1. Warm up: Find the range of each of the following functions.

$f \colon \mathbf{R} \to$	R	$k \colon \mathbf{R} \to \mathbf{R}$
$x \mapsto$	x^2	$x \mapsto \arctan(x)$
$g \colon \mathbf{R} \to$	R	$\ell \colon \mathbf{R}_{>0} \ o \ \mathbf{R}$
$x \mapsto$	$x^2 + 1$	$x \mapsto \ln(x) + 10^{10}$
$h \colon \mathbf{R} \to$	R	$m \colon \mathbf{R} \to \mathbf{R}$
$x \mapsto$	$\sin^2(x)/2$	$x \mapsto 4x^5 - 3x^2 + 10x - \frac{1}{2}$

- 2. Trace out x, y, r in the Euclidean algorithm (Algorithm 1 on page 284) on the inputs a = 31463 and b = 9782.
- 3. Let $a, b \in \mathbf{Z}$.
 - (a) What is the relationship between the gcd of a, b and the lcm of a, b? Express it as an equation.
 - (b) If $c \in \mathbf{N}$, prove that $gcd(ac, bc) = c \cdot gcd(a, b)$.
- 4. Find all solutions, if any, to each of the following systems of congruences.

(a) $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, $x \equiv 8 \pmod{15}$

- (b) $y \equiv 7 \pmod{9}, y \equiv 4 \pmod{12}, y \equiv 16 \pmod{21}$
- 5. Let $A_n = \{1, ..., n\}$ and let $B = \{0, 1\}$, where $n \in \mathbb{N}$ is fixed.
 - (a) How many functions are there from A_n to B?
 - (b) How many injective functions are there from A_n to B?
 - (c) How many surjective functions are there from A_n to B?
- 6. Complete the following tasks for next lab (Friday). They will be presented at the beginning of the lab.

(a) Let $m, n \in \mathbf{N}$ with $m \leq n$. Prove that $\frac{\gcd(m, n)}{n} \binom{n}{m}$ is an integer.

- (b) Using the Euclidean algorithm and Bezout's identity, find the values x, y that solve 27x + 339y = -12.
- (c) Show that a positive integer n is divisible by 4 if and only if its last two digits are divisible by 4. For example, 516 is divisible by 4 because 16 is divisible by 4.
- (d) A googolplex is the number $10^{10^{100}}$. If today is Tuesday, what day of the week will it be a googolplex days from now?
- (e) Find all positive integers x such that $2^{2^{x+1}} + 2$ is divisible by 17.