uses Python. You may use the folowing resources:

� Sample code: jlazovskis.com/teaching/linearalgebra

� Sample images: links.uwaterloo.ca/Repository.html

Find a grayscale image online at least 100× 100 pixels in size. It does not have to be square.

1../ Find the singular values of the image. How many of them are less than 1/100 of the largest
singular value?

2../ Compute the rank r approximation to the image for r = 1, 2, 3, 5, 10.

3. If the image had size m× n, what is the percent reduction in size for the rank r approxmation?

Exercise 16.2. Let a ∈ R6=0, and consider the matrix

A =

[
a 0 a 0
0 0 0 2a

]
.

1. Compute the SVD of A by finding the eigenvalue / eigenvector pairs for AAT and ATA.

2. What are the dimensions of the four fundamental subspaces of A?

Exercise 16.3. 1. Construct a 3× 4 matrix with singular values 1, 2, 3.

2. Construct a 2× 2 rank 1 matrix with right singular vectors
[

1/2√
3/2

]
,
[
−
√

3/2
1/2

]
.

3. Find the rank 1 and rank 2 approximations for

A =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

 .
Hint: Since two eigenvalues are the same, there are two rank 2 approximations!
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Lecture 17: Principal component analysis

Chapter 7.3 in Strang

� Fact 1: The first principal component solves the perpendicular least squares problem

� Fact 2: The first two principal components give a reasonable way to plot high-dimensional data

� Skill 1: Solve the perpendicular least squares problem using SVD

� Skill 2: Identify the principal components of A ∈Mm×n, in terms of the total covariance of A

� Skill 3: Normalize and center data on its mean

In the previous lecture, we saw how to simplify fully known images (thought of as a matrix A), like a
flag, for compressed communication, using the singular value decomposition of the symmetric matrices
AAT and ATA.

17.1 The first significant direction

All data used in this lecture is available on the course website jlazovskis.com/teaching/linearalgebra.

Example 17.1. Consider the following data set, representing the number of instructors (x-value) and
the number of students (y-value) at 32 different post-secondary institutions in Latvia.

x-value 1531 904 509 305 182 142 120 101 88 75 71 65 58 54 47 45

y-value 15260 14006 9541 3891 2068 563 876 1218 1650 662 769 695 1406 441 557 1079

x-value 44 41 37 36 30 25 22 22 20 18 15 15 13 12 10 2

y-value 670 667 1076 593 393 354 261 50 567 261 211 155 111 153 262 33

Each column (an (x, y)-pair) is a sample, so we can costruct a sample matrix A ∈M2×32.

Definition 17.2. Let A ∈ Mm×n and consider each of the n columns of A as a sample. The mean-
centered matrix of A is M ∈Mm×n, with

Mij = Aij −
1

n

n∑
k=1

Aik︸ ︷︷ ︸
mean of row i

.

The sample covariance matrix of A is S = AAT

n−1 ∈Mm×m.

We then create the mean-centered and sample covariance matrices for the data above:

M =

[
1385.41 758.41 363.41 · · · −133.59 −135.59 −143.59
13369.41 12115.41 7650.41 · · · −1737.59 −1628.59 −1857.59

]
,

S =

[
73909.14 864786.84
864786.84 10971745.39

]
.

Next, we compute the SVD of the sample covariance matrix S. Since S is already symmetric, the
matrices U and V are the same. The eigenvector with the largest eigenvalue identifies the principal
component of A ∈ Mm×n, as a 1-dimensional subspace of Rm that does the best job (that a 1-
dimensional subspace could do) of approximating all the data:

S =

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

U

[
11039942.91 0

0 5711.62

]
︸ ︷︷ ︸

Σ

[
−0.0786 −0.9969
−0.9969 0.0786

]
︸ ︷︷ ︸

V T

. (9)
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Here the first eigenvalue dominates the second one, indicating the data is very close to a straight line.
The straight line is given by the eigenvector corresponding to the large eigenvalue.

Definition 17.3. Let A ∈Mm×n.

� For each 1 6 i 6 m, the variance of coordinate i is Sii.

A large variance means coordinate i is spread out, and a small variance means coordinate i is densely
packed.

� For each 1 6 i, j 6 m, the covariance of coordinate i with coordinate j is Sij = Sji.

A large positive covariance means coordinate i increases when coordinate j increases, and a large
negative covariance means coordinate i decreases when coordinate j increases.

� The total variance of A is trace(S).

Remark 17.4. The variance of our data, as seen in (9), is trace(S) = λ1 + λ2 ≈ 1.4 × 107, and the
first principal component accounts for λ1/trace(S) ≈ 0.99, or about 99% of the total covariance. In
general, it may take more than the first principal component to accont for so much of the covariance
- your choice of when to stop determines the princial components of the data.

The line best approximating the data from Example 17.1 is:

for mean-centered data: y ≈ −0.9969

−0.0786
x ≈ 12.68x

for original data: y ≈ 12.68(x− (mean of x-values)) + (mean of y-values)

≈ 12.68x+ 44.37

Remark 17.5. The first principal component of A solves the perpendicular least squares problem.
That is, the first eigenvector minimizes the square of the distance from its line to the data. This is
alternative to the least squares solution we saw in Lecture 8, which minimized the the vertical distance.

17.2 PCA for higher dimensions

In the first part of this lecture we used only a 2-dimensional data set, and considered only one
principal component. More often than not the data we see is many-dimensional, and has more than
one important component.

Example 17.6. Consider data given by A ∈ M10×41, representing individual results from decathlon
completitions. Since 10 dimensions are very difficult to visualize, we will project the data to the two
largest principal components:

A =


11.04 10.76 · · · 11.23 11.36
7.58 7.40 · · · 6.99 6.68

...
...

. . .
...

...
291.70 301.50 · · · 281.70 296.12


However, the each coordinate has different ranges: comparing the data this way gives more wieght to
coordinates with a larger range, even if the range has nothing to do with its importance. To compare
everything with the same weight, we need to normalize.

Definition 17.7. Let x ∈ Rn. The normalization x̂ of the vector x means one of two things:

� scale the vector so that it has unit length: x̂ = x
‖x‖

� shift and scale the vector so that it lies in [0, 1]n: x̂ = x−m
M−m , where m = mini xi, M = maxi xi,

and m = [m m · · · m]T .
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The second case is also called min-max normalization, and is used when x represents parts of many
samples, as in our current example.

We normalize each row of A, then center it at its mean. From this matrix we construct the sample
covariance matrix S and get its two principal components.

Anorm, cent ≈


0.03 −0.2 · · · 0.19 0.3
0.24 0.1 · · · −0.2 −0.43

...
...

. . .
...

...
0..23 0.41 · · · 0.05 0.31

 λ1 = 0.192
λ2 = 0.095

u1 =


−0.35
0.36

...
0

 , u2 =


−0.26
0.35

...
−0.1

 .
In this case, the two principal components account for only (λ1 + λ2)/trace(S) ≈ 0.51 of the total
variance. This means that no pairs of coordinates had high covariance.

Projecting each sample to the subspace spanned by two principal components gives a nice spread-out
picture of the data. We can also overlay the 10 individual disciplines in the decathlon to see a shadow
of the original 10-dimensional space.

17.3 Exercises

Exercise 17.1. Find samples of high-dimensional (at least 4) data online.

1. Construct the sample covariance matrix S and find the two largest eigenvalue / eigenvector pairs
from its SVD.

2. What percentage of the total covariance do the first two principal components cover?

3. Plot the data on the axes of the two principal components.

4. Create two plots of the data having for axes:

(a) the first principal component against the coordinate with the highest (in magnitude) asso-
ciation

(b) the second principal component against the coordinate with the highest (in magnitude)
association

Exercise 17.2. Create a matrix of 2-dimensional data for which the first principal component of the
data is a multiple of the eigenvector [ ab ], for a, b ∈ R6=0. Make sure that:

� the matrix has at least 3 columns (samples),

� no 3 samples are colinear.

Exercise 17.3. 1. Create a matrix of 3-dimensional data for which first two principal components
are the vectors [ 1 0 0 ]T and [ 0 1 0 ]T . Make sure that:
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� the data is centered at 0,

� the matrix has at least 4 columns (samples),

� no 3 samples are colinear.

2. Do the same as in part (a), but change the last condition to “no 4 samples lie on a plane.”
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Lecture 18: Linear transformations

Chapters 8.1 and 8.2 in Strang

� Fact 1: A linear transformation is the same thing as a matrix.

� Fact 2: A linear transformtion is injective iff it is surjective.

� Skill 1: Determine whether or not a function is a linear transformation.

� Skill 2: Construct a matrix for a linear transformation, given what it does to a basis.

� Skill 3: Construct the image and kernel of a linear transformation

In this lecture, we will make the connection between m × n matrices and functions Rn → Rm. We
have already seen the interpretation of a matrix as a function with the rotation matrix Rθ in Lecture
7. By the end of this lecture, we will see that every such function comes from a matrix.

18.1 Types of linear transformations

Definition 18.1. Let V,W be vector spaces. A linear transformation, or linear map, is a function
f : V →W that satisfies

f(x + y) = f(x) + f(y) and f(cx) = cf(x) (10)

for every x,y ∈ V and every c ∈ R. These are conditions for linearity .

Example 18.2. We have already seen examples (and non-examples) of linear transformations:

� Every m× n matrix is a linear transformation Rn → Rm, because A(x + y) = Ax +Ay.

� The dot product of [ ab ] with anything in R2 is a linear transformation R2 → R, because[
a
b

]
· (x + y) =

[
a
b

]
· x +

[
a
b

]
· y.

� Differentiation and integration on C[R] is linear.

� The shift function x 7→ x + y for nonzero y is not linear, because splitting up the function on
two vectors adds 2y instead of just y.

� The length function is not a linear transformation Rn → R, becausewwww[12
]wwww =

wwww[−1
−2

]wwww =
√

3, but

wwww[12
]

+

[
−1
−2

]wwww =

wwww[00
]wwww = 0 6= 2

√
3.

Proposition 18.3. Any linear map V →W is completely determined by what it does to the basis of
V .

This follows immediately by linearity. Another way to say the above proposition is that choosing a
basis v1, . . . ,vn of V and taking any (not necessarily linearly independent!) vectors w1, . . . ,wn ∈W ,
there is only one unique linear map f : V →W for which f(vi) = wi, for all i.

Definition 18.4. Let f : V →W be a linear transformation.

� The kernel of f is ker(f) = {x ∈ V : f(x) = 0} ⊆ V

� The image, or range of f is im(f) = {f(x) ∈W : x ∈} ⊆W
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Note that ker(f) ⊆ V is a subspace of V , and im(f) ⊆W is a subspace of W .

Example 18.5. For f(x) = Ax, multiplication by a matrix, the kernel is the nullspace and the image
is the column space. That is,

ker(f) = null(A), im(f) = col(A).

Recall that a function f : X → Y is injective, or one-to-one, if f(a) = f(b) implies a = b. Further,
the function f is surjective, or onto, if for every y ∈ Y there exists x ∈ X such that f(x) = y. We
will apply these concepts to linear transformations.

Proposition 18.6. Let f : V →W be linear.

� f is injective iff ker(f) = {0}

� if dim(W ) = dim(im(f)), then f is surjective.

Proof. For the first point, if ker(f) = {0}, then we immediately get injectivity. For any x,y ∈ V ,

f(x) = f(y) ⇐⇒ f(x)− f(y) = 0 ⇐⇒ f(x− y) = 0 =⇒ x− y = 0 ⇐⇒ x = y.

Conversely, suppose that f is injective. If there is some nonzero z ∈ ker(f), then f(z) = 0. But we
already know that f(0) = 0, so f(0) = f(z), but 0 6= z, violating injectivity.

The second point follows immediately by the fact that im(f) ⊆W and by Remark 5.13.

Definition 18.7. A linear transformation f : V → W that is both injective and surjective is an
isomorphism.

You may have seen the word bijective be used for functions that are both injective and surjective,
but for linear maps we use this special word. Isomorphisms are important because they preserve the
fundamental structure of the vector space V .

Example 18.8. We have already seen examples of isomorphisms:

� The map f : Rn → Rn with f(x) = 2x is an isomoprhism.

� The change of basis matrix from Lecture 5 is an isomorphism

� The dot product of any vector in R2 with (−1, 2) is not an isomoprhism, as it fails injectivity:
(3, 4) · (−1, 2) = (−5, 0) · (−1, 2).

18.2 The matrix of a linear transformation

Theorem 18.9. Let f : Rn → Rm be linear. Then there is a unique matrix A for which Ax = f(x)
for all x ∈ Rn.

Proof. First we do this proof in a special case, using the standard bases e1, . . . , en for Rn and e1, . . . , em
for Rm. By Proposition 18.3, f is completely determined by what it does on the ei. Suppose that

f(e1) = a11e1 + · · ·+ am1em,

f(e2) = a12e1 + · · ·+ am2em,

...

f(en) = a1ne1 + · · ·+ amnem,

for some aij ∈ R. Then on an arbitrary x = b1e1 + · · ·+ bnen ∈ Rn, the linear map f takes it to

f(x) = f(b1e1 + · · ·+ bnen)

= b1f(e1) + · · ·+ bnf(en)

= b1(a11e1 + · · ·+ am1em) + · · ·+ bn(a1ne1 + · · ·+ amnem)

= (b1a11 + · · ·+ bna1n)e1 + · · ·+ (b1am1 + · · · bnamn)em.
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Since ei is all zeros except a 1 on line i, the last line above can be rewritten as
b1a11 + · · ·+ bna1n

b2a21 + · · ·+ bna2n
...

b1am1 + · · · bnamn

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸

A


b1
b2
...
bn

 = A(b1e1 + · · ·+ bnen) = Ax.

So in this case, f is exactly A.
In the general case, where v1, . . . ,vn is some basis for Rn and w1, . . . ,wm is some basis for Rm,

construct the change of basis matrices CV , that takes the vi to the ei, and CW , that takes the wi to
the ei. Then the matrix of the function f is C−1

W ACV .

This statement has several implications. Combining the rank-nullity theorem from Lecture 6 along
with observations above, we immediately get the following.

Corollary 18.10. Let f : V →W be linear, with dim(V ) = dim(W ).

� [Dimension Theorem] dim(V ) = dim(ker(f)) + dim(im(f))

� The map f is surjective iff it is injective

Proof. The first point follows by the rank-nullity theorem and applying Theorem 18.9 in Example 18.5
to describe every linear map as a matrix.

The second point follows immediately from the first point and Proposition 18.6.

Remark 18.11. We also get a nice result for compositions of linear maps. Given two linear maps
f : V →W and g : W → Z, their composition is a linear map (g ◦f) : V → Z (you will check this in an
exercise). If f, g have associated matrices A,B, respectively, then the composition g ◦f has associated
matrix BA. This follows by using the equations f(x) = Ax and g(y) = B(y) in simplifying

(g ◦ f)(x) = g(f(x)) = g(Ax) = B(Ax) = (BA)x.

18.3 Exercises

Exercise 18.1. Consider the following transformations Ti:

T1


x
y
z
w

 =


w
y
z
x

 T2

[
x
y

]
=

[
2ey

x

]
T3

[
x
y

]
=

[
x2

y2

]
T4

[
x
y

]
=

[
sin(x2 + y2)
cos(x2 + y2)

]

T5

xy
z

 =

3y + x
0

x2 − y

 T6

[
x
y

]
=


0
0
0
0

 T7

xy
z

 =

[
−3x
z + y

]
T8

xy
z

 =

2x+ 2y
y + z

0


1. Which of the Ti are linear? For those that are not, give a counterexample in which one of the

linearity conditions fail. For those that are, give the associated matrix.

2. Let S : R3 → R3 be the linear transformation for which

ST5

1
0
0

 =

1
0
1

 , ST8

0
1
0

 =

0
1
1

 , ST8

0
0
1

 =

1
1
0

 .
Construct the 3× 3 matrix of S.

Exercise 18.2. Prove the claim from Definition 18.4 that the kernel and image of f : V → W are
subspaces of V and W , respectively. Use linearity to check the vector space conditions.
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Exercise 18.3. Let f : V → W be a linear transformation, and let v1, . . . , vn be a basis of V . Show
that f is injective iff the set of vectors f(v1), . . . , f(vn) ⊆W is linearly independent.

Exercise 18.4. Consider the three orthogonal vectors

x =

1
0
3

 , y =

 3
0
−1

 , z =

 0
−2
0

 .
1. Find the unit vectors x̂, ŷ, ẑ.

2. Construct a symmetric matrix A of full rank for which the unit vectors from part (a) are
eigenvectors.

3. Let f : R3 → R3 be the linear transformation for which

f(x) =

1
1
0

 , f(y) =

−1
−1
−1

 , f(z) =

 0
1
−1


Construct the 3× 3 matrix for f .

Exercise 18.5. Let V be the vector space of polynomials in two variables x and y of degree at most
2. This space has dimension 6, and has basis with basis 1, x, y, x2, y2, xy. Let L : V → V be the linear
operator defined by L(f(x, y)) = f(x− y, y − x).

1. Find the matrix of L using the basis specified.

2. Find a basis for the image and kernel of L.

Exercise 18.6. Prove the claim from Remark 18.11 that the composition of two linear maps is linear.
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Lecture 19: Jordan form

Chapter 8.3 in Strang

� Fact 1: Every square matrix is similar to a square matrix in Jordan normal form.

� Fact 2: Jordan normal form generalizes diagonalization by introducing generalized eigenvectors.

� Skill 1: Construct the Jordan normal form of a square matrix.

� Skill 2: Find the higher rank generalized eigenvectors when geometric multiplicity exceeds alge-
braic multiplicity.

In this section we will see yet another decomposition, the Jordan normal form. This will be a more
general decomposition for square matrices, giving us a nice result even when the matrix is not full
rank or has repeated eigenvalues.

19.1 Jordan blocks and generalized eigenvectors

Previously in Example 14.4 in Lecture 14 we saw the idea of multiplicity . We now revisit it and give
it two similar but related meanings.

Definition 19.1. Let A ∈Mm×n have characteristic polynomial χ(λ). For λi an eigenvalue of A:

� the exponent m of the factor (λ− λi)m of χ is the algebraic multiplicity of λi

� the number of linearly independent eigenvectors of A having λi as an eigenvalue is the geometric
multiplicity of λi.

Example 19.2. Here we show examples of matrices with different algebraic and geometric multiplic-
ities. Consider the matrices

A =

[
2 0
0 2

]
, B =

[
2 2
0 2

]
.

Both matrices have eigenvalue λ = 2. Here A has algebraic multiplicity and geometric multiplicity 2
of λ. The matrix B has algebraic multiplicity 2 but geometric multiplicity 1 of λ. However, not all
combinations of these two numbers are possible: whenever λ is an eigenvalue, we have

1 6 (geometric multiplicity of λ) 6 (algebraic multiplicity of λ) 6 rank(A).

The inequality on the left follows as having an eigenvalue λ means det(A−λI) = 0, which, by Exercise
11.4 is equivalent to saying (A− λI)x = 0 for some x. Hence we always have at least one eigenvector
for every eigenvalue.

Definition 19.3. Let A ∈Mn×n. The Jordan normal form of A is the matrix

J =


J1

J2

. . .

Js

 ,
where every J1, . . . , Js is a Jordan block . A Jordan block is a matrix

Ji =


λi 1

λi
. . .
. . . 1

λi

 ,
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where λi is an eigenvalue of A. For every i, the number of Jordan blocks with eigenvalue λ is the
geometric multiplicity of λ. Jordan normal form is also known under the names normal form or Jordan
canonical form.

To get the size of each Jordan block, we need to do some more work.

Remark 19.4. Note that the eigenvalue / eigenvector pairs of A are the same as those of J . Indeed,
consider the matrix in Jordan normal form

J =


2 1

2
1

0

 , det(J − λI) = (2− λ)2(1− λ)λ.

Both the matrix A ∈ M4×4 that J represents and J itself have three eigenvalues, λ1 = 2 (with
multiplicity 2), λ2 = 1, λ3 = 0. The eigenvectors of J are

u1 =


1
0
0
0

 , u2 =


0
0
1
0

 , u3 =


0
0
0
1

 .
The vector that is naturally missing from this list is u∗1 = [ 0 1 0 0 ]T , which seems like it should be also
associated to λ1. We call this the generalized eigenvector . It is clear that Ju∗1 6= 0, but we do have

(J − 2I)u∗1 = u1 or (J − 2I)2u∗1 = 0.

Definition 19.5. Let A ∈ Mn×n with Jordan normal form J and eigenvalue λ. A vector x ∈ Rn is
a generalized eigenvector associated to λ if (J − λI)kx = 0 for some k > 1. If additionally we have
(J − λI)k−1x 6= 0, then k is the rank of the generalized eigenvector x.

Remark 19.6. Every Jordan block has one (rank 1) generalized eigenvector, and the rest have higher
rank. If a Jordan block of the eigenvalue λ has size m, then there is a cycle of generalized eigenvectors
u1, . . . ,um, where ui has rank i and

(J − λI)ui+1 = ui or (J − λI)m−ium = ui (11)

for all i = 1, . . . ,m. This implies that (J − λI)iui = 0 and (J − λI)i−1ui 6= 0.

Example 19.7. If we have the eigenvector with the highest rank in the cycle, we can generate the
others. Consider

J =



2 1
2

2 1
2 1

2 1
2 1

2


,

which has only one eigenvalue λ = 2, with algebraic multiplicity 7, geometric multiplicity 2 and two
Jordan blocks associated to it. The rank 1 eigenvectors are

u1 = [ 1 0 0 0 0 0 0 ]T , v1 = [ 0 0 1 0 0 0 0 ]T .

To get the higher rank generalized eigenvectors, we check the positions of the 1’s above the diagonal.
It is immediate that

u2 = [ 0 1 0 0 0 0 0 ]T , v2 = [ 0 0 0 1 0 0 0 ]T , · · · v5 = [ 0 0 0 0 0 0 1 ]T .

The relationship is also (J − 2I)v5 = v4, (J − 2I)2v5 = v3, and so on.
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19.2 Similar matrices and Jordan’s theorem

We have already seen similar matrices in Remark 14.7 in Lecture 14. A matrix B is similar to a
matrix A if there exists an invertible matrix C with B = C−1AC. Here we revisit the idea, making
precise the relationship between the matrices A and J .

Remark 19.8. Similar matrices do not have the same eigenvectors, but they do have the same
eigenvalues. The eigenvectors of similar matrices are related: If B = C−1AC has eigenvector x with
eigenvalue λ, then

Bx = λx =⇒ C−1ACx = λx =⇒ A(Cx) = λ(Cx).

That is, Cx is an eigenvector of A with eigenvalue λ.

Now we combine similr matrices with generalized eigenvectors. Fortunately, generalized eigenvec-
tors apply to any matrix, not just matrices in Jordan form.

Example 19.9. Consider the following matrix A, which has a single eigenvalue λ = 6 with algebraic
multiplicity 4 and geometric multiplicity 1:

A =


9 −1 −1 −3
−3 5 1 1
5 −5 5 −9
3 1 −1 5

 , u1 =


1
−1
1
1

 .
How do we find its generalized eigenvectors? We apply equation (11) from Remark 19.6 above:

(A− 6I)u2 = u1 ⇐⇒


3 −1 −1 −3
−3 −1 1 1
5 −5 −1 −9
3 1 −1 −1



x
y
z
w

 =


1
−1
1
1



⇐⇒


3 −1 −1 −3 1
−3 −1 1 1 −1
5 −5 −1 −9 1
3 1 −1 −1 1

 RREF−−−−−→


1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 −1
0 0 0 0 0

 ,
and so u2 = [ 1 −1 0 1 ]T . We similarly solve (A − 6I)u3 = u2 and (A − 6I)u4 = u3 to get the matrix
B ∈M4×4, which has the generalized eigenvectors as its columns. Moreover, we notice that

B−1AB =


−3 −1 1 2
5 1 −1 −3
−2 −4 0 −2
0 4 0 4


︸ ︷︷ ︸

B−1


9 −1 −1 −3
−3 5 1 1
5 −5 5 −9
3 1 −1 5


︸ ︷︷ ︸

A


1 1 1

2
1
2

−1 −1 −1 −3
4

1 0 −3
2 −5

4
1 1 1 1


︸ ︷︷ ︸

B

=


6 1 0 0
0 6 1 0
0 0 6 1
0 0 0 6

 ,

which is the Jordan form of A. This leads us to this lecture’s big theorem.

Theorem 19.10 (Jordan). For every A ∈ Mn×n, there exists an invertible B ∈ Mn×n such that
J = B−1AB is in Jordan normal form. The matrix B has the generalized eigenvectors of A as
columns.

Remark 19.11. Let A ∈Mn×n with J = B−1AB in Jordan normal form, and let C be similar to A.
That is, there exists some D ∈Mn×n with C = DAD−1. It follows that

J = B−1AB = B−1(D−1CD)B = (DB)−1C(DB),

so C has the same Jordan normal form as A.
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Remark 19.12. If the eigenvectors of A are all linearly independent, then the Jordan normal form
J = Λ of A will be diagonal with eigenvalues on its diagonal, and the generalized eigenvectors in
B = X will all be of rank 1. Then the Jordan normal form decomposition becomes the XΛX−1

decomposition from Lecture 14.

19.3 Exercises

Exercise 19.1. How many different matrices inM7×7, up to similarity, are there with one eigenvalue
λ = 2 that has algebraic multiplicity 2 and

1. geometric multiplicity 2?

2. geometric multiplicity 3?

3. any geometric multiplicity?

Exercise 19.2. Let J ∈ M6×6 be a matrix in Jordan form with two eigenvalues 3 (having algebraic
multiplicity 4 and geometric multiplicity 2) and −3 (having algebraic multiplicity 2 and geometric
multiplicity 1).

1. How many Jordan blocks will J have? Give the two possibilities for their sizes.

2. Suppose that the Jordan blocks of J all have the same size. Find a matrix B that is similar to
J and has no zero entries.

3. For the matrix B from part (b), find all its generalized eigenvectors.
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Lecture 20: Complex numbers and complex matrices

Chapters 9.1 and 9.2 in Strang

� Fact 1: All that we have done so far can be considered over C instead of R

� Fact 2: Complex number adition and multiplication have geomtric meaning

� Skill 1: Express a complex number in one of four different ways

� Skill 2: Apply the new results for Hermitian vectors and matrices

In this lecture we will take some time to introduce fully the topic of coplex numbers. The goal is to
get a better feel for them - almost all the results we have seen so far apply to them as well! And there
are more nicer consequences.

20.1 The space of complex numbers

Definition 20.1. The complex numbers are elements of the set C = {x+yi : x, y ∈ R}. The symbol
i is the imaginary number , having the property that i2 = −1.

Let z = x + yi and w = a + bi be complex numbers. Addition and multiplication are defined in
the following way:

z + w = (a+ x) + (y + b)i

zw = xa+ xbi+ yai+ ybi2 = (xa− yb) + (xb+ ya)i

A complex number z written as x + yi is in standard form, and written as (x, y) is in Cartesian
coordinates. The real part of z is x and the imaginary part of z is y. If x = 0, then z is a purely
imaginary number .

Example 20.2. What does the complex number (1 + i)−2 look like in standard form? Observe that

1

(1 + i)2
=

1

1 + 2i+ i2
=

1

1 + 2i− 1
=

1

2i
=

1

2i

i

i
=

i

−2i
=
−1

2
i.

Definition 20.3. Let z = x+ yi ∈ C. The (complex ) conjugate of z is z = z∗ = x− yi. The absolute
value, or modulus of z is

|z| =
√
zz =

√
(x+ yi)(x− yi) =

√
x2 + y2.

Proposition 20.4. Let z = x+ yi, w = a+ bi ∈ C. Then the conjugate satisfies:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z 6= 0

And the absolute value satisfies:

1. |z| = 0 iff z = 0

2. |z| = |z|

3. |zw| = |z||w|

4. |z + w| 6 |z|+ |w|

Definition 20.5. The third way to express z = x + yi ∈ C is with polar coordinates (r, θ), where
r = |z| and θ is the angle from the positive x axis to the vector (x, y). Note that

x+ yi = r cos(θ) + ri sin(θ) = reiθ,

where the second equality is known as Euler’s formula. This last expression is in exponential form.
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Remark 20.6. All that we have seen so far about the complex numbers, and a new observation about
multiplying complex numbers, can be drawn together in a picture.

R

R

|z|

z = x+ yi = r cos(θ) + ri sin(θ)

z

zw = rzrwe
i(θz+θw)

w

z + w

x

y

Example 20.7. Let’s compute complex numbers in different forms.

� z = 5 cos(π/4) + 5i sin(π/4) in standard form: z = 5
√

2
2 + 5

√
2

2 i

� w = −
√

3− i in polar form: w = 2 cos(π + tan(1/3)) + 2i sin(π + tan(1/3))

� the 4th roots of p = 1 + i in Cartesian coordinates

Remark 20.8. Putting complex numbers into polar coordinates makes computations in standard
form much easier. For z = reiθ, we have:

� (De Moivre’s theorem) zn = (reiθ)n = rneinθ

� (complex roots) the nth roots of z are r1/nei(θ+2kπ)/n, for every k = 1, . . . , n− 1.

For the zecond point, when z = 1 + 0i, then the kth root of z is called the kth root of unity .

Example 20.9. Below are given the 5th roots of z = −1 + 9i and the 5th roots of z = e0 = 1, or
unity. For some 5th roots ω of z, the complex numbers ω, ω2, ω3, ω4, ω5 = z are also shown. The circle
with radius 5

√
|z| is given to emphasize that all 5th roots are the same distance from 0.

R

R

−1 + 9i

R

R

e0

e2π/5

e4π/5

e6π/5

e8π/5

1 1 1

Remark 20.10. The space of complex numbers is a 2-dimensional vector space over R via the
identification of Cartesian coordinates. However, it is a 1-dimensional vector space over C.
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20.2 Complex matrices

Definition 20.11. Let z = [z1 · · · zn]T ∈ Cn be a vector. The (complex ) conjugate is the vector
z = [z1 · · · zn]T .

Often we talk about not just the conjugate, but the conjugate transpose. The reason for taking both
the conjugate of each element and the transpose, when n = 2 and z = [ xy ] = x+ yi = z, is to get that

zT z = z∗z = ‖z‖2 = |z|2 = zz,

so the previous notion of length of a vector corresponds with the new notion of absolute value of a
complex number. The notation z∗ = zT is also used for matrices, so that (A∗)ij = Aji.

Definition 20.12. Let A ∈Mn×n(C). Then

� A is Hermitian if A = A∗

� A is unitary if the columns of A are orthonormal

Proposition 20.13. Let A ∈Mn×n(C) and z ∈ Cn. If A is Hermitian, then:

� z∗Az is a real number

� every eigenvalue of A is a real number

� eigenvectors (of different eigenvalues are orthogonal

If A is unitary, then:

� A∗A = I and A−1 = A∗

� every eigenvalue of A is ±1

Example 20.14. Consider the 2 × 2 matrix A =
[

2 3−3i
3+3i 5

]
. This matrix is Hermitian, so should

have real eigenvalues and orthogonal eigenvectors by the previous Proposition. Indeed, we find that

det(A− λI) = (2− λ)(5− λ)− (3− 3i)(3 + 3i) = 10− 7λ+ λ2 − 18 = λ2 − 7λ− 8 = (λ− 8)(λ+ 1),

so the eigenvalues are λ = 8,−1. For the eigenvectors, we must solve[
2 3− 3i

3 + 3i 5

] [
z
w

]
=

[
8z
8w

]
⇐⇒ −6z + (3− 3i)w = 0,

(3 + 3i)z − 3w = 0.

Using the first equation to isolate w, we get

w =
6z

3− 3i
=

6z

3− 3i

3 + 3i

3 + 3i
=

(18 + 18i)z

9 + 9
= (1 + i)z,

which, when placed into the second equation, gives us (3 + 3i)z − 3(1 + i)z = 0, which means there
are no constraints on z. So we let z = 1 and w = 1 + i. Similarly for the second eigenvector we find
z = 2 and w = −1− i. To check they are orthogonal, we observe that[

1 + i
1

]∗
·
[
−1− i

2

]
=
[
1− i 1

] [−1− i
2

]
= (1− i)(−1− i) + 2 = −1− i+ i+ i2 + 2 = −2 + 2 = 0,

and we have orthogonality, as desired.

Example 20.15. Consider the Fourier matrix , which is a unitary matrix:

F =
1√
3

1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3


The columns contain the cube roots of unity . More specifically, F 3

ij = 1 and
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20.3 Exercises

Exercise 20.1. Show that every complex number z = x + yi for which at least one of x and y are
not zero has an inverse. That is, find w ∈ C for which zw = 1.

Exercise 20.2. Prove all the claims of Proposition 20.4, for z = x+ yi, w = a+ bi ∈ C:

1. z + w = z + w

2. zw = z w

3. z = z

4. z + z = 2x

5. z − z = 2yi

6. z−1 = z/|z|2 for z 6= 0

7. |z| = 0 iff z = 0

8. |z| = |z|

9. |zw| = |z||w|

10. |z + w| 6 |z|+ |w|

Exercise 20.3. Prove Euler’s formula cos(θ) + i sin(θ) = eiθ is true by showing that the derivative of
(cos(θ) + i sin(θ))e−iθ is zero.
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Part IV

Extensions

Lecture 21: Fourier topics

Chapters 8.3 and 9.3 in Strang’s “Linear Algebra” and IV.1 in Strang’s “Learning from Data”

� Fact 1: Every piecewise continuous function on a finite interval can be approximated by sines
and cosines

� Fact 2: The discrete Fourier transform makes this approximation faster by using matrix multi-
pliation instead of integration

� Skill 1: Express the Fourier coefficients of a piecewise continuous function on [0, 2π]

� Skill 2: Construct the discrete Fourier transform of evenely-spaced data points.

This lecture is all about things named after Fourier: the Fourier basis for the space of 2π-periodic,
the Fourier series for expressing any 2π-periodic function using this basis, and the discrete Fourier
transform, which extends this approach to functions which are not completely known.

21.1 The Fourier basis and the Fourier series

Recall that a function f : R→ R is piecewise continuous if f is continuous at all except finitely many
points of R. We consider the space PC[0, 2π] of piecewise continuous functions defined on [0, 2π],
using the inner product

〈f, g〉 =

∫ 2π

0
f(x)g(x) dx.

We can integrate piecewise continuous functions just like continuous functions, by applying linearity
and splitting them up over intervals where they are continuous.

In the first part of this lecture we consider the Fourier basis (yet to be shown that it is a basis)
F = {1} ∪ {sin(nx) : n ∈ N} ∪ {cos(nx) : n ∈ N} ⊆ PC[0, 2π].

Proposition 21.1. The set F is orthogonal.

Proof. It is immediate that the function 1 is orthogonal to all other functions. Indeed,∫ 2π

0
sin(nx) dx =

1

n

∫ 2πn

0
sin(u) du =

− cos(u)

n

∣∣∣∣u=2πn

u=0

=
1− cos(2πn)

n
= 0,

as cos(2πn) = 1 for all n ∈ N, and∫ 2π

0
cos(nx) dx =

1

n

∫ 2πn

0
cos(u) du =

sin(u)

n

∣∣∣∣u=2πn

u=0

=
sin(2πn)

n
= 0,

as sin(2πn) = 0 for all n ∈ N. To show that the cos(nx) functions are orthogonal, and that the sin(nx)
functions are orthogonal, we use the sum of angles formula:

cos(θ ± ϕ) = cos(θ) cos(ϕ)∓ sin(θ) sin(ϕ) =⇒ cos(θ) cos(ϕ) =
1

2
(cos(θ + ϕ) + cos(θ − ϕ))

=⇒ sin(θ) sin(ϕ) =
1

2
(cos(θ − ϕ)− cos(θ + ϕ)) .

Using substitution we can solve the intergals. To show sin(nx) is orthogonal to cos(mx), we use the
sum of angles formula for sin.
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To finish justifying that F is a basis for PC[0, 2π], we need to show that F spans this set. Such
a proof is beyond the scope of this course, so we continue with the assumption that F is a basis for
PC[0, 2π].

Definition 21.2. Let f ∈ PC[0, 2π]. Expressing f using the basis F is the Fourier series of f :

f(x) = a0 + a1 sin(x) + b1 cos(x) + a2 sin(2x) + b2 cos(2x) + · · ·

= a0 +

∞∑
n=1

(an sin(nx) + bn cos(nx)).

The numbers an and bn are the projections of f onto the vectors spanned by sin(nx) and cos(nx),
respectively. They are the Fourier coefficients of f :

a0 =
1

2π

∫ 2π

0
f(x) dx, an =

〈f(x), sin(nx)〉
‖sin(nx)‖2

, bn =
〈f(x), cos(nx)〉
‖cos(nx)‖2

.

Example 21.3. Unless f is very nice, the sum is usually infinite. Hence we often give only the first
few terms in the series to describe f . Here are the first 6 pairs of Fourier coefficients for a simple
degree 4 polynomial.

This may seem like overkill, but it is very useful when the orginal function is not continuous every-
where. The Fourier series of any piecewise continuous function will be continuous (and differentiable!)
everywhere.

Remark 21.4. The description of F given initially is a bit cumbersome. We can make it simpler
using the definition of sin and cos in terms of the exponential function:

sin(θ) =
eiθ − e−iθ

2i
=
ie−iθ − ieiθ

2
, cos(θ) =

eiθ + e−iθ

2
.

Let Fe = {einx : n ∈ Z}. It is immediate that span(F ) = span(Fe), and checking for orthogonality
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requires only one step, instead of five. If we have a Fourier series with terms a0, a1, a2, b1, b2, then we
can express is in the basis Fe as

f(x) = a0 + a1 sin(x) + b1 cos(x) + a2 sin(2x) + b2 cos(2x)

= a0 + a1

(
ie−ix − ieix

2

)
+ +b1

(
eix + e−ix

2

)
+ a2

(
ie−i2x − iei2x

2

)
+ b2

(
ei2x + e−i2x

2

)
= a0e

i0x +

(
b1
2
− ia1

2

)
eix +

(
b1
2

+
ia1

2

)
ei(−1x) +

(
b2
2
− ia2

2

)
ei2x +

(
b2
2

+
ia2

2

)
ei(−2x).

Note that the coefficients are now complex numbers.

21.2 The Fourier matrix and the discrete Fourier transform

In Example 21.3 above, we had two functions that were completely known. In the real world, we do
not know completely the function we are considering, but only know its value at certain inputs x. A
very pertinent queston is then how to convert this discrete data into a continuous function.

Example 21.5. Suppose we have the following data points on the interval [0, 2π], evenly spaced out.
This could be only part of a signal that we can pick up, or a very sparsely sampled sound:

(0, 1),
(π

2
, 2
)
, (π,−2) ,

(
3π

2
,−3

)
.

How can we make this data into a continuous function? We could apply the approach from Example
21.3, but we would be assuming the values of the signal at unknown points, and there are several
natural ways to extend the discrete signal into a continuous signal.

Definition 21.6. The n × n Fourier matrix Fn ∈ Mn×n(C) has n(Fn)ij = ω(i−1)(j−1), where ω =
e−2πi/n is an nth root of unity:

Fn =
1

n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 .

Given x ∈ Rn, the vector Fnx ∈ Cn is called the discrete Fourier transform of x.

Remark 21.7. This matrix may look familiar - it is the Vandermonde matrix from Definition 9.2 in
Lecture 9, for x1, . . . , xn the nth roots of unity. In that lecture the Vandermonde matrix was used
to create a polynomial that approximates well some given data points, and here we create a periodic
function that approximates well some data points.

Example 21.8. The reason the Fourier matrix is useful is because it provides the coefficients of the
periodic function in the basis Fe that goes through the given data points. So instead of integrating,
we simply multiply to get the same result. Consider the data from Example 21.3:

x =


1
2
−2
−3

 , F4x =
1

4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
2
−2
−3

 =
1

4


−2

3− 5i
0

3 + 5i

 ,
which means that f4(x) = −1

2 + 3−5i
4 eix + 3+5i

4 ei3x. Plotting the real part of this function (since it is
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complex-valued) along with the original data points gives the following graph:

π

4

π

2

3π

4

π
5π

4

3π

2

7π

4

2π

-4

-3

-2

-1

1

2

3

If we recieved more data points, spaced π/4 (instead of π/2) apart, to get a new data vector x ∈ R8,
we could use the Fourier matrix F8 to reconstruct a continuous function from this data:

π

4

π

2

3π

4

π
5π

4

3π

2

7π

4

2π

-4

-3

-2

-1

1

2

3

We finish off this lecture with some observations about the Fourier matrix Fn.

Remark 21.9. The Fourier matrix Fn is symmetric, which follows immediately from the definition
that (Fn)ij = ω(i−1)(j−1). The matrix is not Hermitian, as both symmetric and Hermitian would imply
that everything off the diagonal is zero. As given, Fn is not unitary, but the columns are orthogonal.
For example: 

1
1
1
1


∗ 

1
i
−1
−i

 = 1 + i− 1− i = 0,


1
i
−1
−i


∗ 

1
−i
−1
i

 = 1− 1 + 1− 1 = 0.

If we change the coefficient in front from 1
n to 1√

n
, then Fn becomes unitary. As a result of the columns

being orthogonal, the columns may be interpreted as eigenvectors. Setting all eigenvalues to be 1, we
can construct the matrix that has these eigenvectors, and it turns out to be a permutation matrix P
that cycles all the coordinates:

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

x
y
z
w

 P−→


y
z
w
x

 P−→


z
w
x
y

 P−→


w
x
y
z

 P−→


x
y
z
w

 .
21.3 Exercises

Exercise 21.1. Find the Fourier coefficients an, bn up until n = 3 for f(x) = sin(x) cos2(x).

Exercise 21.2. Consider the function f ∈ C[0, 2π] given by f(x) =
{−1 x<π

1 x>π .
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1. Compute the Fourier series of f up to n = 1, n = 3, and n = 5. Plot these three functions
together with f .

2. Compute the discrete Fourier transform of f for n = 4, using evenly spaced samples f(xk) for
xk = 2kπ/4, with k = 0, 1, 2, 3. Express it as a sum of sin and cos functions using Euler’s
formula.

3. Plot the real part of the discrete Fourier transform of f for n = 4, 8, 12 together with f . As
above, take 4, 8, 12 evenly spaced samples in the interval [0, 2π], starting with 0. You do not
need to show your computations.
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Lecture 22: Graphs

Chapter 10.1 in Strang’s “Linear Algebra” and IV.6 in Strang’s “Learning from Data”

� Fact 1: Simple graphs are either directed or undirected, and do not have multiple edges or loops.

� Fact 2: Row reducing the incidence matrix gives a spanning tree.

� Fact 3: Taking products of the adjacency matrix counts the number of walks between vertices.

� Skill 1: Compute the four matrices associated to graph, and reconstruct the graph from its
adjacency or incidence matrix.

� Skill 2: Count the number of of spanning trees using the incidence matrix.

� Skill 3: Count the number of walks between vertices.

In this lecture we set up a new interpretation of matrices, to be used in the next lecture. We will
attempt to apply the tools of matrix algebra already seen so far to graphs.

22.1 Vertices and edges

Definition 22.1. A graph G is a pair of sets (V,E), where V = {v1, . . . , vn} is a finite set and every
element of E is a set {vi, vj}, for 1 6 i < j 6 n. The elements of V are called vertices (singular
vertex ) and the elements of E are called edges.

The above definition is for an undirected graph. For a directed graph, or digraph, every element
of the set E is an ordered set, or pair, (vi, vj), with 1 6 i, j 6 n and i 6= j.

Definition 22.2. Let G = (V,E) be a directed graph. In the edge e = (t, h) ∈ E, the vertex t is
called the tail and the vertex h is called the head of e. If v ∈ V only appears as a tail in edges, then
v is called a source of G. If v only appears as a head, then v is called a sink of G.

etail of e head of e

source of G
sink of G

sink of G

The egde e = (t, h) is an outgoing edge of t and an incoming edge of h.

In the definitions of both directed and undirected graphs we do not allow repeated edges (since
E is a set, it only sees distinct elements) and self loops (an edge {vi, vi}). Graphs without repeated
edges and without self loops are called simple graphs.
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Example 22.3. Here are some examples of graphs.

a

b

c d

e

V = {a, b, c, d, e}

E = {{a, b}, {b, c}, {d, e}, {c, a}}

a b c d e


a 0 1 1 0 0
b 1 0 1 0 0
c 1 1 0 0 0
d 0 0 0 0 1
e 0 0 0 1 0

x

y

z

w

s

V = {x, y, z, s}

E = {(x, y), (y, x), (x,w), (y, z), (y, s),

(w, z), (z, w), (w, s), (z, s)}

x y z w s


x 0 1 0 1 0
y 1 0 1 0 1
z 0 0 0 1 1
w 0 0 0 0 1
s 0 0 0 0 0

Each graph has its square adjacency matrix A ∈ M|V |×|V | given below it: Aij = 1 if an edge from vi
to vj exists, and is 0 otherwise. In the matrix, every potential edge (even self loops) has a position.

Definition 22.4. Let G = (V,E) be a graph and A ∈ Mn×n its adjacency matrix. For vk ∈ V , the
degree of vk is the number of edges in E in which vk appears. Or, it is the sum

deg(vk) =
n∑
i=1

Aik︸ ︷︷ ︸
G undirected

or deg(vk) =

out-degree︷ ︸︸ ︷
n∑
i=1

Aik +

in-degree︷ ︸︸ ︷
n∑
j=1

Akj︸ ︷︷ ︸
G directed

.

The out-degree of vk is denoted outdeg(vk), and the in-degree is denoted indeg(vk).

Remark 22.5. There are several other matrices related to a graph G = (V,E):

� the incidence matrix N ∈M|E|×|V |, where Nij = −1 if vertex j is the tail of edge i, and 1 if it’s
the head of edge i

� the degree matrix D ∈M|V |×|V |, which is diagonal and Dii = deg(vi)

� the Laplacian matrix L ∈M|V |×|V |, defined as L = NTN . If G is undirected, then L = D −A.

Most often the adjacency matrix is used, since it is square and the graph can be easily reconstructed
from it.

Example 22.6. Consider the following graph G, for which we construct all the related matrices and
compute the degrees of all vertices.

graph matrices

Definition 22.7. Let G = (V,E) be a graph. A subgraph of G is a graph G′ = (V,′ , E′) with V ′ ⊆ V
and E′ ⊆ E. The subgraph G′ is called induced if for every e = (v, w) ∈ E with v, w ∈ V ′, we also
have e ∈ E′.

Example 22.8. Here is an example of graph with two subgraphs, only one of which is induced.

G = H = K =
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22.2 Patterns in graphs

Definition 22.9. Let G = (V,E) be a graph.

� A path in G is an ordered sequence of distinct vertices v1, . . . , vn for which vi and vi+1 form an
edge, for every i.

� A walk in G is the same as a path, but the vertices do not need to be distinct.

� A cycle, or loop in G is a path for which vn and v1 form an edge.

In directed graphs, the edges of these objects do not need to all be oriented the same way, but often
it is assumed they are. To highlight the difference in digraphs, the words undirected and directed are
used in front of each of these objects.

Every one of the objects in Definition 22.9, directed or undirected, is related to a unique sequence
of edges. That is, these objects are often given in terms of the edges rather than the vertices.

Example 22.10. Consider the following directed graph and associated sequences of vertices.

G =
a

b

c

d

e f

g

h

i

P1 = (d, e, f, g, h)
P2 = (c, d, e, f, g, h)
W1 = (f, d, e, f, g, h)
W2 = (a, b, c, a, c, a, b, c)
C1 = (a, b, c)
C2 = (d, e, f)

Here P1 is a (directed) path, P2 is an undirected path, but W1 is not a path, as f appears twice. The
sequence W1 is a (directed) walk and W2 is an undirected walk. For cycles, C1 is an undirected cycle
(though it is a directed path) and C2 is a directed cycle (and a directed path).

Row reduction was a key operation in matrices, but so far we have not seen row operations for
matrices related to graphs.

Remark 22.11. Let G = (V,E) be the graph given below, with incidence matrix N .

G =

a

b

c

d

e

N =

a b c d e


ab −1 1 0 0 0
ac −1 0 1 0 0
bd 0 −1 0 1 0
cb 0 1 −1 0 0
de 0 0 0 −1 1
ec 0 0 1 0 −1

The linearly independent rows of the incidence matrix N of G form a spanning tree T of G. That is,
T = (V ′, E′) is a subgraph of G with V ′ = V , and T has no cycles (directed or undirected). For G,
we have many spanning trees, including T1 and T2 given below.

T1 =

a

b

c

d

e

ab = ac+ cb

bd = −cb− de− ec

T2 =

a

b

c

d

e

cb = ab− ac
de = ac− ab− bd− ec

Proposition 22.12. Let G = (V,E) be a graph with adjacency matrix A and vi, vj ∈ V . The number
of walks from vi to vj of length k is the (i, j)-entry of Ak.
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Example 22.13. Consider the following graphs and their powers. Since loops, number of walks
always grows.

G1 directed G2 undirected table of walks

The adjacency matrix for an undirected graph is symmetric and binary , which means the entries
are either 1 or 0. For directed graphs, the matrix is still binary, but not symmetric. Matrices that are
neither symmetric nor binary are associated to a special type of graph.

Definition 22.14. A graph G = (V,E) is weighted when accompanied by a function w : E → R.
This is sometimes called an edge-weighted graph to distinguish it from a vertex-weighted graph, which
needs a function w : V → R.

Vertex-weighted directed graphs can be turned into edge-weighted graphs by assigning each edge
the weight of its head (or tail). Similarly, an edge-weighted graph can be turned into a vertex weighted
graph by assigning each vertex the sum of the weights of all incoming (or outgoing) edges.

Example 22.15. Here is an example of an edge-weighted directed graph G and two vertex-weighted
graphs G1, G2 that are built following the comment above.

1 5

2

−1

3

−2

7 1−4

6

G

2
1 5

1

2
1

8

G1

1
7 2

6

5
1

−4

G2

22.3 Exercises

Exercise 22.1. Let G = (V,E) be a directed simple graph, and let A be its adjacency matrix.

1. Just by looking at A, how can you tell which vertices are sinks and which are sources of G?

2. What is the largest number of edges that G can have?

Exercise 22.2. Use induction to prove Proposition 22.12.

Exercise 22.3. Consider the following directed graph:

G = a

b

c

d e

f

1. Give the adjacency and incidence matrix for G.

2. Find all k ∈ N for which there are no walks of length k from f to f .

3. Find as many spanning trees as you can for G.
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Lecture 23: Markov matrices and spectral clustering

Chapter 10.3 in Strang’s “Linear Algebra” and IV.7, V.6 in Strang’s “Learning from Data”

� Fact 1: Markov matrices have all eigenvalues |λ| 6 1, and at least one is equal to 1. If all matrix
entries are positive, only one eigenvalues is equal to 1.

� Fact 2: The eigenvector corresponding to the Laplacian spectral gap (or the Fiedler eigenvalue)
of a directed graph clusters the vertices of the graph into two groups.

� Skill 1: Find the steady state of a Markov matrix with non-zero entries.

� Skill 2: Identify when a Markov matrix does or does not have a steady state.

� Skill 3: Cluster graph vertices usiung the Laplacian spectral gap.

In this lecture we reconsider Markov matrices, also called stochastic matrices, which we already saw
in Lecture 13. These are related to graphs, and will help us understand big graphs from their small
parts, or their clusters.

23.1 Markov matrices

Recall that a Markov matrix is an element M ∈ Mn×n([0, 1]), for which we ask the sum of every
column is 1 or of every row is 1. If columns sum to 1, then M is a left stochastic matrix, and if rows
sum to 1, then M is a right stochastic matrix. The word “stochastic” says that something will change,
or will change in an unpredictable manner.

Definition 23.1. Let G = (V,E) be a directed graph, not necessarily simple, with |V | = n and
adjacency matrix A ∈Mn×n. The transition probability matrix is T ∈Mn×n(Z) with

Tij =

{
1/outdeg(vi) if outdeg(vi) 6= 0 and Aij = 1,

0 if outdeg(vi) = 0.

Remark 23.2. When every vertex of G has an outgoing edge, the transition probability matrix of G
is a right stochastic matrix:

G =

1

2 3

T =

 0 1 0
1/3 1/3 1/3
0 0 1



Proposition 23.3. A Markov matrix (right stochastic matrix) M always has an eigenvalue 1 with
eigenvector [1 1 · · · 1]T . All other eigenvalues λ have |λ| 6 1.

Proof. Since the rows of M add up to 1, it is immediate that M [1 1 · · · 1]T = [1 1 · · · 1]T . For the
other eigenvalues, suppose that Mx = λx, and take the largest entry in x, suppose it is xk. Taking
the absoulte values on the kth line of Mx = λx, we have |λxk| = |λ||xk| on the right, and∣∣∣∣∣∣

n∑
j=1

Mkjxj

∣∣∣∣∣∣ 6
n∑
j=1

Mkj |xj | 6
n∑
j=1

Mkj |xk| = |xk|

on the left. The first relation follows by the triangle inequality, the second relation follows by assump-
tion, and the third relation follws as the matrix is right stochastic. Hence |λ| 6 1.
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Since the eigenvalues of a matrix and its transpose are the same (see Proposition 13.7), the same
result holds for a left stochastic matrix.

Example 23.4. Consider the two Markov matrices A = [ .2 .8.9 .1 ], B =
[

1 0 0
0 1 0
0 .5 .5

]
. We compute their right

eigenvectors and eigenvalues to be

ui =

[
1
1

]
,

[
−8/9

1

]
, λi = 1,− 7

10
, vi =

0
1
1

 ,
1

0
0

 ,
0

0
1

 , λi = 1, 1,
1

2
.

Similarly, we can find their left eigenvectors and eigenvalues to be

ui =

[
9/8
1

]
,

[
−1
1

]
, λi = 1,− 7

10
, vi =

0
1
0

 ,
1

0
0

 ,
 0
−1
1

 , λi = 1, 1,
1

2
.

This shows an important observation: when the entries of M are all strictly positive, there is a unique
eigenvector with eigenvalue 1 (this is the Perron–Frobenius theorem). When some entries of M are
zero, we can have several independent eigenvectors with eigenvalues 1.

Definition 23.5. Let M ∈Mn×n be left stochastic with all positive entries. The unique eigenvector
v ∈ Rn of M corresponding to the eigenvalue 1 is the steady state, or Perron–Frobenius eigenvector
of M .

This means that for every vector x, the vector Mkx eventually converges to a multiple of the
vector v.

The vector v corresponds to a left eigenvector of a right stochastic matrix M , that is, vTM = v.
In both cases, the vector is important, because along with the ability to express any vector x as a
linear combination of eigenvectors x = a1v + a2v2 + · · ·+ anvn, we get that

lim
k→∞

Mkx = lim
k→∞

(
1ka1v + λk2a2v2 + · · ·+ λknanvn

)
= a1v,

since limk→∞ λ
k
i = 0 for all i 6= 1, as |λi| < 1.

Example 23.6. There are some Markov matrices that do not have all positive entries, but which still
have a steady state to which everything converges to. That is, there is still a unique eigenvector with
eigenvalue 1: 

2
1
1
2


T 

0 .5 .5 0
0 0 0 1
0 0 0 1
1 0 0 0


︸ ︷︷ ︸

M

=


2
1
1
2


T

, GM =

3 4

1 2

.

The steady state of M will exist when, in the corresponding graph GM , it is always possible to get
from any vertex to any other vertex. The graph GM has M as its transition probability matrix.

23.2 Spectral clustering

Definition 23.7. Let G = (V,E) be a graph.

� If G is undirected, or considering a directed graph as undirected, the graph is connected if for
every v, w ∈ V , there exists a path from v to w.

� If G is directed, the graph is strongly connected if for every v, w ∈ V , there exists a path from v
to w.

Connectivity can be considered relatively, in terms of how far vertices are from each other.
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Definition 23.8. Let G = (V,E) be a graph and N its incidence matrix. The Laplacian L = NTN
has smallest eigenvalue 0, from the vector v = [1 1 · · · 1]T , as Nv = 0. The next smallest eigenvalue
λ is the Fiedler eigenvalue λ > 0, and the eigenvector f corresponding to it is the Fiedler eigenvector .

The smallest positive eigenvalue of the Laplacian of a graph G is also called the Laplacian spectral
gap of G. The Fiedler eigenvector f is important because it partitions the vertices of G into two
clusters: those whose entry is positive, and those whose entry is negative.

Example 23.9. Consider the following graph, its incidence matrix, and its Laplacian matrix.

G =

3

4

1 2

6 5

N =


−1 1 0 0 0 0
0 −1 1 0 0 0
1 0 −1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 1 0 −1

 , L =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

 .

The smallest eigenvalue that is not zero is λ = 5−
√

17
2 , which corresponds to the Fiedler eigenvector

f = [−1 −1 (3−
√

17)/2 (−3+
√

17)/2 1 1 ]. Since
√

17 ∈ (4, 5), the first three entries are negative, and the
last three are positive, showing the clustering {1, 2, 3} and {4, 5, 6} of the vertices of G.

23.3 Exercises

Exercise 23.1. Let M ∈M2×2.

1. Let M =
[
a b
c d

]
be Markov (right stochastic) with d = 0. Show that if M3 has only positive

entries, then M2 has only positive entries.

2. Find and example of M (not Markov, but with |Mij | 6 1) for which M3 has only positive entries,
but M has at least one negative entry.

Exercise 23.2. Consider the map of Riga below, with vertices as marked.

1

2

3

4

5

6

7

8

1. Construct the transition probability matrix R for Riga.

2. Will the matrix have a steady state? If not, explain why. If yes, compute it.

3. Find the Fiedler eigenvector and give the clustering according to it.
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Lecture 24: Graph clustering

Chapter IV.7 in Strang’s “Learning from Data”

� Fact 1: The clustering coefficient in an undirected graph indicates how tight of a cluster each
vertex has with its neighbors.

� Fact 2: A weighted graph can be transformed into a distance matrix.

� Skill 1: Find the smallest cut-set in small graphs.

� Skill 2: Compute weights of vertex and edge sets. Compute the normalized cut and k-cut weight.

In this lecture we continue the idea of clustering, introduced in Lecture 23, on more general data sets
that have more than two clusters.

24.1 Graph structures for clustering

Definition 24.1. Let G = (V,E) be a graph with V ′ ⊆ V and v ∈ V .

� The induced subgraph of V is the graph G′ = (V ′, {{u, v} ∈ E : u, v ∈ V ′} ⊆ G

� The neighbors of V are vertices u ∈ V for which {u, v} ∈ V

� The open neighborhood of v is the subgraph N◦G(v) ⊆ G induced by the neighbors of v

� The closed neighborhood of v is the subgraph NG(v) ⊆ G induced by the neighbors of v and v
itself.

� The star of v is the set of edges star(v) ⊆ E in the closed neighborhood of v that are not in the
open neighborhood of v.

The subscript G is omitted if G is clear from context. If neither “open” nor “closed” are specified in
front of “neighbohood,” then the neighborhood is assumed to be closed.

A naive way to cluster vertices of a vertex-weighted graph would be to cluster them by weight.
This is a type of filtering . This approach may not yield the best results, but it highlights that all we
need for clustering is a function on the vertices - a filter. We now consider one such more relevant
function.

Definition 24.2. Let G = (V,E) be an undirected graph. The clustering coefficient of v ∈ V is

cc(v) =
number of 3-cycles of G containing v

number of 3-cycles that v could be in
=

number of 3-cycles of G containing v(
deg(v)

2

) ∈ [0, 1].

A value close to 1 indicates that the closed neighborhood of v is almost a complete graph.

Example 24.3. Consider the following graph G. The clustering coefficients are gven next to each
vertex.

G =

Remark 24.4. We can extend this idea to weighted graphs. Given a weighted graph G = (V,E) with
weight function w : E → R and subsets V ′ ⊆ V , E′ ⊆ E, we can assign weights to them:

w(E) =
∑
e∈E

w(e), w(V ′) =
∑
v∈V ′

∑
e∈star(v)

w(e).

Note that if V ′ contains u, v with e = {u, v} ∈ E, then the weight of e will be counted twice in the
weight of V ′. The weighted clustering coefficient is then

wcc(v) =
weights of 3-cycles of G containing v

weights of 3-cycles that v could be in
=

weights of 3-cycles of G containing v

(deg(v)− 1)w(star(v)) + w(N◦(v))
∈ [0, 1].
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Example 24.5. Consider the graph below, which has 4 clear clusters. The clustering coefficient
(unweighted) of each vertex is given as a color, ranging from pink (high value) to blue (low value).
On the left, the graph is unweighted, so as expected, in each cluster high values appear, with lower
values given to vertices that are “closer” to other clusters.

The graph on the right is weighted (higher weights are thicker edges), and triangles of higher weight
increase the value of the clustering coefficient, whereas higher weight edges that do not form a triangle
seem to decrease the clustering coefficient.

24.2 k-means clustering

In this section we consider one way to cluster vertices of an undirected graph into k ∈ N clusters.
Most often weighted graphs are used for clustering, but in the case our graph is not weighted, we may
simply assign a weight of 1 to each edge.

Definition 24.6. let G = (V,E) be a graph. A cut of G is a partition of V into two sets C1, C2. If
G is connected, a cut can also be defined in terms of the edges {e = {v, w} ∈ E : v ∈ C1, w ∈ C2}
between the two pieces of the partition. Such a set of edges that corresponds to a cut is called a
cut-set of G.

Example 24.7. One way to cluster vertices of G = (V,E) into two sets is to find the smallest cut-set
of G. Using the graph G from Example 23.9, we immediately get the same result we previously had,
on the left below.

C1 C2

w(C1) = 3 w(S) = 1 w(C2) = 3

30

40

20

15
1

10

1

C1 C2

w(C1) = 10 w(S) = 2 w(C2) = 105

If the edges of the graph are weighted as on the right, we get a different smallest cut-set. The weight
of the cut-set is 2, which is the smallest among all possible cut-set weights.

It is natural to want to minimize the weight of the edges in the cut-set, but also to maximize the
weight of the edges left in the clusters. To reflect both of these ideas and to exclude degenerate cases
when having a single vetrex cluster would minimize the cut-set weight, we need to normalize.

Definition 24.8. For (C1, C2) a cut of G = (V,E) with corresponding cut-set S, the normalized cut
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weight of this cut is

ncw(C1, C2) =
w(S)

w(C1)
+

w(S)

w(C2)
.

Example 24.9. Consider the graph G = (V,E) below, with the two cut sets S, T .

G =

Both cuts have the same weight, as do their resulting partitions. Situations where two clusters are
not enough lead to a generalization of the above.

Definition 24.10. Let G = (V,E) be a weighted graph with weight function w : E → R. Let V ′ ⊆ V
and G′ = (V ′, E′) ⊆ G be the induced graph of V ′. The star of V ′ is

star(V ′) =

( ⋃
v∈V ′

star(v)

)
\

( ⋃
e∈E′

e

)
⊆ E.

This captures the idea of generalizing a cut-set from two partitions to more than two. A partition
C1, . . . , Ck of V corresponds to the k-cut

{e = (u, v) ∈ E : u ∈ Ci, v ∈ Cj , i 6= j} =

k⋃
`=1

star(C`).

The normalized k-cut weight of this partition is

ncw(C1, . . . , Ck) =
w(star(C1))

w(C1)
+
w(star(C2))

w(C2)
+ · · ·+ w(star(Ck))

w(Ck)
.

Example 24.11. A large value for the normalized k-cut weight indicates a bad cut, a small indicates
a better cut. For example, consider the two following 3-cuts of the graph below. The one with the
lower valuie is also visually the better of the two cuts.

G =

Remark 24.12. Recall distance matrices from Example 10.7 in Lecture 10. To every weighted graph
G = (V,E) we can associate a distance matrix D ∈ M|V |×|V |, where Dij is the sum of weights along
the shortest path from vi to vj . We can recover the position matrix X, and from it we can compute
the average of each cluster:

(
weighted

graph

)
→

(
distance
matrix

)
→

(
position
matrix

)
→

 average ai
of each

cluster Ci


Then the k-means partition is the one which minimizes the function∑

v∈C1

‖a1 − v‖2 +
∑
v∈C2

‖a2 − v‖2 + · · ·+
∑
v∈Ck

‖ak − v‖2.

Here v is used to represent the position vector associated to the vertex v.

24.3 Exercises

Exercise 24.1. Consider the undirected graph G = (V,E) below, with partition C1, C2, C3 as indi-
cated. Every edge in the subgraphs induced by C1, C2, C3 has weight 1. For every r ∈ R, extend this
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weight function to all the edges of G so that the normalized 3-cut weight of C1, C2, C3 is r.

C1 C2 C3

106



Part V

Answers to lecture exercises

Lecture 1: Vectors and matrices

Exercise 1.1. We solve the equation line by line.

1. From the first line, we have −3b = −5, which means b = 5/3. From the second line on the left
and, using the result a = 35/18 with the third line on the right, we have:

6a− 4b = 5 −a− 5b+ c = −4

6a− 20/3 = 5 −35/18− 25/3 + c = −4

18a− 20 = 15 −35− 150 + 18c = −72

18a = 35 18c = 113

a = 35/18 c = 113/18

2. The requested equation is  0 −3 0
6 −4 0
−1 −5 1


︸ ︷︷ ︸

A

 35/18
5/3

113/18


︸ ︷︷ ︸

x

=

−5
5
4


︸ ︷︷ ︸

y

.

Exercise 1.2. By expressing each vector in terms of its constitutent parts, we see the desired result.
Let u = (u1, . . . , un), v = (v1, . . . , vn), and w = (w1, . . . , wn). Then

v · (u + w) =

v1
...
vn

 ·

u1

...
un

+

w1
...
wn


 (definition of vectors u,v, w)

=

v1
...
vn

 ·
u1 + w1

...
un + wn

 (definition of matrix addition)

= v1(u1 + w1) + · · ·+ vn(un + wn) (definition of dot product)

= v1u1 + v1w1 + · · ·+ vnun + vnwn (multiplication of real numbers)

= (v1u1 + · · ·+ vnun) + (v1w1 + · · ·+ vnwn) (rearranging)

=

v1
...
vn

 ·
u1

...
un

+

v1
...
vn

 ·
w1

...
wn

 (definition of dot product)

= v · u + v ·w.

Exercise 1.3. Since w = (w1, w2, w3) and z = (z1, z2, z3) are perpendicular to v = (v1, v2, v3), we
have that

0 = v ·w = v1w1 + v2w2 + v3w3,

0 = v · z = v1z2 + v2z2 + v3z3.
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The halfway point between w and z is h =
(
w1+z1

2 , w2+z2
2 , w3+z3

2

)
, and for this vector

v · h = (v1, v2, v3) ·
(
w1 + z1

2
,
w2 + z2

2
,
w3 + z3

2

)
= v1 ·

w1 + z1

2
+ v2 ·

w2 + z2

2
+ v3 ·

w3 + z3

2

=
1

2
(v1w1 + v1z1 + v2w2 + v2z2 + v3w3 + v3z3)

=
1

2
((v1w1 + +v2w2 + v3w3) + (v1z1 + v2z2 + v3z3))

=
1

2
(v ·w + v · z)

=
1

2
(0 + 0)

= 0.

Exercise 1.4. 1. One example is B =
[

1 2
3 6
0 1

]
, for which

AB =

[
1 0 −2
3 −1 1

]1 2
3 6
0 1

 =

[
1 0
0 1

]
= I,

and

BA =

1 2
3 6
0 1

[1 0 −2
3 −1 1

]
=

 7 −2 0
21 −6 0
3 −1 1

 6= I.

2. No, it is not possible, because the three equations

c11 + 3c12 = 1, −c12 = 0, −2c12 + c22 = 0

in two unknowns, and none of the equations are multiples of each other. There are no possible
solutions to this.

Exercise 1.5. Suppose that C exists with AC = CA = I. Multiplying CA = I by B on the right
gives

(CA)B = IB

C(AB) = B

CI = B

C = B.

Exercise 1.6. Let A,B ∈Mn×n, with ij-entries aij and bij , respectively.

1. Suppose that A,B are lower triangular, so aij = 0 and bij = 0 if i < j. In the product, the ij
entry of AB, for i < j, is

(AB)ij =
n∑
k=1

AikBkj =

 i∑
k=1

Aik Bkj︸︷︷︸
=0

+

 n∑
k=i+1

Aik︸︷︷︸
=0

Bkj

 = 0.

Hence AB is also lower triangular.

2. Suppose that A,B are upper triangular, so aij = 0 and bij = 0 if i > j. In the product, the ij
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entry of AB, for i > j, is

(AB)ij =
n∑
k=1

AikBkj =

 j∑
k=1

Aik︸︷︷︸
=0

Bkj

+

 n∑
k=j+1

Aik Bkj︸︷︷︸
=0

 = 0.

Hence AB is also upper triangular.

3. The result does not have to be triangular, for example:[
1 1
0 1

] [
1 0
1 1

]
=

[
2 1
1 1

]
.

Here we have two non diagonal matrices, whose product is a diagonal matrix:[
6 −10
77 22

] [
2 5
−7 3

]
=

[
82 0
0 451

]
.

Lecture 2: Elimination and inverses

Exercise 2.1. Some examples are given below. Many more exist.

1. An example is
[

1 0 0
0 2 0
0 0 3

]
, as all the pivots can be read off the diagonal.

2. An example is
[

1 0 0
6 2 0
5 8 3

]
, as elimination tells us to:

subtract `21 = 6 of the first row from the second row:

1 0 0
0 2 0
5 8 3


subtract `31 = 5 of the first row from the third row:

1 0 0
0 2 0
0 8 3


subtract `32 = 4 of the second row from the third row:

1 0 0
0 2 0
0 0 3


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots on
the diagonal.

3. An example is
[

1 1 1
1 3 1
1 1 1

]
, as elimination tells us to:

subtract `21 = 1 of the first row from the second row:

1 1 1
0 2 0
1 1 1


subtract `31 = 1 of the first row from the second row:

1 1 1
0 2 0
0 0 0


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots on
the diagonal. There is no third pivot, since the third row is all zeros.
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Exercise 2.2. 1. For the first matrix, elimination tells us to:

subtract `21 = d/a of the first row from the second row:

a b c
0 e− bd/a f − cd/a
g h i


subtract `31 = g/a of the first row from the third row:

a b c
0 e− bd/a f − cd/a
0 h− bg/a i− cg/a


For the multiplier `32, it needs to be

(h− bg/a) · (e− bd/a)−1 =
h− bg

a

e− bd
a

=
ah− bg
ae− bd

.

The lower right entry after this step will be (i− cg/a)− (f − cd/a) · ah−bgae−bd , which we call simply
n, because it is very long to write. So elimination tells us to

subtract `32 =
ah− bg
ae− bd

of the second row from the third row:

a b c
0 e− bd/a f − cd/a
0 0 n


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
a, e− bd/a, n on the diagonal.

For the second matrix, elimination tells us to:

subtract `32 = h/e of the second row from the third row:

0 b c
0 e f
0 0 i− fh/e


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
e, i− fh/e on the diagonal.

For the third matrix, elimination tells us to:

subtract `21 = d/a of the first row from the second row:

a b c
0 0 f − cd/a
d bd/a i


subtract `31 = d/a of the first row from the third row:

a b c
0 0 f − cd/a
0 0 i− cd/a


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the pivots
a, i− cd/a on the diagonal.

For the fourth matrix, elimination tells us to:

subtract `32 = 1 of the second row from the third row:

0 b c
0 e ce/b
0 0 0


This ends Gaussian elimination, as the matrix is upper triangular, and indicates the only pivot
e on the diagonal.

2. Here is an example of such a function, in Python, using the input A[[a,b,c],[d,e,f],[g,h,i]].
We use the result from the first matrix in part 1. above.

def pivots(A):

a = A[0][0]
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b = A[0][1]

c = A[0][2]

d = A[1][0]

e = A[1][1]

f = A[1][2]

g = A[2][0]

h = A[2][1]

i = A[2][2]

return [a, b*d/a, (i-c*g/a)-(f-c*d/a)*(a*h-b*g)(a*e-b*d)]

3. Here is some Python code that produces the range and average as requested, using the function
above.

import numpy as np

values = []

for i in range(1000):

M1 = np.random.rand(3,3)

M2 = 2*M1 - np.ones((3,3))

values += pivots(M2)

print([min(values), max(values), sum(values)/len(values)])

This is the result it prints on one particular run:

[-1105.1138842178975, 1650.5842938466174, -0.272518610029052]

Exercise 2.3. 1. Yes, the product of all three is a permutation matrix:
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

 ·


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 .
This is also immediate from knowing that a permutation matrix rearrages rows. Rearranging
rows three times is the same as rearranging them once, but with more steps.

2. Yes, the inverses are all permutation matrices. We construct the inverse by observing that if,
for example, A sends row 1 to row 2, row 2 to row 3, and row 3 to row 1, then the inverse of A
will send row 1 to row 3, row 2 to row 1, and row 3 to row 2 (that is, will put the rows back in
their original place. Hence: 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


−1

=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


−1

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


−1

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .
In this case, the permutation matrices ar their own inverses (though this is not always true).
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Exercise 2.4. Using the observation (AB)−1 = B−1A−1 k − 1 times, we find that the inverse is

(A1A2 · · ·Ak−1Ak)
−1 = ((A1A2 · · ·Ak−1)Ak)

−1

= A−1
k (A1A2 · · ·Ak−2Ak−1)−1

= A−1
k ((A1A2 · · ·Ak−2)Ak−1)−1

= A−1
k A−1

k−1(A1A2 · · ·Ak−2)−1

...

= A−1
k A−1

k−1 · · ·A
−1
2 A−1

1 .

Exercise 2.5. We apply row operations to the block matrix [A I] =
[

0 2 −1 1 0 0
1 0 −4 0 1 0
2 2 2 0 0 1

]
, as below.

swap the first and the second rows to get a first pivot:

1 0 −4 0 1 0
0 2 −1 1 0 0
2 2 2 0 0 1


subtract `31 = 2 of the first row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 2 10 0 −2 1


subtract `32 = 1 of the second row from the third row:

1 0 −4 0 1 0
0 2 −1 1 0 0
0 0 11 −1 −2 1


This finishes Gaussian elminaton, so we proceeed with Gauss–Jordan elimination above the diagonal.

subtract `23 = −1/11 of the third row from the second row:

1 0 −4 0 1 0
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


subtract `13 = −4/11 of the third row from the first row:

1 0 0 −4/11 3/11 1/11
0 2 0 10/11 −2/11 1/11
0 0 11 −1 −2 1


multiply each row by the inverse of the pivots:

1 0 0 −4/11 3/11 1/11
0 1 0 5/11 −1/11 1/22
0 0 1 −1/11 −2/11 1/11


Hence the inverse of A is A−1 =

[−4/11 3/11 1/11
5/11 −1/11 1/22
−1/11 −2/11 1/11

]
.

Exercise 2.6. In Example 2.6, we had the following result:1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

E32

·

1 0 0
0 1 0
1
2 0 1


︸ ︷︷ ︸

E31

·

0 1 0
1 0 0
0 0 1


︸ ︷︷ ︸

P12

·

 0 6 −2 2
4 8 −4 8
−2 2 7 12

 =

4 8 −4 8
0 6 −2 2
0 0 7 14



For PA = LDU decomposition, we don’t need the fourth column b used in this example. We also
note several necessary things:

D =

4 0 0
0 6 0
0 0 7

 , E−1
32 =

1 0 0
0 1 0
0 1 1

 , E−1
31 =

 1 0 0
0 1 0
−1

2 0 1

 .
For the inverses of elementary matrices, we used the observations from Example 2.11. This gets us
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almost where we want to be:0 1 0
1 0 0
0 0 1


︸ ︷︷ ︸

P

 0 6 −2
4 8 −4
−2 2 7


︸ ︷︷ ︸

A

= E−1
31 E

−1
32

4 8 −4
0 6 −2
0 0 7

 .

The lower triangular matrix is

L = E−1
31 E

−1
32 =

 1 0 0
0 1 0
−1

2 1 1

 ,
and the product DU is 4 0 0

0 6 0
0 0 7

1 2 −1
0 1 −1/3
0 0 1

 .
Putting this all together, we get0 1 0

1 0 0
0 0 1


︸ ︷︷ ︸

P

 0 6 −2
4 8 −4
−2 2 7


︸ ︷︷ ︸

A

=

 1 0 0
0 1 0
−1

2 1 1


︸ ︷︷ ︸

L

4 0 0
0 6 0
0 0 7


︸ ︷︷ ︸

D

1 2 −1
0 1 −1/3
0 0 1


︸ ︷︷ ︸

U

.

Lecture 3: The column space and the nullspace

Exercise 3.1. The operations of addition and scalar multiplication clearly exist:

� c1(2, 1) + c2(2, 1) = (c1 + c2)(2, 1), and c1 + c2 ∈ R

� c1 · (c2(2, 1)) = (c1c2)(2, 1), and c1c2 ∈ R

The identity element is the zero vector (0, 0) = 0(2, 1), and every c(2, 1) has an inverse (−c)(2, 1), for
which c(2, 1) + (−c)(2, 1) = (c + (−c))(2, 1) = 0(2, 1) = (0, 0). Finally, scalar multiplication has the
usual identity 1, as 1(c(2, 1)) = (1 · c)(2, 1) = c(2, 1). Commutativity, associativity, and distributivity
in this space all follow from the same properties of R2 as a vector space.

Exercise 3.2. To show this, we need to show that every element in W can be expressed an element
in V . An arbitrary element of W looks like

a(u + v) + b(v + w),

for some a, b ∈ R. Rearranging, we get

au + (a+ b)v + bw,

which is an element of the span of u,v,w, hence in V . Therefore W ⊆ V .

Exercise 3.3. 1. First we observe the following linear combinations from the two spans:1
1
0

+

 0
−1
0

 =

1
0
0

 ,
0

1
1

+

 0
−1
0

 =

0
0
1

 .
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These are useful because they only have one nonzero entry. That is,xy
z

 = x

1
0
0

+ z

0
0
1

+ (−y)

 0
−1
0


= x

1
1
0

+

 0
−1
0

+ z

0
1
1

+

 0
−1
0

+ (−y)

 0
−1
0


= x

1
1
0

+ (x+ z − y)

 0
−1
0

+ z

0
1
1

 .
Hence R3 is a subspace of ⊆ V +W .

2. We take a linear combination of vectors from both spans. Consider

u =

1
1
0

−
1

0
1

 =

 0
1
−1

 .
This is an element of V +W . For it to be an element of V ∪W , it must either be in V or in W .
This vector is in V if any only if the matrix equation1 0

1 1
0 1

[x1

x2

]
=

 0
1
−1


has a solution. However, the first line is the equation x1 = 0 and the last line is x2 = −1, so
it must be that x1 + x2 = −1. But the second line says x1 + x2 = 1, and these two equations
contradict each other, so there is no solution. Similarly, this vector is in W if and only if the
matrix equation 1 0

0 −1
1 0

[x1

x2

]
=

 0
1
−1


has a solution. Again, we find the first line x1 = 0 and the third line x1 = −1 cannot both be
true at the same time, hence there is no solution. Therefore u 6∈ V and u 6∈ W , so u 6∈ V ∪W .
Since u ∈ V +W , it follows that V ∪W 6= V +W .

Exercise 3.4. 1. There are many such examples, one is A =
[

1 0 0
0 1 1
0 0 0

]
.

2. Here we repeat a column again, for example B =
[

1 1 0 0
0 0 1 1
0 0 0 0

]
.

3. There are many such examples, one is C = [ 2 1
1 2 ]. Here we see that[

1
0

]
=

2

3

[
2
1

]
− 1

3

[
1
2

]
,

[
0
1

]
= −1

3

[
2
1

]
+

2

3

[
1
2

]
.

Exercise 3.5. The first matrix A is already in RREF, as

A =

[
1 0 1 0
0 1 0 1

]
.

The first two are pivot columns and the last two are free columns, so it has two special solutions,
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which define the nullspace as

null(A) = span



−1
0
1
0

 ,


0
−1
0
1


 .

The second matrix is almost in RREF, but we can bring it quickly there:

B =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 RREF−−−−−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
This is the identity matrix, which we know has only the zero vector in its nullspace. For the third
matrix, we again need to bering to RREF:

C =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 RREF−−−−−→


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 .
This has two pivot columns and two free columns, so it has two special solutions. The nullspace is the
span of these, and is given by

null(C) = span



−1
0
1
0

 ,


0
−1
0
1


 .

Lecture 4: Completely solving Ax = b

Exercise 4.1. The product is

vwT =


a
a
a
a

 [1 1 1 1
]

=


a a a a
a a a a
a a a a
a a a a

 .
if a = 0, then we have the zero matrix, which has rank 0. But if a is any nonzero real number, then
the the reduced row echelon form of A will be

a a a a
0 0 0 0
0 0 0 0
0 0 0 0

 ,
which clearly has only one pivot. So in this case, the rank is 1.

Exercise 4.2. First we find the particular solutions. We get these by elimination on the augmented
matrix [A b]. The first multiplier is `21 = 2:[

1 0
−2 1

] [
3 0 −9 −3 0 9
6 0 −21 0 2 −1

]
=

[
3 0 −9 −3 0 9
0 0 −3 6 2 −19

]
.
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We see the pivots already as 3,−3. Now we clear the −9 above the −3:[
1 −3
0 1

] [
3 0 −9 −3 0 9
0 0 −3 6 2 −19

]
=

[
3 0 0 −21 −6 66
0 0 −3 6 2 −19

]
.

Finally we multiply by the reciprocals of the pivots:[
1/3 0
0 −1/3

] [
3 0 0 −21 −6 66
0 0 −3 6 2 −19

]
=

[
1 0 0 −7 −2 22
0 0 1 −2 −2/3 19/3

]
.

We find the particular solution immediately by placing the last column d in the pivot variable spots,
and get p = [22 0 19/3 0 0]. The special solutions, which we know there are 3 (as there are 3 free
columns), come from considering Rx = 0. The three special solutions will have one 1 in each of the
free variable spots, and 0 in the other free variable spots.

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

1
x3

0
0

 =


0
0
0
0
0

 =⇒ x1 = 0, x3 = 0

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

0
x3

1
0

 =


0
0
0
0
0

 =⇒ x1 = 7, x3 = 2

[
1 0 0 −7 −2
0 0 1 −2 −2/3

]
x1

0
x3

0
1

 =


0
0
0
0
0

 =⇒ x1 = 2, x3 = 2/3

Hence the complete solution is

x =


22
0

19/3
0
0

+ x2


0
1
0
0
0

+ x4


7
0
2
1
0

+ x5


2
0

2/3
0
1

 ,
for any x2, x4, x5 ∈ R.

Exercise 4.3. Note the answer is presented in the usual (particular solution)+(special solution) way,
with the free column being the second one, since x2 is the variable. In a particular solution the free
variables are zero, which occurs in 19

0
−2

 =

 7
4
−2

+ (−4)

−3
1
0

 .
This vector is still on the line of intersection, and we can build Ax = b from it. The augmented
matrix [R d] from the equation Rx = d, obtained via elimination, is[

1 3 0 19
0 0 1 −2

]
.

Here R = [ 1 3 0
0 0 1 ] could already be A, and d = [19 0 − 2]T could already be b. Or, we can add rows
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to get rid of the zeros:

A =

[
1 3 1
2 6 3

]
, b =

[
17
32

]
.

Exercise 4.4. First we compute the necessary products.

Lecture 5: Independence, basis, dimension

Exercise 5.1. Two choices are given below:

S1 =


1

0
1

 ,
0

1
0

 ,
2

0
1

 , S1 =


2

0
2

 ,
0

1
0

 ,
2

0
1

 .

These are linearly independent because using them as columns of a matrix A, one quickly finds the
RREF to be the 3× 3 identity matrix.

Exercise 5.2. Here we again use Python, and take a 2×2 matrix to be a list of lists [[a,b],[c,d]].

1. The following function takes a 2×2 matrix as input and returns True if one column is a multiple
of the other, and False otherwise. We have an additional function that allows for computer
precision up to 10 decimal points.

def iszero(n):

return (abs(n) < 1e-10)

def twomult(mat):

ratio1 = mat[0][1] / mat[0][0]

ratio2 = mat[1][1] / mat[1][0]

return iszero(ratio1 - ratio2)

This does not take into account the possibility that one of the denominators could be zero.

Exercise 5.3. To express v in terms of the basis B, we solve the matrix equation Ax = v, where
the columns of A are the vectors of B. We use Gaussian elimination on the augmented matrix [A v],
followed by back substitution:1 −1 3 −3

2 1 0 −1
3 −1 6 5

 −→

1 −1 3 −3
0 3 −6 5
0 0 1 32/3

 −→
x3 = 32/3

3x2 − 6x3 = 5 =⇒ x2 = 23
x1 − x2 + x3 = −3 =⇒ x1 = −12

Hence we find that −3
−1
5

 =
32

3

1
2
3

+ 23

−1
1
−1

− 12

3
0
6

 .
Exercise 5.4. A plane is 2-dimensional, so it should have two elements in the basis. Note that the
defining equation may be expressed as

[
2 −4 −5

] xy
z

 =

0
0
0

 ,
and bringing the matrix on the left to row reduced form we get

A =
[
2 −4 −5

] RREF−−−−−→
[
1 −2 −5

2

]
= R.
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The nullspace of these matrices consists of precisely those vectors (x, y, z) which lie in the plane P .
Note there are two free columns, so there are two special solutions. We find them quickly to be

s1 =

2
1
0

 , s2 =

5
2
0
1

 ,
and get that the nullspace of the matrix A is the span of s1 and s2. Hence the plane P is the span
of these equations. We did not check that {s1, s2} is a linearly independent set, but because we know
span(s1, s2) = P and we know dim(P ) = 2, we must have that {s1, s2} is linearly independent, because
there are only two vectors in the set, and every basis of P must have 2 vectors. Hence {s1, s2} is a
basis for P .

Exercise 5.5. To find the change of basis matrix, we have to express the vectors of the second basis
in terms of vectors from the first basis. This means solving the two matrix equations[

3 −1
2 1

]
x =

[
−2
3

]
,

[
3 −1
2 1

]
y =

[
0
5

]
.

Gaussian elimination on the first augmented matrix gives us,[
3 −1 −2
2 1 3

]
−→

[
1 0 1/5
0 1 13/5

]
,

and on the second gives us [
3 −1 0
2 1 5

]
−→

[
1 0 1
0 1 3

]
.

Hence the change of basis matrix is
[

3 5
13/5 3

]
.

Exercise 5.6. The proof of the first claim follows from first observing that the intersection U ∩W is
closed under vector addition and scalar multiplication. Indeed, if v ∈ U ∩W , the v ∈ U (so cv ∈ U)
and v ∈ W (so cv ∈ W ). Hence cv ∈ U ∩W . A similar appproach works for vector addition. The
zero element is in both U and W , and so must be in U ∩W . Additive inverses are −1 multiples, and
so are also in the intersection. The other properties are inherited from U and W similarly.

The proof of the second claim comes from constructing a basis for U ∩W that can be extended to
bases of U and W separately.

The proof of the third claim comes by constructing an explicit basis {(u, 0) : u ∈ BU}∪{(0,w) :
w ∈ BW } for V ⊕W , where BU is a basis for U and BW is a basis for W .

Lecture 6: The rank-nullity theorem

Exercise 6.1. The easiest case is when a, b, c are all nonzero. In that case, the row reduced echelon
form of A and its tranpose are

rref(A) =


0 1 0 0 a− b− ab+ abc a− b− ab+ abc
0 0 1 0 b− bc b− bc
0 0 0 1 c c
0 0 0 0 0 0

 , rref(AT ) =



0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .
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Lecture 7: Orthogonality

Exercise 7.1. Arbitrary elements in U and V are

U 3 u = a1u1 + · · · akuk =

k∑
i=1

aiui, V 3 v = b1v1 + · · · b`v` =
∑̀
j=1

bjvj .

Their dot product, following the laws of dot products, is

u · v = (a1u1 + · · · akuk) · (b1v1 + · · · b`v`)
= a1b1u1 · v1 + a1b2u1 · v2 + · · ·+ akbkuk · v`

=

k∑
i=1

∑̀
j=1

aibj ui · vj︸ ︷︷ ︸
0

= 0

Exercise 7.2.

Exercise 7.3. For every x ∈ Rn, there is a decomposition x = xr + xn, where x ∈ row(A) and
wn ∈ null(A). The desired function and its inverse are

f : row(A) → col(A),
v 7→ Av,

g : col(A) → row(A),
w 7→ ATw.

Lecture 8: Projections and least squares

Exercise 8.1. We expand the expression P 2 to get

P 2 =

(
1

v · v
vvT

)(
1

v · v
vvT

)
=

(vvT )(vvT )

(v · v)(v · v)
=

v(vTv)vT

(v · v)(v · v)
=

v(v · v)vT

(v · v)(v · v)
=

vvT

v · v
= P,

as desired.

Exercise 8.2.

Exercise 8.3. The normal vector is n = (3, 4, 9). Following Exercise 5.4, we find the plane 3x+4y−9z
to be the column space of the matrix

A =

−4
3 3

1 0
0 1

 .
Exercise 8.4. Recal the nullspace of A is all the vectors x for which Ax = 0. To see null(A) ⊆
null(ATA), suppose that x ∈ null(A). That is, Ax = 0, and multiplying by AT on the left gives
ATAx = 0, which means x ∈ null(ATA). To see null(ATA) ⊆ null(A), suppose that y ∈ null(ATA).
That is, ATAy = 0, and multiplying by yT on the left gives

0 = yT (ATAy) = (yTAT )(Ay) = (Ay)T (Ay) = ‖Ay‖.

Since the norm is positive definite, it follow that Ay = 0, and so y ∈ null(A).

Exercise 8.5. The mentioned examples look for the solution to1 1
7 1
5 1


︸ ︷︷ ︸

A

[
a
b

]
=

4
1
3


︸︷︷︸
b

.
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Using the projection matrix formula, the projection of b onto col(A) is

A(ATA)−1ATb =
1

14

13 −2 3
−2 10 6
3 6 5

4
1
3

 =
1

14

59
20
33

 .
Now we are trying to solve the equation1 1

7 1
5 1


︸ ︷︷ ︸

A

[
a
b

]
=

1

14

59
20
33


︸ ︷︷ ︸

c

,

which requires sending the augmented matrix [A c] to row reduced form:1 1 59
14

7 1 20
14

5 1 33
14

 RREF−−−−−→

1 0 −13
28

0 1 131
28

0 0 0

 .
This produces the equation y = −13

28x+ 131
28 , exactly as in the conclusion to Example 8.10.

Lecture 9: The Gram–Schmidt process

Exercise 9.1. The least squares polynomials are given below.

f1(x) =
12

155
x+

187

310

f2(x) =
943

134556
x2 +

2229

2426
x+

67193

134556

f3(x) = − 410881

8205900
x3 − 137014

683825
x2 +

9060313

8205900
x+

49420

27353

f4(x) =
64739

6474480
x4 +

487007

55033080
x3 − 40794619

110066160
x2 +

3957479

11006616
x+

3621483

1834436

They are plotted together on the plot below. Note that the higher degree polynomials better approx-
imate the points.

120



Exercise 9.2. Yes, the columns are orthogonal and orthonormal.

Lecture 10: Inner products and distances

Exercise 10.1. For each we give an example where it fails.

� For A = B = −I, the trace is negative, but the inner product is nonnegative.

� For f = 1, the derivative is zero, but f is not zero. The inner product is positive definite, so
only if f is 0, can the inner product 〈f, f〉 be zero.

� For a = 2, b = 4, by multiplicativity we should have 〈2, 4〉 = 〈2, 2 · 2〉 = 2〈2, 2〉. But intsead we
have 〈2, 4〉 = 20 and 2〈2, 2〉 = 16.

Exercise 10.2.

Exercise 10.3. As in the Gram–Schmidt process, we first get a basis A′, B′, C ′ that is orthogonal,
then normalize to get A′′, B′′, C ′′. We begin by computing

A′ = A =

[
1 2
2 1

]
,

B′ = B − projA′(B) =

[
1 2
2 1

]
−

trace
(

[ 1 2
2 1 ]

T
[ 2 0 −1 1 ]

)
trace

(
[ 1 2

2 1 ]
T

[ 1 2
2 1 ]

) [ 1 2
2 1 ]

Exercise 10.4.

Lecture 11: Determinants, part 1

Exercise 11.1. There are many examples we may use. The identity matrix I and its negative −I
both have nonzero determinant, but their sum has a zero determinant, and so is not invertible:

I + (−I) =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

det(I)=1

+

−1 0 0
0 −1 0
0 0 −1


︸ ︷︷ ︸

det(−I)=−1

=

0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

det(0)=0

.

Exercise 11.2. Since AB = I, the properties of the determinant tell us that

1 = det(I) = det(AB) = det(A) det(B).

Since 1 6= 0, we have that det(A) 6= 0 and det(B) 6= 0. This means that B has an inverse B−1 with
BB−1 = I. Also from AB = I, we have

BAB = B (multiply by B on the left)

BABB−1 = BB−1 (multiply by B−1 on the right)

BAI = I (definition of inverse)

BA = I. (properties of the identity)

Exercise 11.3. There are 9 terms in the recursive definition, and we see that many cofactors are

121



zero:

det(A11) =

∣∣∣∣2 0
2 0

∣∣∣∣ = 0− 0 = 0 det(A12) =

∣∣∣∣2 0
1 0

∣∣∣∣ = 0− 0 = 0 det(A13) =

∣∣∣∣2 2
1 1

∣∣∣∣ = 2− 2 = 0

det(A21) =

∣∣∣∣1 1
1 0

∣∣∣∣ = 0− 1 = −1 det(A22) =

∣∣∣∣1 1
1 0

∣∣∣∣ = 0− 1 = −1 det(A23) =

∣∣∣∣1 1
1 1

∣∣∣∣ = 1− 1 = 0

det(A31) =

∣∣∣∣1 1
2 0

∣∣∣∣ = 0− 2 = −2 det(A32) =

∣∣∣∣1 1
2 0

∣∣∣∣ = 0− 2 = −2 det(A33) =

∣∣∣∣1 1
2 2

∣∣∣∣ = 2− 2 = 0

That is, 5 of 9 cofactors are zero. For the 4 that are not zero, A21 = 2, A22 = 2, A31 = 1, A32 = 1, all
of the multipliers are nonzero. Hence 4 of the 9 terms in the determinant definition are nonzero.

Exercise 11.4. Suppose that Ax = 0 for nonzero x. This means that there is at least one nonzero
vector in the nullspace of A, so dim(null(A)) > 1. By the rank-nulltiy theorem, it follows that
rank(A) 6 n− 1. Since the rank is the dimension of the row space, it follows that there is some linear
dependence among the rows. By row operations, we can row reduce A to having at least one zero row.
By the multilinear property of the determinant, it follows that det(A) = 0.

Now suppose that det(A) = 0. This means that the parallelotope with edges given by the columns
of A has volume zero. This means that at least three of the edges lie on the same plane, which means
there is linear dependence among the columns. Hence we can find an x for which Ax = 0.

Lecture 12: Determinants, part 2

Exercise 12.1. This follows by expressing the “swapping” operation as multiplying by a permutation
matrix.

Exercise 12.2. The permutation σ is a single transposition 2↔ 3, so the parity is −1. The permu-
tation σ is a composition of (1↔ 3) followed by (2↔ 1), hence its parity is 1. The determinant of A
is then

det(A) = sgn(σ)A1σ(1)A2σ(2)A3σ(3)A4σ(4) + sgn(ρ)A1ρ(1)A2ρ(2)A3ρ(3)A4ρ(4)

= (−1)A11A23A32A44 +A13A21A32A44

= (−1) · 7 · 2 · (−2) · 1 + (−1) · 3 · (−2) · 1
= 28 + 6

= 34.

Note that no other term appears in the determinant, because starting out with A11 means we cannot
have A21 as a factor in that term, and similarly for starting out with A13 does not allow A23 to be in
the term.

Lecture 13: Eigenvalues and eigenvectors

Exercise 13.1. 1. The eigenvalues are the roots of

det(A− λI) = (6− λ)(−2− λ) + 25 = −12− 4λ+ λ2 + 25 = λ2 − 4λ+ 13,

which has roots λ = 4±
√

16−52
2 = 4±

√
−36

2 = 2±3i. The associated eigenvectors are solved by the
matrix equation[

6 −5
5 −2

] [
x
y

]
= (2 + 3i)

[
x
y

]
⇐⇒ 6x− 5y = (2 + 3i)x

5x− 2y = (2 + 3i)y
=⇒ x = 4 + 3i

y = 5
.
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The second eigenvector is solved similarly, to produce the system

λ1 = 2 + 3i, v1 =

[
4 + 3i

5

]
, λ2 = 2− 3i, v2 =

[
4− 3i

5

]
.

2. The product is real:

v1 · v2 =

[
4 + 3i

5

]
·
[
4− 3i

5

]
= (4 + 3i)(4− 3i) + 25 = 16− 12i+ 12i− 9i2 + 25 = 41 + 9 = 50.

Exercise 13.2. 1. There are many options. and the easiest ones are with the eigenvalues on the
diagonal. Two such examples are:

A =

−3 0 0
0 −2 0
0 0 5

 , B =

−3 0 0
0 5 0
0 0 −2

 .
2. The eigenvectors are the three standard basis vectors of R3,

e1 =
[

1
0
0

]
, e2 =

[
0
1
0

]
, e3 =

[
0
0
1

]
.

3. If λ3 = −2, then λ3 = λ2. So for an arbitrary combination av2 + bv3, a, b ∈ R, we have

A(av2 + bv3) = aAv2 + bAv3 = aλ2v2 + bλ3v3 = aλ3v2 + bλ3v3 = λ3(av2 + bv3).

Hence av2 + bv3 is an eigenvector with eigenvalue λ3.

Exercise 13.3. Just from the block description, the matrix A will have (at least) eigenvalues −1, 2, 5
by creating an eigenvector [ v0 ] ∈ R6 where v is an eigenvector of B.

Exercise 13.4. We have to do this in reverse. Let A =
[
a b
c d

]
be the answer to this question, which

will then satisfy

A [ xy ] = λ [ xy ] ⇐⇒
[
ax+by
cx+dy

]
=
[
λx
λy

]
and A [ zw ] = µ [ zw ] ⇐⇒

[
az+bw
cz+dw

]
= [ µzµw ] .

We could do back substitution, or we could write this as a matrix equation:
x y 0 0
0 0 x y
z w 0 0
0 0 z w



a
b
c
d

 =


λx
λy
µz
µw

 .
Row reducing the augmented matrix we find solutions to a, b, c, d in the last column:

x y 0 0 λx
0 0 x y λy
z w 0 0 µz
0 0 z w µw

 RREF−−−−−→


1 0 0 0 µyz−λxw

yz−xw
0 1 0 0 µxz−λxz

xw−yz
0 0 1 0 λyw−µyw

xw−yz
0 0 0 1 µxw−λyz

xw−yz

 .
Hence the matrix 

µyz − λxw
yz − xw

µxz − λxz
xw − yz

λyw − µyw
xw − yz

µxw − λyz
xw − yz


will have eigenvector [ xy ] with eigenvalue λ, and eigenvector [ zw ] with eigenvector µ. Note that the
denominators cannot be zero, so there are relations that must be satisfied among the x, y, z, w for such
a matrix to even exist.
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Lecture 14: Diagonalization

Exercise 14.1. For the matrix A, note that the rows are multiples of each other, so λ1 = 0. Since
there are 2 eigenvalues (as it is a 2× 2 matrix), and the sum of the eigenvalues is the trace, it follows
that λ1 + λ2 = 2 + 5 = 7, so λ2 = 7. For the eigenvectors, we eliminate the augmented matrices[

2 2 0
5 5 0

]
RREF−−−−−→

[
1 1 0
0 0 0

]
, and

[
−5 2 0
5 −2 0

]
RREF−−−−−→

[
1 −2/5 0
0 0 0

]
.

So the eigenvectors are
[−1

1

]
for λ1 = 0 and

[
2/5
1

]
for λ2 = 7, giving the decomposition

[
2 2
5 5

]
=

[
−1 2/5
1 1

] [
0 0
0 7

] [
−1 2/5
1 1

]−1

where

[
−1 2/5
1 1

]−1

=
−5

7

[
1 −2/5
−1 −1

]
.

For the matrix B, the eigenvalues are on the diagonal, but the eigenvectors are not so immediate. For
λ1 = 1 we have e1, but for λ2 = 4 we need1 2 3

0 4 5
0 0 6

xy
z

 =

4x
4y
4z

 =⇒
z = 0

4y = 4y
−3x = −2y

=⇒ v2 =

2/3
1
0

 .
Similarly for λ3 = 6, we need1 2 3

0 4 5
0 0 6

xy
z

 =

6x
6y
6z

 =⇒
6z = 6z
−2y = −5z
−5x = −2y − 3z

=⇒ v3 =

8/5
5/2
1

 .
Hence the decomposition is1 2 3

0 4 5
0 0 6

 =

1 2/3 8/5
0 1 5/2
0 0 1

1 0 0
0 4 0
0 0 6

1 2/3 8/5
0 1 5/2
0 0 1

−1

,

where 1 2/3 8/5
0 1 5/2
0 0 1

−1

=

1 −2/3 1/15
0 1 −5/2
0 0 1

 .
Exercise 14.2. 1. The eigenvector matrix X has the eigenvectors as columns, and the eigenvalues

matrix Λ has the eigenvalues on the diagonal:

X =

1 0 −1
2 1 −1
1 0 0

 , Λ =

−1 0 0
0 2 0
0 0 −3

 .
2. First we get the inverse of X by row reduction:1 0 −1 1 0 0

2 1 −1 0 1 0
1 0 0 0 0 1

 RREF−−−−−→

1 0 0 0 0 1
0 1 0 −1 1 −1
0 0 1 −1 0 1

 .
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Hence the matrix A is

XΛX−1 =

1 0 −1
2 1 −1
1 0 0

−1 0 0
0 2 0
0 0 −3

X−1

=

−1 0 3
−2 2 3
−1 0 0

 0 0 1
−1 1 −1
−1 0 1


=

−3 0 2
−5 2 −1
0 0 −1

 .
Exercise 14.3.

Lecture 15: Special matrices

Exercise 15.1. 1. The eigenvalues are the roots of the charatceristic polynomial (−λ)2 +a2, which
has roots λ = ±ia.

2. The eigenvalues are the roots of the charatceristic polynomial

(−λ)

∣∣∣∣ia− λ 0
0 −λ

∣∣∣∣+ a

∣∣∣∣ 0 ia− λ
−a 0

∣∣∣∣ = λ2(ia− λ) + a2(ia− λ) = (λ2 − a2)(ia− λ),

which has roots λ = ±ia. The root ia is a root of multiplicity 2.

3. We follow the pattern presented, and claim the matrix

A =


0 0 0 a
0 0 a 0
0 −a 0 0
−a 0 0 0


has all imaginary eigenvalues. This matrix is clearly skew-symmetric, and its characteristic
polynomial, expanding along the first then the last row, is

(−λ)

∣∣∣∣∣∣
−λ a 0
−a −λ 0
0 0 −λ

∣∣∣∣∣∣− a
∣∣∣∣∣∣

0 −λ a
0 −a −λ
−a 0 0

∣∣∣∣∣∣ = (−λ)2

∣∣∣∣−λ a
−a −λ

∣∣∣∣+ (−a)2

∣∣∣∣−λ a
−a −λ

∣∣∣∣
= (λ2 + a2)(λ2 + a2),

which again has roots λ = ±ia, both of which have multiplicity 2.

4. There are many examples, one is

A =

a a a
a 2a 2a
a 2a 3a

 RREF−−−−−→

a a a
0 a a
0 0 a

 ,
so all three pivots are a. The matrix is clearly symmetric.

Exercise 15.2. This follows from the rules of matrix multiplication. Recall that for A ∈Mm×n and
B ∈Mn×`, the product AB has ij-entry given by

(AB)ij =
n∑
k=1

AikBkj .
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And for AT , we have (AT )ij = Aji. Hence for B = AT , the product AAT has entries

(AAT )ij =
n∑
k=1

Aik(A
T )kj =

n∑
k=1

AikAjk,

(AAT )ji =
n∑
k=1

Ajk(A
T )ki =

n∑
k=1

AjkAik.

Since both lines are the same, the matrix is symmetric. The proof for ATA is analogous.

Exercise 15.3. 1. It must be that b = 0, which is a 1
7 chance. The values a, c can be anything, so

the probability is 1
7 .

2. For A to be positive definite, the pivots on the diagonals must be positive. For each of a, c, this
is a 3

7 chance, so the probability is 9
49 .

Exercise 15.4. 1. For the matrix A, we have1 2 2
2 a 2
2 2 1

 →

1 2 2
0 a− 4 −2
0 −2 −3

 →

1 2 2
0 a− 4 −2
0 0 −3− 4

a−4

 .
For the pivots to be positive, we need a− 4 > 0 ⇐⇒ a > 4 and

−3− 4

a− 4
> 0 ⇐⇒ −3a+ 12− 4 > 0 ⇐⇒ −3a > −8 ⇐⇒ a > 8/3.

The two conditions a > 4 and a > 8/3 are satsified on a > 4.

For the matrix B, we haveb 2 0
2 b 3
0 3 b

 →

b 2 0
0 b− 4

b 3
0 3 b

 →

b 2 0
0 b− 4

b 3
0 0 b− 9

b− 4
b

 .
For the pivots to be positive, we need b > 0 in the first row,

b− 4

b
> 0 ⇐⇒ b2 − 4 > 0 ⇐⇒ b2 > 4 ⇐⇒ b > 2 or b < −2

in the second row, and

b− 9

b− 4
b

> 0 ⇐⇒ b2 − 4− 9 > 0 ⇐⇒ b2 > 13 ⇐⇒ b >
√

13 or b < −
√

13

in the third row. The intersection of all these conditions is b >
√

13.

2. For the eigenvalues, we find the roots of the characteristic polynomial:

det(A− λI) = (λ2 − λ(3 + a) + 3a− 8)(λ+ 1)

=⇒ λ ∈

{
−1,

3 + a±
√

(3 + a)2 − 12a+ 32

2

}
,

det(B − λI) = (λ2 − 2bλ+ b2 − 13)(λ− b)

=⇒ λ ∈

{
b,

2b±
√

4b2 − 4b2 + 52

2

}
=
{
b, b±

√
13
}
.

For A, the first eigenvalue −1 does not depend on a, so it will be negative irrespective of the
value of a. For B, we need b > 0, and b > −

√
13 or b >

√
13, the intersection of which is
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b >
√

13.

3. The upper left determinants of A are:∣∣1∣∣ = 1,∣∣∣∣1 2
2 a

∣∣∣∣ = a− 4,∣∣∣∣∣∣
1 2 2
2 a 2
2 2 1

∣∣∣∣∣∣ =

∣∣∣∣a 2
2 1

∣∣∣∣− 2

∣∣∣∣2 2
2 1

∣∣∣∣+ 2

∣∣∣∣2 a
2 2

∣∣∣∣
= a− 4− 2(2− 4) + 2(4− 2a)

= a− 4− 4 + 8 + 8− 4a

= 8− 3a,

which all will be positive if a − 4 > 0 (or a > 4) and 8 − 3a > 0 (or a < 8/3). Both of these
conditions can not be satsified at the same time, so there are no values a for which all the uper
left determinants will be positive. For B:∣∣b∣∣ = b,∣∣∣∣b 2

2 b

∣∣∣∣ = b2 − 4,∣∣∣∣∣∣
b 2 0
2 b 3
0 3 b

∣∣∣∣∣∣ = b

∣∣∣∣b 3
3 b

∣∣∣∣− 2

∣∣∣∣2 3
0 b

∣∣∣∣
= b(b2 − 9)− 2(2b− 0)

= b3 − 9b− 4b

= b(b2 − 13),

which will all be positive if b > 0, b2 − 4 > 0 (or b > 2 or b < −2), and b(b2 − 13) > 0. The last
condition equals 0 when b = 0 and b = ±

√
13, so we have that:

b < −
√

13 =⇒ b(b2 − 13) < 0,

−
√

13 < b < 0 =⇒ b(b2 − 13) > 0,

0 < b <
√

13 =⇒ b(b2 − 13) < 0,

b >
√

13 =⇒ b(b2 − 13) > 0.

We get this by observing that b(b2 − 13) has a positive leading coefficient (as a polynomial in
b), so its value will be negative as b → −∞, and poisitive as b → +∞. Since all the roots have
multiplicity 1, the sign changes at every root. We then must satisfy the conditions

b > 0, b > 2 or b < −2, b ∈ (−
√

13, 0) or b >
√

13.

Since
√

13 > 2, the intersection of all these conditions is b >
√

13.
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4. We choose b = 4 >
√

13. We already know the eigenvalues will be {4, 4 ±
√

13} from part (b).
For the eigenvectors, we row reduce matrices of the eigenvector equations. For λ1 = 4, we row
have 0 2 0 0

2 0 3 0
0 3 0 0

 row ops.−−−−−−→

0 1 0 0
1 0 3/2 0
0 0 0 0

 .
Hence the associated eigenvector is [− 3

2
0 1 ]T , which normalized is [− 3√

13
0 2√

13 ]
T

. For the eigen-
values 4±

√
13, we have±

√
13 2 0 0

2 ±
√

13 3 0

0 3 ±
√

13 0

 row ops.−−−−−−→

1 0 −2/3 0

0 1 ±
√

13/3 0
0 0 0 0

 .
Hence the associated eigenvector to 4±

√
13 is [ 2

3
∓
√
13
3

1 ], which normalized is
[ √

2√
13
∓ 1√

2
3√
26

]T
.

Hence the QΛQT -decomposition of B, for b = 4 is

Q =
1√
13

−3
√

2
√

2

0 −
√

13
2

√
13
2

2 3√
2

3√
2

 , Λ =

4 0 0

0 4 +
√

13 0

0 0 4−
√

13

 .

Lecture 16: Singular value decomposition

Exercise 16.1. 1.

Exercise 16.2. 1. First we compute these matrices as

AAT =

[
2a2 0
0 4a2

]
, ATA =


a2 0 a2 0
0 0 0 0
a2 0 a2 0
0 0 0 4a2

 .
The eigenvalue / eigenvector pairs of AAT are evidently λ1 = 4a2 with u1 = [ 0

1 ] and λ2 = 2a2

with u2 = [ 1
0 ]. We sort them this way because 4a2 > 2a2. For the SVD we only need the

eigenvectors of ATA corresponding to these two eigenvalues. It is immediate that v1 = [0 0 0 1]T

and v2 = [1 0 1 0]T , which normalizes to [1/
√

2 0 1/
√

2 0]T . Hence the SVD of A is

A = 2a

[
0
1

] [
0 0 0 1

]
+
√

2a

[
1
0

] [
1/
√

2 0 1/
√

2 0
]

=

[
0 1
1 0

]
︸ ︷︷ ︸

U

[
2a 0 0 0

0
√

2a 0 0

]
︸ ︷︷ ︸

Σ

[
0 0 0 1

1/
√

2 0 1/
√

2 0

]
︸ ︷︷ ︸

V T

.

2. The dimensions of the four fundamental subspaces are given by the number of rows and columns
in the matrices U,Σ, V T . We get that:

� dim(col(A)) = rank(A) = 2

� dim(null(AT )) = (number of zero rows in Σ) = 0

� dim(row(A)) = rank(A) = 2

� dim(null(A)) = (number of zero columns in Σ) = 2

Exercise 16.3. 1. There are many examples, one is A =
[

1 0 0 0
0 2 0 0
0 0 3 0

]
. The matrix AAT ∈ M3×3 is

diagonal with 1, 4, 9 on its diagonal, so those are its eigenvalues. The singular values of A are
the positive square roots of these numbers, and those are 1, 2, 3.
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2. Take the left singular vectors to be same as the right ones. Let σ1 = 4 (to clear denominators)
be the only signular value (because rank is 1). By SVD we get

A =

[
1
2 −

√
3

2√
3

2
1
2

]
︸ ︷︷ ︸

U

[
4 0
0 0

]
︸ ︷︷ ︸

Σ

[
1
2

√
3

2

−
√

3
2

1
2

]
︸ ︷︷ ︸

V T

=

[
2 0

2
√

3 0

][
1
2

√
3

2

−
√

3
2

1
2

]
=

[
1
√

3√
3 3

]
.

3. Since A is symmetric, its singular values are its eigenvalues. Since there are many zeros, the
eigenvalue / eigenvector pairs can be found by sight:

λ1 = σ1 = 2
λ2 = σ2 = 1
λ3 = σ3 = 1

u1

‖u1‖
=


1/
√

2
0

1/
√

2
0

 , u2 =


0
1
0
0

 , u3 =


0
0
0
1

 .
The last eigenvalue is zero because the matrix has two equal rows (so the determinant is 0). The
approximations then are:

rank 1 : σ1u1v
T
1 = 2


1/
√

2
0

1/
√

2
0




1/
√

2
0

1/
√

2
0


T

=


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0



rank 2 : σ1u1v
T
1 + σ2u2v

T
2 =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

+


0
1
0
0




0
1
0
0


T

=


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0



other rank 2 : σ1u1v
T
1 + σ3u3v

T
3 =


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

+


0
0
0
1




0
0
0
1


T

=


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 1



Lecture 17: Principal component analysis

Exercise 17.1.

Exercise 17.2. Since the first principal component solves the perpendicular least squares problem,
we choose one point to be exactly [ ab ], and the other two to lie the same distance on either side of
this eigenvector. We choose the distance to be ` =

√
a2 + b2/4 so that the two other points do not

dominate the first point. The idea is given in the picture below.

R

R

first point (a, b)
second point

third point

We now construct these points explicitly and perform PCA on the data to confirm that the result will
be as desired. To find the coordinates of the other two points, note that the slope of the line to (a, b)
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is b
a . So the two other points lie on the line with slope −ab which goes through (a2 ,

b
2). The equation

of the line is given by

−a
b

=
y − b

2

x− a
2

⇐⇒ f(x) = y =
−a
b
x+

(
a2

2b
+
b

2

)
.

To find the points a distance ` along this line from (a2 ,
b
2), we solve for x in the equality

√
a2 + b2

4
=

√(a
2
− x
)2

+

(
b

2
− f(x)

)2

=

√(a
2
− x
)2

+

(
b

2
−
(
−a
b
x+

a2

2b
+
b

2

))2

=

√(a
2
− x
)2

+

(
a

b
x− a2

2b

)2

=

√(a
2
− x
)2

+
a2

b2

(
x− a

2

)2

=

√(a
2
− x
)2
(

1 +
a2

b2

)
.

This simplifies to x = 2a±b
4 , so the data we have is

A =

[
a 2a−b

4
2a+b

4

b f(2a−b
4 ) f(2a+b

4 )

]
=

[
a 2a−b

4
2a+b

4

b 2b+a
4

2b−a
4

]
.

For PCA, we need to mean-center the data first. The mean of x-coordinates is 2a/3 and the mean of
the y-coordinates is 2b/3, so after subtracting 2a/3 from the first row and 2b/3 from the second row,
we get the mean centered data to be

M =

[
a
3
−2a−3b

12
3b−2a

12
b
3

3a−2b
12

−3a−2b
12

]
=⇒ S =

MMT

2
=

[
4a2+3b2

48
ab
48

ab
48

3a2+4b2

48

]
.

With the help of a computer, we find the eigenvalues and eigenvectors of this symmetric matrix to be

λ1 =
a2 + b2

12
, u1 =

[
a/b
1

]
, λ2 =

a2 + b2

16
, u2 =

[
−b/a

1

]
.

It looks like we are done, but the eigenvector
[
a/b
1

]
is for the mean-centered data, so we need to shift

it back. Hence the first eigenvector for the original data is[
a/b
1

]
+

[
2a/3
2b/3

]
=

[
2ab+3a

3b
2b+3

3

]
=

2b+ 3

3b

[
a
b

]
,

which is indeed a multiple of [ ab ], as desired.

Exercise 17.3. 1. We folow a similar method as in Question 1, placing what were the second and
third points in the second eigenvector direction. We make some other changes:

� Since we need at least 4 points, but cannot place three points in a line, we split up what
were the second and third points.

� To ensure the second principal component is [ 0 1 0 ]T , we place further points along the
second principal component axis.

� To ensure that the data is mean-centered, we mirror all the points.
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This construction is demonstrated in the picture below left (the plane x = 0 is emphasized in
gray), with the points in the matrix below right.

Rx
Ry

Rz

•

••
•

•
•

•

•
A =

1 −1 0 0 0 0 0 0
0 0 1

4
1
4 −1

4 −1
4 1 −1

0 0 1
4 −1

4
1
4 −1

4 0 0



It is evident that no three points lie on a line. The mean-centered matrix M is the same as A,
since the mean of each row is 0. The sample covariance matrix S and its eigenvectors are

S =

2
7 0 0
0 9

28 0
0 0 1

28

 , u1 = [ 1 0 0 ]T

u2 = [ 0 1 0 ]T

u3 = [ 0 0 1 ]T
.

Hence the presented data satisfies the given conditions.
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2. Columns 1,2,7,8 lie in plane z = 0 and columns 3-8 lie in plane x = 0 (emphasized in the picture
above). To fix theses issues, we take two steps:

� For the first issue, we split the points (1, 0, 0) and (−1, 0, 0) into two points just above and
below the x-axis. We shift them in equal but opposite diections along the y-axis so that
the new points are not on a plane.

� For the the second issue, we move the four points in columns 3-6 by equal but opposite
distances in the x-direction.

� To ensure the two solutions do not conflict, the shifting magnitudes are different.

The new data is given below left (with lines indicating shifts from the previous data), and the
new matrix is given below right.

••

•
••

•
•

•

•

•

Rx
Ry

Rz

A =

 1 1 −1 −1 1
8 −1

8 −1
8

1
8 0 0

1
16 − 1

16 − 1
16

1
16

1
4

1
4 −1

4 −1
4 1 −1

1
8 −1

8
1
8 −1

8
1
4 −1

4
1
4 −1

4 0 0



By sight we confirm that no four points of these samples line in the same plane. The data
is still mean-centered (since we added equal but opposite values to each row), and the sample
covariance matrix with its eigenvectors is

S =

 65
144 0 0
0 145

576 0
0 0 5

144

 , u1 = [ 1 0 0 ]T

u2 = [ 0 1 0 ]T

u3 = [ 0 0 1 ]T
.

Hence all the conditions are satisfied.

Lecture 18: Linear transformations

Exercise 18.1. 1. T1 is linear, and its matrix is a permutation matrix:

T1 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .
T2 is not linear, as T2 [ 0

2 ] =
[

2e2
0

]
6= [ 4e

0 ] = 2T2 [ 0
1 ].

T3 is not linear, as T3 [ 3
0 ] = [ 9

0 ] 6= [ 3
0 ] = 3T3 [ 1

0 ].

T4 is not linear, as T4

[√
π

0

]
= [ 0

0 ] 6= [ 1
0 ] =

√
2T4

[√
π/2
0

]
.

T5 is not linear, as T5

[
0
0
3

]
=
[

0
0
9

]
6=
[

0
0
1

]
= 3T5

[
0
0
1

]
.

T6 is linear, and its matrix is the zero matrix:

T6 =


0 0
0 0
0 0
0 0

 .
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T7 is linear, and its matrix can be found by what it does to each variable:

T7 =

[
−3 0 0
−0 1 1

]
.

T8 is linear, and its matrix can be found by what it does to each variable:

T8 =

2 2 0
0 1 1
0 0 0

 .
2. The three conditions that are given can be simplified using the following observations:

T5

1
0
0

 =

1
0
1

 , T8

0
1
0

 =

2
1
0

 , T8

0
0
1

 =

0
1
0

 .
Using this, we get a clearer description of what S does to R3:

S

1
0
1

 =

1
0
1

 , S

2
1
0

 =

0
1
1

 , S

0
1
0

 =

1
1
0

 .
To get the matrix of S, we first describe what S does on the standard basis vectors e1, e2, e3.
Note that

S

1
0
0

 = S

1

2

2
1
0

− 1

2

0
1
0

 =
1

2
S

2
1
0

− 1

2
S

0
1
0

 =
1

2

0
1
1

− 1

2

1
1
0

 =

−1/2
0

1/2


for e1, and

S

0
0
1

 = S

1
0
1

− 1

2

2
1
0

+
1

2

0
1
0

 = S

1
0
1

− 1

2
S

2
1
0

+
1

2
S

0
1
0

 =

1
0
1

− 1

2

0
1
1

+
1

2

1
1
0

 =

3/2
0

1/2


for e3. For e2 we already know what happens. Applying the proof of Theorem 18.9 on the
construction of the matrix associated to a linear transformation, we get that the matrix of S is

S =

−1/2 1 3/2
0 1 0

1/2 0 1/2

 .
Exercise 18.2. We show the proof for the kernel. The additive inverse exists, because if x ∈ ker(f),
then f(x) = 0, and f(−x) = −f(x) = −0 = 0. The kernel is closed under addition, as x,y ∈ ker(f)
means f(x) = f(y) = 0, so

f(x + y) = f(x) + f(y) = 0 + 0 = 0 =⇒ x + y ∈ ker(f).

Exercise 18.3.

Exercise 18.4. 1. The lengths are ‖x‖ =
√

10, ‖y‖ =
√

10, and ‖z‖ = 2. Hence the unit vectors
are

x̂ =

1/
√

10
0

3/
√

10

 , ŷ =

 3/
√

10
0

−1/
√

10

 , ẑ =

 0
−1
0

 .
2. For this we use the diagonalization equation A = QΛQT , where Q has orthonormal columns.
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We note that
x · y = x · z = y · z = 0,

so the vectors re all orthogonal. Normalizing them, as we have done above, makes them or-
thonormal. We choose eigenvalues 1,2,3 for x,y, z, respectively. The eigenvector matrix is then

Q =

1/
√

10 3/
√

10 0
0 0 −1

3/
√

10 −1/
√

10 0

 ,
and the requested symmetric matrix is

A = QΛAT =

1/
√

10 3/
√

10 0
0 0 −1

3/
√

10 −1/
√

10 0

1 0 0
0 2 0
0 0 3

1/
√

10 3/
√

10 0
0 0 −1

3/
√

10 −1/
√

10 0

T =

 19
10 0 − 3

10
0 3 0
− 3

10 0 11
10

 .
3. We follow the proof of Theorem 18.9 to get a matrix for this linear transformation. First we

compute what f(e1), f(e2), and f(e3) will be, from the given data. We apply the two properties
of linearity:

f

1
0
0

 = f

 1

10

1
0
3

+
3

10

 3
0
−1

 =
1

10
f

1
0
3

+
3

10
f

3
0
1

 =
1

10

1
1
0

+
3

10

−1
−1
−1

 =

 −1/5
−1/5
−3/10

 ,
f

0
1
0

 = f

−1

2

 0
−2
0

 = −1

2
f

 0
−2
0

 = −1

2

 0
1
−1

 =

 0
−1/2
1/2

 ,
f

0
0
1

 = f

 3

10

1
0
3

− 1

10

 3
0
−1

 =
3

10
f

1
0
3

− 1

10

 3
0
−1

 =
3

10

1
1
0

− 1

10

−1
−1
−1

 =

 2/5
2/5
1/10

 .
Hence the matrix of f is

f
[
x
y
z

]
=

 −1/5 0 2/5
−1/5 −1/2 2/5
−3/10 1/2 1/10

 .
Exercise 18.5.

Exercise 18.6. Let f : V →W and g : W → Z be linear. Take any x,y ∈ V , for which

(g ◦ f)(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = (g ◦ f)(x) + (g ◦ f)(y).

The second equality follows from the linearity of f , and the third equality follows from the linearity
of g. Similarly, for any c ∈ R, we have that

(g ◦ f)(cx) = g(f(cx)) = g(cf(x)) = cg(f(x)) = c(g ◦ f)(x),

where again the second equality follows from the linearity of f , and the third equality follows from
the linearity of g. Hence g ◦ f satsifies the linearity conditions, and is a linear map V → Z.

Lecture 19: Jordan form

Exercise 19.1.

Exercise 19.2. 1. The eigenvalue −3 contributes a 2 × 2 Jordan block, since the algebraic mul-
tiplicity is 2 (so all its Jordan blocks together have 2 rows and 2 columns) and the geometric
multiplicity is 1 (so there is only one Jordan block corresponding to this eigenvalue). Similarly,
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the Jordan blocks for the eigenvalue 3 take up 4 rows and 4 columns, and there are 2 of them.
Hence:

� there are 3 Jordan blocks

� their sizes are either 1,3,2 or 2,2,2:

3

3

−3




3

3

−3


2. For the matrix B, we need to find an invertible 6 × 6 matrix C for which B = CJC−1, as the
J and B will be similar. We need B to have no zero entries, and generating several random
matrices with entries in the range {−1, 0, 1}, we quickly find one (there is not a unique answer).
We see that

B =

−1 −1 1 1 1 1
0 1 0 −1 −1 1
1 1 −1 0 1 0
0 0 0 0 −1 −1
1 −1 1 −1 0 1
0 0 1 0 0 1


︸ ︷︷ ︸

C

 3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 −3 1
0 0 0 0 0 −3


︸ ︷︷ ︸

J


2 1 2 3 1 −1
−2 −1 −1 −2 −1 2
−3 −2 −2 −3 −1 3
4 2 3 5 1 −2
−3 −2 −2 −4 −1 2
3 2 2 3 1 −2


︸ ︷︷ ︸

C−1

=


12 5 6 16 3 −6
−39 −23 −26 −45 −13 26
15 11 13 20 5 −10
−3 −2 −2 −6 −1 2
−16 −11 −10 −15 −3 12
−14 −10 −9 −13 −5 13

 .

3. Applying Theorem 19.10 from the lecture notes and the fact that J = C−1BC, we get that the
generalized eigenvectors of B are the columns of C.

Lecture 20: Complex numbers and complex matrices

Exercise 20.1. We place z in the denominator and multiply by the conjugate:

1

z
=

1

x+ yi
=

1

x+ yi

x− yi
x− yi

=
x− yi
x2 + y2

=
x

x2 + y2
+

−y
x2 + y2

i.

Exercise 20.2. 1.

z + w = (x+ yi) + (a+ bi)

= (x+ a) + (y + b)i

= (x+ a)− (y + b)i

= (a− yi) + (a− bi)
= z + w

2. *This equation originally looked like “zw = zw”, where the space is not visible between the
bars over the symbols on the right side. An answer stating that that both sides are the same is
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acceptable.*

zw = (x+ yi)(a+ bi)

= xa+ xbi+ yai− yb
= (xa− yb) + (xb+ ya)i

= (xa− yb)− (xb+ ya)i

= xa− yb− xbi− yai
= (x− yi)a− (x− yi)bi
= (x− yi)(a− bi)
= z w

3.
z = x+ yi = x− yi = x+ yi = z

4.
z + z = (x+ yi) + (x− yi) = (x+ x) + (y − y)i = 2x

5.
z − z = (x+ yi)− (x− yi) = (x− x) + (y + y)i = 2yi

6. Since zz−1 = 1, we have that

z−1 =
1

z
=

1

x+ yi
=

1

x+ yi

x− yi
x− yi

=
x− yi
x2 + y2

=
z

|z|2
.

7. Suppose that |z| = 0. Then

0 = |z| =
√
x2 + y2 =⇒ 0 = x2 + y2.

Since x2 > 0 and y2 > 0, but their sum is equal to zero, it must be that x = y = 0, so z = 0.
Conversely, suppose that z = 0. Then |z| =

√
02 = 0.

8.
|z| = |x+ yi| = |x− yi| =

√
x2 + (−y)2 =

√
x2 + y2 = |x+ yi| = |z|

9.

|zw| = |(x+ yi)(a+ bi)|
= |xa+ xbi+ yai− yb|
= |(xa− yb) + (xb+ ya)i|

=
√

(xa− yb)2 + (xb+ ya)2

=
√

(xa)2 − 2xayb+ (yb)2 + (xb)2 + 2xbya+ (ya)2

=
√

(xa)2 + (yb)2 + (xb)2 + (ya)2

=
√

(x2 + y2)(a2 + b2)

=
√
x2 + y2

√
a2 + b2

= |z||w|

10. For this question we work backwards, doing invertible operations (adding / subtracting, multi-
pliying / dividing by nonzero numbers):
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|z + w| 6 |z|+ |w|
⇐⇒ |(x+ yi) + (a+ bi)| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒ |(x+ a) + (y + b)i| 6 |x+ yi|+ |a+ bi| (expanding)

⇐⇒
√

(x+ a)2 + (y + b)2 6
√
x2 + y2 +

√
a2 + b2 (definition)

⇐⇒ (x+ a)2 + (y + b)2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (squaring)

⇐⇒ x2 + 2ax+ a2 + y2 + 2yb+ b2 6 x2 + y2 + 2
√

(x2 + y2)(a2 + b2) + a2 + b2 (expanding)

⇐⇒ 2ax+ 2yb 6 2
√

(x2 + y2)(a2 + b2) (cancelling)

⇐⇒ ax+ yb 6
√

(x2 + y2)(a2 + b2) (dividing by 2)

⇐⇒ (ax)2 + 2axyb+ (yb)2 6 x2a2 + x2b2 + y2a2 + y2b2 (squaring)

⇐⇒ 2axyb 6 x2b2 + y2a2 (cancelling)

⇐⇒ 0 6 x2b2 − 2axyb+ y2a2 (rearranging)

⇐⇒ 0 6 (xb− ya)2 (rearranging)

This last line is clearly a true statement, and since all operations were reversible, the first line is also
true.

Exercise 20.3.

Lecture 21: Fourier topics

Exercise 21.1.

Exercise 21.2.

Lecture 22: Graphs

Exercise 22.1. 1. A sink will have all zeros in its row (no outgoing edges) and a source will have
all zeros in its columns (no incoming edges).

2. If all the entries of A were 1, except the diagonal (because that would imply self loops, which
we forbid in simple graphs), G would have |V |(|V | − 1) edges.

Exercise 22.2.

Exercise 22.3.

Lecture 23: Markov matrices and spectral clustering

Exercise 23.1.

Exercise 23.2.

Lecture 24: Graph clustering

Exercise 24.1.
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k-means, 105

absolute value, 87
additive identity, 8
adjacency matrix, 97
algebraic multiplicity, 83
algebraically closed, 60
anti-commutative, 54
augmented matrix, 11

basis, 27
binary, 99
block matrix, 7

Cartesian coordinates, 87
Cauchy–Schwarz inequality, 6
change of basis matrix, 28, 80
characteristic polynomial, 58
closed neighborhood, 103
clustering coefficient, 103
codimension, 29, 35
cofactor, 53
cofactor matrix, 49
colinear, 7
column space, 19
complex conjugate, 87, 89
complex numbers, 60, 87
conjugate, 64, 87, 89
conjugate transpose, 89
connected graph, 101
covariance, 76
cross product, 54
cut, 104
cut-set, 104
cycle, 84, 98
cyclic matrix, 9

degree, 97
dendrogram, 48
determinant, 49
diagonal, 47
diagonal matrix, 7
diagonalization, 61
digraph, 96
dimension, 29, 35
direct sum, 19
directed graph, 96
discrete Fourier transform, 93
distance, 6
distance matrix, 46, 105
dot product, 6

edge, 96

eigenvalue, 57
eigenvector, 57
elementarty matrix, 12
elementary row operations, 11
elimination matrix, 12
error vector, 37
Euler’s formula, 87
exponential form, 87

Fiedler eigenvalue, 102
Fiedler eigenvector, 102
field, 5
filter, 103
Fourier basis, 91
Fourier coefficient, 92
Fourier matrix, 89, 93
Fourier series, 92
full column rank, 25
full rank, 25
full row rank, 25

Gauss–Jordan elimination, 14
Gaussian elimination, 11
generalized eigenvector, 84
geometric multiplicity, 83
Gram–Schmidt process, 42
graph

simple, 96
undirected, 96
weighted, 99

Hadamard product, 8
head, 96
Hermitian, 89

image, 79
imaginary number, 87
imaginary part, 87
in-degree, 97
induced subgraph, 97, 103
inner product, 6, 45
inner product space, 45
inverse, 8
isomorphism, 80

Jordan block, 83
Jordan normal form, 83

kernel, 79

Laplacian spectral gap, 102
least squares, 39
left inverse, 9
left nullspace, 32
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length, 6, 45
linear combination, 4
linear independence, 23, 27
linear map, 79
linear transformation, 79
linearity, 79
loop, 98

Markov matrix, 59, 100
matrix, 7
matrix addition, 8
matrix equation, 11
matrix multiplication, 8
mean-centered, 75
min-max normalization, 77
minimal spanning set, 27
minor, 49
modulus, 87
multiple, 4
multiplicative identity, 8
multiplicity, 62, 83
multiplier, 12

neighbors, 103
nontrivial vector, 4
norm, 6, 45
normalization, 76
normalize, 43
normalized cut weight, 104
nullity, 23, 29
nullspace, 20

open neighborhood, 103
orthogonal, 7, 34
orthogonal complement, 35
orthonormal, 34
out-degree, 97
outer product, 16

parallel, 7
parallelogram, 49
parallelotope, 49
parity, 55
particular solution, 24
path, 98
permutation, 54
permutation matrix, 12
perpendicular, 7
Perron–Frobenius eigenvector, 101
Perron–Frobenius theorem, 101
piecewise continuous, 91
pivot, 12
polar coordinates, 87
position matrix, 46
positive definite, 67

projection, 37, 38
projection matrix, 38
proper subspace, 18
purely imaginary number, 87

range, 79
rank, 23
rank approximation, 72
rank-nullity theorem, 23, 32
real part, 87
reduced row echelon form, 21
right inverse, 9
roots of unity, 88
rotation matrix, 34
row space, 27

sample covariance, 75
scalar, 4, 18
semidefinite, 67
sign, 55
similar matrix, 63, 85
simple graph, 96
singular, 13
singular value decomposition, 72
singular values, 70
singular vectors, 73
sink, 96
skew-symmetic, 54
skew-symmetric matrix, 16
source, 96
span, 19
spanning set, 27
spanning tree, 98
special solution, 20
standard basis, 27, 54
standard form, 87
star, 103, 105
steady state, 59, 101
stochastic matrix, 100
strongly connected graph, 101
subgraph, 97
submatrix, 49
subspace, 18
symmetric matrix, 16, 66

tail, 96
trace, 45, 59
transition probability matrix, 100
transpose, 16
transposition, 55
triangle inequality, 6
triangular matrix, 8
trivial vector, 4

undirected graph, 96
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unit vector, 6
unitary, 89

Vandermonde, 41, 93
variance, 76
vector, 4

unit, 6

vector space, 18
vertex, 96

walk, 98
weighted graph, 99

zero vector, 4
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