- 1. Suppose $n = 101 \cdot 113$, $e_1 = 8765$, and $e_2 = 7653$. Note that 101 and 113 are primes.
 - (a) One of e_1 and e_2 is a valid RSA encryption exponent (for modulus n) and the other is not. Explain which is which and why.
 - (b) For the valid encryption exponent, compute d, the corresponding decryption exponent.
- 2. Consider the following defective cryptosystem: Let p be a large prime which is public. You encrypt a message m by computing $c = m^e \pmod{p}$ for some suitably chosen public encryption exponent e. How do you find a decryption exponent d such that $cd \equiv m \pmod{p}$?
- 3. Using induction, show that $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$ and for all $x \in \mathbb{R}_{\ge -1}$.
- 4. (Cummings, Proposition 4.4) Using induction, show that the product of the first n odd natural numbers is equal to $\frac{(2n)!}{2^n n!}$.

- 6. Complete the following tasks for next lab (Friday). They will be presented at the beginning of the lab.
 - (a) This question is about the RSA encryption scheme.
 - i. Factor the number n = 3844384501 using the knowledge that $311776118522 \equiv 1 \pmod{3844384501}$.
 - ii. Prove that the number 31803221 is not a prime number, using the fact that $2^{31803212} \equiv 27696377 \pmod{31803221}$.
 - (b) (Cummings, Theorem 4.16) Using induction, show that if an undirected graph G = (V, E) has 2n vertices and $n^2 + 1$ edges, then G contains a triangle.
 - (c) Let $a_{=}1$, $a_{2} = 8$, and $a_{n} = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Use strong induction to prove that $a_{n} = 3 \cdot 2^{n-1} + 2 \cdot (-1)^{n}$ for all $n \in \mathbb{N}$.
 - (d) Let $a_0 = 3$, $b_0 = 4$ and $c_0 = 5$. If

$$a_n = a_{n-1} + 2,$$
 $b_n = 2a_{n-1} + b_{n-1} + 2,$ $c_n = 2a_{n-1} + c_{n-1} + 2$

for all $n \in \mathbf{N}$, use strong induction to prove that $c_n - b_n$ is constant for all $n \in \mathbf{N}$.