- 1. This question is about congurences.
 - (a) Explain why the following systems of congruences have the same solutions:

 $\begin{cases} x \equiv 2 \pmod{39} & \begin{cases} y \equiv 2 \pmod{13} \\ y \equiv 2 \pmod{3} \end{cases}$

- (b) Find the multiplicative inverses of 2 modulo 3, 13, 39. Show your work!
- (c) Suppose you know that $ab \equiv 1 \pmod{pq}$. Just from this, is it possible to find the multiplicative inverses of a modulo p and modulo q? The numbers p and q are prime.
- 2. This question is about exponents in congruences.
 - (a) For what numbers $a \in \{0, 1, ..., 18\}$ is it possible to solve the quadratic equations:

(i) $x^2 \equiv a \pmod{19}$ (ii) $x^2 + x \equiv a \pmod{19}$

(b) For a = 1, 2, 3, what are the solutions to the exponential equation:

$$3^x \equiv a \pmod{19}$$

- 3. Show that $n^7 n$ is divisible by 42 for all $n \in \mathbb{Z}$. Hint: Use fermat's Little theorem.
- 4. Let $a, b, c \in \mathbb{Z}$. Show that gcd(ab, c) = 1 if and only if gcd(a, c) = 1 and gcd(b, c) = 1.

6. Complete the following tasks for next lab (Tuesday). They will be presented at the beginning of the lab.

- (a) Use induction to prove that $4^n + 5^n + 6^n$ is divisible by 15 for all odd $n \in \mathbf{N}$.
- (b) Using proof by contradiction, prove that there is no largest prime number. *Hint: Use the uniquess of proime factorization.*
- (c) Let p = 6n + 5 be a positive integer, for some $n \in \mathbb{Z}_{\geq 0}$. Show that there is at least one prime factor q of p for which also q = 6k + 5, for some $k \in \mathbb{Z}_{\geq 0}$. *Hint: Use proof by contradiction and the fact that factors of an odd number are odd.*
- (d) For all integers a, b, show that gcd(a, b) = gcd(2a + b, 3a + 2b).