Assignment 1

Introduction to Linear Algebra

Material from Lectures 1 and 2 Due Friday, September 10, 2021

1. Consider the grid below, with squares of width and height 1.

- (a) Identify all the points that correspond to linear combinations of $a\begin{bmatrix} 3\\0\end{bmatrix} + b\begin{bmatrix} -1\\2\end{bmatrix}$, for $a, b \in \mathbb{Z}$.
- (b) Which of the points from part (a) lie a distance of more than 2 but less than 3 from the origin?
- 2. The unit *n*-cube in \mathbb{R}^n has corners (v_1, v_2, \ldots, v_n) , where $v_i \in \{0, 1\}$ for all *i*.
 - (a) For n = 2 and 3, give the corners of the unit *n*-cube and add them together. What will be the sum of all the corners for any $n \in \mathbb{N}$?
 - (b) Compute the length between the two opposite corners (0, 0, ..., 0) and (1, 1, ..., 1). What is the limit of this length as $n \to \infty$?
- 3. Let $\mathbf{v} = (1, 1, 1)$, $\mathbf{w} = (2, -2, 0)$ and $\mathbf{z} = (-3, 1, 2)$ be vectors in \mathbf{R}^3 .
 - (a) Using a linear equation in three variables, describe the plane of points \mathbf{R}^3 that are equidistant from \mathbf{v} and \mathbf{w} .
 - (b) Using two equations, describe the line of points in \mathbb{R}^3 that are equidistant from \mathbf{v} , \mathbf{w} , \mathbf{z} . Hint: A line is the intersection of two planes.
- 4. This question is about the Cauchy–Schwarz inequality, $|\mathbf{v} \cdot \mathbf{w}| \leq ||\mathbf{v}|| \cdot ||\mathbf{w}||$.
 - (a) Suppose that there exists $c \in \mathbf{R} \setminus \{0\}$ with $\mathbf{w} = c \cdot \mathbf{v}$. Show that the Cauchy–Schwarz inerquality holds with equality.
 - (b) Suppose that the Cauchy–Schwarz inequality holds with equality. Show that there exists $c \in \mathbf{R} \setminus \{0\}$ with $\mathbf{w} = c \cdot \mathbf{v}$.
- 5. Let A, B, C, D be $n \times n$ matrices that are invertible.
 - (a) Find the inverses of the following block matrices.

i.
$$\begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$$
 ii. $\begin{bmatrix} I & B \\ 0 & D \end{bmatrix}$ iii. $\begin{bmatrix} A & 0 \\ I & D \end{bmatrix}$

(b) Do one step of Gaussian elimination on $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ to get a zero in the lower left corner.

6. Let
$$\mathbf{v} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, and consider the 4×4 matrix $A = 2 \cdot \mathbf{v} \cdot \mathbf{v}^T - 4I$.

(a) Use Gauss–Jordan elimination to find the inverse of A.

- (b) What is the inverse of -4I? What is the inverse of $2 \cdot \mathbf{v} \cdot \mathbf{v}^T$?
- 7. (a) Find the pivots of the matrix $\begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix}$. For what values of a and b is this matrix invertible?
 - (b) Find the pivots of the matrix $\begin{bmatrix} 2 & 3 & c \\ c & c & c \\ -1 & -4 & c \end{bmatrix}$. For what values of c is this matrix invertible?

8. Decompose the matrix
$$A = \begin{bmatrix} 0 & 0 & 3 & 4 \\ 1 & 2 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$
 as $PA = LDU$.