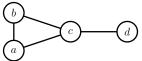
- 1. Consider the following forms of license plates around the world:
 - Latvia has the form AB-0123
 - $\bullet\,$ The UK has the form AB01 CDE
 - $\bullet\,$ Israel has the form $01\text{--}234\text{--}56\,$
 - $\bullet\,$ India has the form AB 01 CD 2345

You may assume that only the Arabic numerals $(0, \ldots, 9)$ and only the English alphabet letters (A, \ldots, Z) are allowed.

- (a) How many possible license plates are there for each country?
- (b) Create a table of ratios (rounding to the nearest integer) of your answers from (a).
- (c) If every symbol could be a number **or** a letter, by what factor would each of the countries possibilities increase?
- 2. How many strings containing the letters **a** and **b** are there:
 - (a) of length 12 that contain 7 consecutive letters a?
 - (b) of length 6 that contain 4 consecutive letters **a** or 3 consecutive letters **b**?
 - (c) of length 5 that contain 2 consecutive letters **a** and do not contain 2 consecutive letters **b**?
- 3. Let G = (V, E) be an undirected graph (so the edges do not have direction). Fix $n \in \mathbb{N}$. How many functions $f: V \to \{1, \ldots, n\}$ satisfying $f(u) \neq f(v)$ whenever $\{u, v\} \in E$ are there for n = 10 and G as below?



- 4. Complete the following tasks for next lab (Friday). They will be presented at the beginning of the lab.
 - (a) What percentage of integers between 0 and 10¹⁰ inclusive are not divisible by any of 6, 14, 11? Make a Venn diagram representing this situation, with circles representing divisibility by each of the given numbers. Indicate the percentage of numbers in each part of the Venn diagram.
 - (b) Let $r \in \mathbf{R}_{>0}$, and let T be a triangle with all sides of length r.
 - i. Show that two of any five points inside T must be a distance of r/2 or less apart.
 - ii. Show a counterexample with 4 points inside T and every two of them more than r/2 away from each other.
 - (c) Using the fact that the number of subsets of $\{1, \ldots, n\}$ is 2^n , explain why $\sum_{k=0}^n \binom{n}{k} = 2^n$.
 - (d) Let $A_n = \{1, \ldots, n\}$ and let $B = \{0, 1\}$, where $n \in \mathbb{N}$ is fixed.
 - i. How many functions are there from A_n to B?
 - ii. How many injective functions are there from A_n to B?
 - iii. How many surjective functions are there from A_n to B?
 - (e) How many different even integers ≥ 4000 and < 7000 have four different digits?