
Discrete
Structures

Worksheet 21 Spring 2022
March 18

Recall the definition of Big-O notation: Let f, g : X → R be functions, for X ⊆ R and a ∈ R.
Then we say “f(x) is Big-O of g(x) as x goes to a”, and write:

“f(x) = O(g(x)) as x→ a”, or “f(x) is O(g(x)) as x→ a”

if there exists ε > 0 and M > 0 such that |f(x)| 6 M |g(x)| for all x ∈ (a − ε, a + ε). If a is
clear from context, and most often a =∞, we write

“f(x) = O(g(x)”, or “f(x) is O(g(x))”,

and in the a = ∞ case, the condition on x is changed to “for all x > ε”. This condition is
specialized to functions whose domain is X = Z ⊆ R in Question 1.

1. For each function below and its given growth rate, find C ∈ N and the smallest possible
n0 ∈ N such that ∃ C ∈ Z+ ∃ n0 ∈ Z+ ∀ n ∈ Z+ (n > n0 → |f(n)| ≤ C · |g(n)|).

(a) Let f(n) = n3 + 88n2 + 3, and you may assume that f(n) is O(n3).

(b) Let g(n) = ln(n4) + n · arctan(n), and you may assume that g(n) is O(n).

2. For each function f(n) defined below, find the optimal g(n) such that f(n) is O(g(n)).
That is, make sure that if f(n) is also O(h(n)), then g(n) is O(h(n)).

(a) f(n) = 12 + 22 + . . .+ n2

(b) f(n) =
3n− 8− 4n3

2n− 1

(c) f(n) =
n∑

k=1

k3

(d) f(n) =
6n+ 4n5 − 4

7n2 − 3

(e) f(n) =
n∑

k=2

k · (k − 1)

(f) f(n) = 3n2 + 8n+ 7

3. For X = {1, 2, . . . , n} and a a set of subsets S = {S1, . . . , Sk}, Si ⊆ X, there is an
algorithm that determines whether or not there are two subsets Si, Sj ∈ S with Si∩Sj = ∅.
The algorithm works in the following way:

� For each subset Si, the algorithm looks at all other subsets Sj, and for each of these
other subsets Sj, it looks at every element k in Si to determine whether k also
belongs to Sj.

� As soon as the algorithm finds any two disjoint subsets, it outputs their numbers i
and j, and stops.

Answer the following questions about the algorithm A.

(a) Write the algorithm in pseudocode, using the line “if i ∈ Sj: . . .” somewhere.

(b) Write the algorithm in pseudocode, using for loops and “foreach k ∈ Sj” loops.
Test elements for equality, instead of using the line from part (a).

(c) Give a Big-O estimate for the number of times the algorithm, as written in part (b),
tests element equality.

4. Consider the code in Python below.

sum = 0

for i in range(1,n+1):

for j in range(1,n+1):

sum += (i*t + j*t + 1)**2

The number n is a natural number and t is a real number. Let f(n) be the number of op-
erations executed when the above code is run. An “operation” is addition, multiplication,
or raising to the power 2. Find the optimal g(n) so that f(n) is O(g(n)).

5. Complete the following tasks for next lab (Tuesday). They will be presented at the
beginning of the lab.

(a) A line in the plane separates the plane into two regions (above and below the line).
For two lines, it is four:

1
2

12

3 4

Using a recurrence relation, find the number of regions into which n (non-parallel)
lines separate the plane.

(b) For each n ∈ N, a 2× n checker board may be tiled using 1× 1 and L-tiles (3 tiles
arranged in an L-shape).

2× 3 checker board 2× 7 checker board 1× 1 tile L-tile

Using a recurrence relation, find the number of ways a 2× n checker board may be
tiled using these two tiles.

(c) Write the following English sentences using logical symbols. Avoid using the negation
symbol ¬ by changing the quantifiers and the inequality signs.

i. For functions f : R→ R and g : R→ R it is not the case that f is O(g(n)).

ii. The inequality f(n) > g(n) holds for any real argument n, but f is not Θ(g(n)).

iii. If f is not O(g(n)), then g is not Ω(f(n)).

(d) Arrange the following functions in order of increasing O(−).

log(n10) (log n)2 log(log(n))

n log(n) log(n!) log(2n)

That is, if f(n) comes before g(n) in your arrangement, then f(n) is O(g(n). Justify
your work!

