- 1. For each of the statements below, find the $N \in \mathbf{N}$ and $c \in \mathbf{R}$ that satisfy the given asymptotic notation definition.
 - (a) 200n + 30000 is in $O(n^2)$
 - (b) $6n^2 4n + 10$ is in $O(n^2)$
 - (c) $\log_{10}(2^n) + 20^{20}n^2$ is in $O(n^2)$
 - (d) $3n^3 4n + 1$ is in $\Omega(n^3)$
 - (e) $3n^3 4n + 1$ is in $\Theta(n^3)$
- 2. Let f, g be functions $\mathbf{Z}^+ \to \mathbf{R}$ from the positive integers to the real numbers. Define a relation R so that $(f, g) \in R$ iff f is in $\Theta(g)$.
 - (a) Is the relation R reflexive, symmetric or transitive?
 - (b) Is R an equivalence relation?
 - (c) Consider the following two functions:

$$f(n) = \sum_{i=1}^{n} i^2, \qquad g(n) = n^3 \cdot (1 + 0.99 \cdot \sin n).$$

Is $(f,g) \in R$? Is $(g,f) \in R$?

- 3. Let f(n), g(n) be any two functions.
 - (a) Show that f(n) + g(n) is in $\Theta(\max\{f(n), g(n)\})$.
 - (b) What will be the Big-Oh and Big-Omega of $f(n) \cdot g(n)$?

4. Let
$$f(n) = \sum_{i=1}^{n} \frac{1}{i}$$
.
(a) Show that $\int_{1}^{n+1} \frac{1}{x} dx \leq f(n) \leq 1 + \int_{1}^{n} \frac{1}{x} dx$.
(b) Explain why part (a) above implies that $f(n)$ is in $\Theta(\ln(n))$.

Hint: To show part (a), draw rectangles above and below the curve $\frac{1}{r}$.

- 5. Complete the following tasks for next lab (Tuesday). They will be presented at the beginning of the lab.
 - (a) Let f(n) = ln(n!).
 i. Show that ∫₁ⁿ ln(n) dx ≤ f(n) ≤ ∫₁ⁿ⁺¹ ln(x) dx.
 ii. Explain why part (a) above implies that f(n) is in Θ(n ln(n)).
 - (b) Let $a, b, c \in \mathbf{R}$, with a > 0, b > 0, and c > 1.
 - i. Explain why $(\log(n))^a$ is in $O(n^b)$.
 - ii. Explain why n^b is in $O(c^n)$.
 - (c) Let A, B be two $n \times n$ matrices with real number entries. You may assume that adding or multiplying two real numbers takes the same amount of time.
 - i. What is the Big-Oh of matrix addition?
 - ii. What is the Big-Oh of matrix multiplication?