
Final
Introduction to Linear Algebra

Material from Lectures 13 - 24

Fall 2021

� This final has 5 questions. Each question is worth 5 points. Your answers require justifi-
cation to recieve points.

� Your grade will be the sum of the 4 highest graded questions. That is, the lowest scoring
question will be dropped.

� This is an open-book exam. All work submitted must be your own.

� Write your answer for each question on a separate page. Do not answer more than one
question on a single page.

� Submit this final on ORTUS by Monday, December 20, 23:59.
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1. Let A : R2 → R2 be the linear transformation for which A [ 1
2 ] = [ 2

4 ] and A [ 6
2 ] = [ 3

1 ].
This is described in the picture below.

R

R

(1, 2)

A(1, 2) = (2, 4)

(6, 2)

A(6, 2) = (3, 1)

(a) Find the values of A [ 1
0 ] and A [ 0

1 ].

(b) Construct the matrix of A.

(c) Without computing the inverse of A, explain why A is invertible.

(a) We construct [ 1
0 ] and [ 0

1 ] from the given vectors, by clearing the rows with zeros:[
1
2

]
−
[
6
2

]
=

[
−5
0

]
=⇒

[
1
0

]
=

1

5

[
6
2

]
− 1

5

[
1
2

]
,

[
6
2

]
− 6

[
1
2

]
=

[
0
−10

]
=⇒

[
0
1

]
=

6

10

[
1
2

]
− 1

10

[
6
2

]
.

From this, and by linearity of A, we see what A does to the two standard basis
vectors of R2:

A

[
1
0

]
= A

(
1

5

[
6
2

]
− 1

5

[
1
2

])
=

1

5
A

[
6
2

]
− 1

5
A

[
1
2

]
=

1

5

[
3
1

]
− 1

5

[
2
4

]
=

1

5

[
1
−3

]
,

A

[
0
1

]
= A

(
6

10

[
1
2

]
− 1

10

[
6
2

])
=

6

10
A

[
1
2

]
− 1

10
A

[
6
2

]
=

6

10

[
2
4

]
− 1

10

[
3
1

]
=

1

10

[
9
23

]
.

(b) The observations from part (a) are enough to give us the matrix of A, since any
vector [ xy ] can be expressed easily interms of the two standrad basis vectors [ xy ] =
x [ 1

0 ] + y [ 0
1 ]. This leads us to the following observations:

A

[
x
y

]
= A

([
x
0

]
+

[
0
y

])
= A

(
x

[
1
0

]
+ y

[
0
1

])
= xA

[
1
0

]
+ yA

[
0
1

]
= x

1

5

[
1
−3

]
+ y

1

10

[
9
23

]
=

1

10

(
x

[
2
−6

]
+ y

[
9
23

])
=

1

10

[
2 9
−6 23

] [
x
y

]
.
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Hence A = 1
10

[ 2 9
−6 23 ] =

[
1/5 9/10
−3/5 23/10

]
.

(c) Here we can use the fact that the two given vectors [ 1
2 ] and [ 6

1 ] are eigenvectors of
A, with eigenvalues 2 and 1

2
respectively. Then we either apply the fact that no zero

eigenvalue means rank must be full, or the fact that the determinant is equal to the
product of the eigenvalues. In either case, since we do not have a zero eigenvalue,
or since the product of 2 and 1

2
is not zero, we get that A is invertible.
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2. Let A = [ a b
c d ] ∈M2×2(Z).

(a) If λ is an eigenvalue of A, find an eigenvalue of A− λI.

(b) If c = 0 and a = d, explain why A is not diagonalizable.

(c) If a = d = 1 and c = d, find a diagonal matrix D similar to A, and find the matrix
B for which D = BAB−1.

(a) Since A has λ as an eigenvalue, there is some vector v for which Av = λv. For this
same vector, we see that

(A− λI)v = Av− λv = λv− λv = 0 = 0v.

Hence 0 is an eigenvalue of A− λI, with eigenvector v.

(b) If c = 0 and a = d, then the matrix A has algebraic multiplicity 2 for the eigenvalue
λ = a, as the eigenvalues of an unpper triangular matrix are on its diagonal. It
means that

a

[
x
y

]
=

[
ax
ay

]
=

[
a b
0 a

] [
x
y

]
=

[
ax+ by
ay

]
,

which means that ax = ax+ by and ay = ay. The first equation implies that by = 0,
so y = 0, since b is fixed. Hence we are only allowed to choose x, meaning that [ 1

0 ]
is an eigenvector (and all its multiples). In other words, the geometric multiplicity
is 1, which is less than the rank of A, so A can not be diagonalized.

(c) To find D, we find the eigenvectors of A. Note that

det(A− λI) =

∣∣∣∣1− λ b
1 1− λ

∣∣∣∣ = (1− λ)2 − b = λ2 − 2λ+ 1− b,

and so

λ =
2±
√

4− 4 + 4b

2
= 1±

√
b.

With this in mind, we solve the eigenvector equation:[
λx
λy

]
=

[
1 b
1 1

] [
x
y

]
=

[
x+ by
x+ y

]
=⇒ λx−λy = by−y =⇒ y =

λx

b+ λ− 1
=

(1±
√
b)x

b±
√
b
.

Hence the eigenvector E matrix and its inverse E−1 are

E =

[
1 1

1+
√
b

b+
√
b

1−
√
b

b−
√
b

]
=

[
1 1
1√
b
−1√
b

]
, E−1 =

1
−1√
b
− 1√

b

[
−1√
b
−1

−1√
b

1

]
=

1

2

[
1
√
b

1 −
√
b

]
.

The diagonalization equation then is

A = E

[
1 +
√
b 0

0 1−
√
b

]
︸ ︷︷ ︸

D

E−1 =⇒ D = E−1AE,

so B = E−1 =
1

2

[
1
√
b

1 −
√
b

]
.
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3. Let B =

� 0 0
� � −1
� � 1

 ∈M3×3(Z) be a symmetric matrix.

(a) Fill in the empty entries � for B, knowing that:

� trace(B) = 5,

� det(B) = 2,

� the two missing entries on the diagonal are different.

(b) Find the eigenvalues and eigenvectors of B.

(c) Find one possible A ∈M3×3(R) for which ATA = B.

(d) Using the eigenvectors of B as the right singular vectors of A, give the singular value
decomposition of A.

(a) Let a = B11 and b = B22. Since trace(B) = 5. we have that a + b + 1 = 5. Since
det(B) = 2 and B is symmetric, expanding the determinant along the first row, we
have that a(b− 1) = 2. Putting these two equation together, we have

a+ b = 4
ab− a = 2

=⇒ a(4− a)− a = 2

=⇒ a2 − 3a+ 2 = 0

=⇒ a =
3±
√

9− 8

2
=

3± 1

2
∈ {1, 2}.

If a = 1, then b = 3, and if a = 2, then b = 2. Since a 6= b, it must be that
a = 1, b = 3. Hence

B =

1 0 0
0 3 −1
0 −1 1

 .
(b) Since this is a block matrix, we immediately see that

[
1
0
0

]
is an eigenvector with

eigenvalue 1. For the other block C =
[

3 −1
−1 1

]
, we see that

det(C − λI) = (3− λ)(1− λ)− 1 = 3− 3λ− λ+ λ2 − 1 = λ2 − 4λ+ 2,

so λ = 4±
√

16−8
2

= 2±
√

2. The eigenvector equation is[
λx
λy

]
=

[
3 −1
−1 1

] [
x
y

]
=

[
3x− y
−x+ y

]
=⇒ (3− λ)x− y = 0,

−x+ (1− λ)y = 0.

Note that x 6= 0, because if x = 0, then y = 0, and [ 0
0 ] can’t be an eigenvector.

Letting x = 1, we get y = 3− λ = 1∓
√

2. Hence the eigenvalue / eigenvector pairs
of C are

λ1 = 2 +
√

2, x1 =

[
1

1−
√

2

]
, λ2 = 2−

√
2, x2 =

[
1

1 +
√

2

]
,

and so for B we have 1, 2+
√

2, 2−
√

2 as eigenvalues, with corresponding eigenvectors

v1 =

1
0
0

 , v2 =

 0
1

1−
√

2

 , v3 =

 0
1

1 +
√

2

 .
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(c) To find A, we consider what happens to A =
[
a b c
d e f
g h i

]
when we multiply it by its

transpose. We find that

ATA =

a2 + d2 + g2 ab+ de+ gh ac+ df + gi
ab+ de+ gh b2 + e2 + h2 bc+ ef + hi
ac+ df + gi bc+ ef + hi c2 + f 2 + i2

 =

1 0 0
0 3 −1
0 −1 1

 = B.

Observing that the entries B12 = B13 = B21 = B31 = 0, one potential choice of
values in A could have b = c = d = g = 0, as this would make the mentioned entries
0 in B. This simplifies the matrices to

A =

a 0 0
0 e f
0 h i

 , B =

a2 0 0
0 e2 + h2 ef + hi
0 ef + hi f 2 + i2

 .
Since we need f 2 +i2 = 0, another potential choice is f = 0, i = 1. This immediately
implies that h = −1, and so e2 = 2, for which we can choose e =

√
2. Hence we get

A =

1 0 0

0
√

2 0
0 −1 1

 ,
though this is by no means the only choice.

(d) For the singular value decomposition, we need vectors of length 1. The relationship
between the right singular vectors vi and left singular vectors ui is given by Avi =
σiui, where the σi are the square roots of 1, 2 +

√
2, 2−

√
2. Hence we find the left

singular vectors of A to be

u1 =
1√
1

1 0 0

0
√

2 0
0 −1 1

1
0
0

 =

1
0
0

 ,
u2 =

1√
2 +
√

2

1 0 0

0
√

2 0
0 −1 1

 1√
2(2−

√
2)

 0
1

1−
√

2

 =
1

2

 0√
2

−
√

2

 =
1√
2

 0
1
−1

 ,
u3 =

1√
2−
√

2

1 0 0

0
√

2 0
0 −1 1

 1√
2(2 +

√
2)

 0
1

1 +
√

2

 =
1

2

 0√
2√
2

 =
1√
2

0
1
1

 .
Hence we get the singular value decomposition of A to be

A =

1 0 0
0 1√

2
1√
2

0 −1√
2

1√
2


︸ ︷︷ ︸

U

1 0 0

0
√

2 +
√

2 0

0 0
√

2−
√

2


︸ ︷︷ ︸

Σ


1 0 0

0 1√
2(2−

√
2)

1−
√

2√
2(2−

√
2)

0 1√
2(2+

√
2)

1+
√

2√
2(2+

√
2)


︸ ︷︷ ︸

V T

.
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4. Let T : R4 → R3 be a linear transformation of rank 2.

(a) Is T injective? Is T surjective?

(b) If all you know is that ker(T ) = span

{[
1
0
0
0

]
,

[
0
0
1
0

]}
and that im(T ) = span

{[
1
0
1

]
,
[

2
2
2

]}
,

find one possible matrix for T .

(c) Let S : R2 → R3 be the linear transformation given by

S

[
1
1

]
=

1
0
1

 , S

[
1
−1

]
=

2
2
2

 .
Use your T from part (b) to find the matrix of L : R4 → R2 for which SL = T .

(a) The transformation T is injective iff ker(T ) = {0}, and since ker(T ) = null(A),
where A ∈ M3×4 is the matrix of T , it must be that dim(null(A)) = 0 for T to be
injective. By the rank-nullity theorem, we have that

dim(col(AT )) = rank(A) = 2
dim(col(AT )) + dim(null(A)) = 4

=⇒ dim(null(A)) = 2.

Hence null(A) 6= {0}, and so ker(T ) 6= {0}, meaning that T is not injective. For
surjectivity, we have that T is surjective if dim(im(T )) = dim(R3) = 3. By the
dimension theorem,

4 = dim(R4) = dim(ker(T )) + dim(im(T )) = 2 + dim(ker(T )),

which implies that dim(ker(T )) = 2 6= 3, and so T is not surjective.

(b) Given what the kernel and image of T are, we make some choice as to where T sends
the standard basis vectors of R4:

T


1
0
0
0

 =

0
0
0

 , T


0
1
0
0

 =

1
0
1

 , T


0
0
1
0

 =

0
0
0

 , T


0
0
0
1

 =

2
2
2

 .

This gives the matrix of T immediately as

0 1 0 2
0 0 0 2
0 1 0 2

.

(c) Here we must have ker(L) = ker(T ), because (the matrix of) S is full rank, which

we observe by [ 1
1 ] , [ 1

−1 ] being linearly independent, and by
[

1
0
1

]
,
[

2
2
2

]
being linearly

independent. So as above we choose where the basis vectors of R4 go, to get that

L =

[
0 1 0 1
0 1 0 −1

]
.

We may check that SLei = Tei on all the standars basis vectors ei of R4, as desired.
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5. (a) For every n ∈ N, construct a directed, simple, connected graph G = (V,E) with
u, v ∈ V , that has exactly one walk of length k from u to v, for every k = 1, . . . , n.

(b) For every n ∈ N>3, construct an undirected, simple, connected graph G = (V,E)
that has exactly n! spanning trees.

(c) Let G = (V,E), with V = {(a, b) : a, b ∈ {1, 2, 3}} be the undirected graph defined
by

{(x, y), (z, w)} ∈ E ⇐⇒ (z − x)2 + (w − y)2 = 5.

Draw G and explain why it is not possible to interpret the transition probability
matrix of G (for any chosen edge directions) as a Markov matrix.

(a) Consider the following sequence of graphs:

G1

u

v

G2

u

v •

G3

u

v •

•

G4

u

v •

•

•

G5

u

v
•

••

•

G6

u

v

•

•
••

• · · ·

Formally, let

G1 = (V1 = {u, v}, E1 = {(u, v)}),
G2 = (V2 = {u, v, 2}, E2 = {(u, v), (u, 2), (2, v)}),
Gn = (Vn−1 ∪ {n}, En−1 ∪ {(n− 1, n), (n, v)})

for n > 3. This sequence of graphs satsifies the given condition, where we interpret
a walk to be a directed walk.

(b) For this question we use the following two observations:

� The graph Cn which is just a cycle of n edges has n spanning trees

� If G = (VG, EG) has k spanning trees and H = (VH , EH) has ` spanning trees,
then the graph with vertex set V = VG∪VH and edge set E = EG∪EH ∪{u, v},
for u ∈ VG and v ∈ VH , has k` spanning trees.

The first observation is quick to verify, and the second follows as {u, v} is a cut edge,
so must be contained in every tree of the big graph. Hence we consider the following
sequence of graphs:

G3 G4 G5 G6

· · ·

The graph G3 has 6 = 3! spanning trees, G4 has 4 · 6 = 4! spanning trees, G5 has
5 · 4! = 5! spanning trees, and so on.

8



(c) The graph G has 9 vertices. To find all the edges, we note that as a sum of non-
negative integers, we can have

5 = 0 + 5 or 5 = 1 + 4 or 5 = 2 + 3,

but only 5 = 1 + 4 works as a sum of squares. Hence the edges that exist in G are
for |z−x| = 1 and |w−y| = 2, as well as for |z−x| = 2 and |w−y| = 1. We quickly
find these edges to be as below:

z x |z − x| w y |w − y| edge

1 2 1 1 3 2 (2, 3)− (1, 1)

1 2 1 3 1 2 (2, 1)− (1, 3)

2 3 1 1 3 2 (3, 3)− (2, 1)

2 3 1 3 1 2 (3, 1)− (2, 3)
...

...

The other four edges have the positions of z, x swapped with w, y, respectively.
Drawing this graph on the Cartesian plane with (x, y) at position (x, y), we get the
following graph:

1

1

2

2

3

3

The adjacency matrix of G has 9 rows and 9 columns. If the middle vertex at (2, 2) is
in row 5 and column 5, then this row is all zeros and this column is all zeros. Markov
matrices must have all rows add up to 1 (right stochastic) or all columns add up to
1 (left stochastic). Neither situation is possible, so this can not be interpreted as a
Markov matrix.
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